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Abstract

Background

Peste des petits ruminants (PPR) is an acute infectious viral disease affecting domestic

small ruminants (sheep and goats) and some wild ruminant species in Africa, the Middle

East and Asia. A global PPR control strategy based on mass vaccination—in regions where

PPR is endemic—was recently designed and launched by international organizations.

Sahelian Africa is one of the most challenging endemic regions for PPR control. Indeed,

strong seasonal and annual variations in mating, mortality and offtake rates result in a com-

plex population dynamics which might in turn alter the population post-vaccination immunity

rate (PIR), and thus be important to consider for the implementation of vaccination

campaigns.

Methods

In a context of preventive vaccination in epidemiological units without PPR virus transmis-

sion, we developed a predictive, dynamic model based on a seasonal matrix population

model to simulate PIR dynamics. This model was mostly calibrated with demographic and

epidemiological parameters estimated from a long-term follow-up survey of small ruminant

herds. We used it to simulate the PIR dynamics following a single PPR vaccination cam-

paign in a Sahelian sheep population, and to assess the effects of (i) changes in offtake rate

related to the Tabaski (a Muslim feast following the lunar calendar), and (ii) the date of

implementation of the vaccination campaigns.
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Results

The persistence of PIR was not influenced by the Tabaski date. Decreasing the vaccination

coverage from 100 to 80% had limited effects on PIR. However, lower vaccination coverage

did not provide sufficient immunity rates (PIR < 70%). As a trade-off between model predic-

tions and other considerations like animal physiological status, and suitability for livestock

farmers, we would suggest to implement vaccination campaigns in September-October.

This model is a first step towards better decision support for animal health authorities. It

might be adapted to other species, livestock farming systems or diseases.

Introduction

Peste des petits ruminants
Peste des petits ruminants (PPR) is an acute infectious viral disease affecting domestic small
ruminants (sheep and goats), and some wild ruminant species [1]. It is caused by a Morbillivi-
rus, the PPR virus (PPRV). Widespread in Africa, the Middle East and Asia, it causes heavy
economic losses, mostly in smallholder, low-input farming systems [2–4].

Following the recent eradication of rinderpest (a cattle disease caused by another Morbillivi-
rus) in 2011 [5], PPR eradication is now a top priority for improving animal health and farmers
livelihood, making it a Global Public Good [6]. A global strategy for the progressive control
and eradication of PPR was launched in 2015 by the World Organization for Animal health
(OIE) and the Food and Agriculture Organization of the United Nations (FAO) [7]. In areas
where PPR is endemic, like in the Sahelian region of Africa, vaccination is the primary tool for
PPR control.

In Sahelian Africa, the most commonly used PPR vaccine is the attenuated Nigeria 75/1
strain of PPRV which provides, after a single injection, a life-long immunity against PPRV [8–
10]. Moreover, vaccinated ewes and nanny goats, as well as those recovering from a natural
PPRV infection, provide their offspring with maternal (colostral) antibodies. These kids and
lambs are thus protected against PPRV during the first months of their life [11–13]. Because of
this passive immunity, as well as the immaturity of their immunized system [14], only animals
older than three months are vaccinated, thus defining the target population for PPR vaccina-
tion [7].

The recommended strategy in Sahelian Africa is to vaccinate the whole target population
during one or two successive years (a single vaccination round each year), followed by the vac-
cination of the sole offspring (animals< 1 year old) during one or two successive years [7].
Each vaccination round must be implemented over a short period of time, preferably at the
beginning of the dry season (November-December) and before the birth peak [7] when grazing
is abundant and animals in good health.

Post-vaccination immunity rate
After such a pulse vaccination campaign, the population immunity rate (PIR), i.e. the propor-
tion of immunized individuals gradually decreases according to the population demographic
turnover: births and other unvaccinated entries on the one hand, and deaths and offtake
(slaughtering and sales) on the other hand. Knowledge on the post-vaccination immunity
decay between two successive vaccination campaigns is important to assess the efficiency of
vaccination programs, and to provide veterinary services with recommendations on
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vaccination strategies. In the absence of PPRV transmission, the post-vaccination PIR dynam-
ics only depends on the population turnover. Indeed, at a given time after the vaccination,
immunized animals may have been affected by demographic events, such as death and offtake.
Therefore, their number is decreasing with time. In the meantime, the number of unvaccinated
animals (births, purchases and loans from unvaccinated and PPR-free areas. . .) is growing.
Moreover, the persistence of maternal antibodies is short: a few months after birth [13, 15, 16].
Consequently, the PIR is decreasing in the vaccinated population. How fast? To answer this
complex question in a context of preventive vaccination against avian influenza in free-range
domestic poultry, Lesnoff et al. [17] used a discrete-time population matrix model. As a matter
of fact, such models are commonly used for simulating the dynamics of age-structured popula-
tions [18–20], and represent epidemiological processes [21, 22]. We chose this approach for
this study.

In extensive sheep farming systems, the availability of forage resources is closely related to
the nutritional and physiological status of animals, and therefore the reproductive perfor-
mances [23]. More specifically, in the Sahelian region, sheep physiological needs are only met
during the rainy season, from July to September. Therefore, mating is mostly limited to this
time period resulting in a single birth peak between December and February [24].

Moreover, offtake rates are also highly seasonal with a large increase during the Tabaski fes-
tival (Eid al-Adha), a religious celebration during which young rams are sacrificed in most fam-
ilies [24–27]. According to the Gregorian calendar, the offtake peak moves backward by nearly
two weeks each year because the Tabaski date is based on the lunar (shorter) calendar. These
seasonal patterns in demographic parameters may affect the small ruminant population
dynamics, and consequently the PIR dynamics.

Post-vaccination immunity threshold
The basic reproduction number R0 is the expected number of new infections following the
introduction of a single infectious individual in a population of fully susceptible hosts [28].
Assuming an homogeneous and randomly-mixed small ruminant population, as well as a
long-lasting immunity in vaccinated animals [9], the fraction (f) of immunized individuals
required to stop PPRV-transmission can be estimated by f> 1 − 1/R0 [28, 29]. Epidemiological
studies implemented in smallholder farming systems provided empirical R0 estimates ranging
from 4.0 to 6.9 [30–32], with corresponding f ranging from 75% to 86%. On the other hand,
Moroccan veterinary services successfully controlled PPR with three successive annual, nation-
wide mass vaccination campaigns following PPR emergence in 2008. No PPR outbreak was
detected after the end of the first vaccination campaign (more than 20 million sheep and goats
vaccinated in October-November 2008) which covered 85% of the national stock. In March
2009, the estimated post-vaccination seroprevalence rate of antibodies against PPRV was 69%
(n = 5,158) in small ruminants [33]. Consequently, it was agreed among OIE and FAO experts
in charge of designing the recommended PPR control strategy, that PPR mass vaccination
campaigns should target a post-vaccination PIR of at least 70%. This threshold was chosen to
assess the success of PPR vaccination campaigns through post-vaccination monitoring activi-
ties at the level of epidemiological units [7].

In the context of PPR vaccination campaigns in Sahelian small-ruminant farming systems,
the epidemiological unit can be arbitrarily defined as an area and its corresponding small-
ruminant population covered by a vaccination team during a vaccination session (generally
from one to three days). The epidemiological unit has a variable size according to the local con-
ditions. However, in the commonest situations, it ranges from a single village or settlement, to
a municipality (encompassing several villages), representing from several hundreds to several
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thousands of sheep and goats. In such an epidemiological unit, the small ruminant population
can be considered as homogeneous and randomly mixed with respect to the vaccination proba-
bility, as well as with the risk of PPRV transmission.

Study goals
The goal was to assess the persistence of PIR in sheep after a single mass-vaccination campaign,
according to different preventive vaccination scenarios, in an epidemiological unit without
PPRV transmission (i.e. PPR vaccination and colostral antibodies were the only sources of
immunized sheep). Specific objectives were to assess the effects of (i) seasonality of demo-
graphic rates and (ii) vaccination date on the PIR dynamics.

Materials and Methods

Study area and sheep demographic data
Sheep demographic data were collected during a joint research program implemented by the
Senegalese Institute of Agricultural Researches (ISRA) and the French Agricultural Research
Centre for International Development (CIRAD). A demographic longitudinal survey was
implemented from 1983 to 1999 in more than 200 small ruminants herds belonging to 15 vil-
lages located in the Ndiagne municipality, located in northern Senegal (Fig 1) [24–26]. Climate
is characterized by a short rainy season (July to September) and a long dry season. The annual
rainfall ranges from 250 to 500 mm, with a rainfall peak generally observed in August [34].

Sheep were mostly from the Sahelian phenotype—so-called Peul-Peul breed: mid-size,
short-hair sheep with black and white robe. They were reared in a low-input smallholder farm-
ing system relying on the utilization of natural grasslands. Herds were fortnightly visited by
professional surveyors. Individual demographic events (parturition, mortality, sales, etc.) were
recorded with the help of the farmer and people in charge of animal cares (in general: farmer’s
wife and children). Data were stored in a purposively-designed relational database [35], and

Fig 1. Global Aridity Index in Senegal (West Africa). Data sources: Zomer et al., 2006 [38] and Trabucco
et al., 2009 [39]; spatial resolution: 10 arc minutes. The location of Senegal is shown in blue on the map of
Africa in the top-left corner.

doi:10.1371/journal.pone.0161769.g001
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pre-processed with specific routines described in Lesnoff et al., 2014 [36]. The time period con-
sidered for the present study ranged from 1989 to 1995 during which all sheep were vaccinated
each year against PPR with a heterologous vaccine against rinderpest virus [37]. No PPR out-
break was recorded in the vaccinated sheep flocks during the study period. Therefore, we
assumed neither PPR-specific mortality, nor other PPR-related demographic effect, affected
the sheep demographic rates. The observed demographic data are provided as MS Excel file in
S1 Table.

Demographic matrix model
The sheep population dynamics and age structure were simulated over one year with a seasonal
discrete-time population matrix model [17, 20, 40, 41] using a one-month time step, and split-
ting the population by sex and one-month age classes. Shorter time steps can be used, e.g. one-
or two-week time step [24], but the one-month time step allowed more parsimony in the
model (smaller number of parameters) and was well adapted for the study objectives, with
monthly PIR estimates as the output.

For a given month j, and with t representing the start of the month, the one-month dynam-
ics was given by:

xðt þ 1 monthÞ ¼ Bj � xðtÞ

where

— x(t) was the population-state vector at time t. Its components are the animal numbers in
the population by sex-and-age class from which the age structure can be estimated.

— The one-month projection matrix Bj contained the one-month demographic rates (repro-
duction, mortality and offtake) by sex-and-age class.

With t representing the start of the year, the one-year dynamics was given by:

xðt þ 1 yearÞ ¼ A� xðtÞ

where A = B12 × B11 × . . . × B1 was the one-year projection matrix. The matrices Bj were filled
with demographic parameters changing with the month. However, they all had the same struc-
ture (see, S1 Matrix).

Survival and net fecundity rates s and f were estimated for each sex-and-age class from the
Ndiagne sheep data set. Rate ρ, i.e. the probability that an offspring born alive was a female,
was set to 0.5 [42–44]. The age at first parturition was set to 10 months [45]. The oldest ages
for ewes and rams were set to 11 years and two years [24, 25, 27, 46, 47]. All the sheep surviving
up to these ages in the model were assumed to be culled, and were thus added to the offtake.

The population dynamics was simulated according to 12 so-called Tabaski scenarios. For
each scenario, the male offtake rates in the Bj matrices were adapted to simulate the occurrence
of the Tabaski festival at a different month. A birth-flow type was assumed for the monthly
reproduction pattern [20]. For a given month (t, t+1), the dynamics equations were (after
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removing index j for simplicity):

xf ;1ðt þ 1Þ ¼ r s0
X132

i¼11

ff ;i sf ;iðtÞ ð1Þ

xf ;2ðtÞ ¼ sf ;1 � xf ;1ðtÞ ð2Þ

xf ;:::ðtÞ ¼ sf ;::: � xf ;:::ðtÞ ð3Þ

xf ;132ðtÞ ¼ sf ;131 � xf ;131ðtÞ ð4Þ

xm;1ðt þ 1Þ ¼ ð1� rÞ s0
X132

i¼11

ff ;isf ;iðtÞ ð5Þ

xm;2ðtÞ ¼ sm;1 � xm;1ðtÞ ð6Þ

xm;:::ðtÞ ¼ sm;::: � xm;:::ðtÞ ð7Þ

xm;24ðtÞ ¼ sm;23 � xm;23ðtÞ ð8Þ

where

— Age class i, for i� 1 at time t, represented animals having an exact age ranging between i
− 1 months and imonths at this time. “Age class” index 0 represented the births between
t and t + 1.

— sf,i and sm,i, for i� 1, were the female and male survival probabilities between t and t+1
from age class i to age class i+1. Rates sf,0 and sm,0 were the female and male survival prob-
abilities from the birth to age class 1. For each sex-and-age class, the survival probability s
was calculated by s = 1 − pdea − poff where pdea was the probability of natural death and
poff the probability of offtake.

— ff,i was the net fecundity rate for age class i, i.e. the average number of offspring born alive
between t and t + 1 expected per female in age class i.

— ρ was the probability that an offspring born alive was a female.

Calculating the post-vaccination immunity dynamics from the
demographic matrix model
The PIR at t, noted PIR(t), was estimated over the discrete time-scale t = 0 month, one month,
. . ., 12 months of the simulated year, where t = 0 corresponds to the pulse vaccination round.
For a given time t, PIR(t) was calculated from the population vector x(t) by the ratio between
the number of immunized animals in the population over the total number of animals in the
population. The calculations used almost the same principle as described in the Appendix of
Lesnoff et al.[17].

Lesnoff et al.[17] only considered immunity provided by vaccination. Moreover, they
assumed all the animals in the target population were vaccinated during the vaccination cam-
paign. Here, we accounted for different immunization ways, as well as variable vaccination cov-
erage (i.e. the probability for an animal to be properly vaccinated).
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1. Three levels of vaccination coverage were considered: the probability to be vaccinated (p)
was set at p = 1 (full vaccination coverage), p = 0.8, or p = 0.6. Partial vaccination might be
related to sheep escaping the vaccination, lack of immunized response after vaccination
(sick animals, poor physiological condition, etc.), inefficient vaccine due to breaks in the
cold chain, etc.

2. Assuming no PPRV transmission, no new immunization (at the exception of newborn
lambs with colostral immunity) and no additional mortality due to the disease were consid-
ered after the vaccination. However, we allocated an initial immunity rate at the vaccination
time (start of the simulation) to account for past PPR outbreaks, and resulting post-infec-
tion immunity in recovered animals (as well as colostral antibodies in offspring born from
recovered ewes). We estimated the initial immunity rates (π) from a literature review
(Table 1).

3. PPR colostral antibodies may be detected in the serum of offspring (born from a immunized
ewe) with a competition enzyme linked immunosorbent assay (cELISA) [48] up to four
months [13, 15]. According to Bodjo et al., 2006 [13], during the first month of their life,
only 92% of the lambs born from immunized ewe are carrying maternal antibodies; this pro-
portion is decreasing with age, down to 5% at four months. We used this information to
estimate the number of immunized newborn in the populations as follows:

• the total number of newborn lambs was computed using the demographic matrix model,

• it was then multiplied by the proportion of immunized reproductive ewes,

• this latter number was multiplied by the probability (νi) to be immunized by colostrum if
born from an immunized ewe. For the age classes 1, 2 and 3, νi were respectively set to 0.92,
0.84, and 0.32 [11–13, 15].

For each time t, the number of immunized sheep in each age class i and sex s (with s = f or
m), noted ns;iðtÞ, was calculated by multiplying the total number of sheep in each age class with

the corresponding probability to be immunized. This probability was differently computed for
two categories of animals: (i) sheep targeted by the vaccination (i.e. in age classes i> 3 at t = 0),
represented by a green triangle in Fig 2, and (ii) the others (i.e. in age classes i� 3 at t = 0 and
the lambs born at t> 0), represented by a green rectangle and a white triangle in Fig 2.

For the first category, at time t = 0, the probability for a sheep of age class i to be immunized
(noted θi(0)) was the sum of the probability to be immunized by a previous infection or vacci-
nation and the probability for non-immunized sheep to be vaccinated, thus giving: θi(0) = πi +
(1 − πi) × p. Because no new infection or additional vaccination were considered, and post-vac-
cination (or post-infection) immunity has a long persistence at the individual level:>> one
year [10, 12, 54], this probability did not vary during the one-year simulations. Therefore:

yið0Þ ¼ yiþ1ð1Þ ¼ yiþ2ð2Þ ¼ etc:

Table 1. Initial serological prevalence rates used in the model.

Age Serological prevalence rate (%) References

age� 6 months 33 [49, 50]

6 < age� 24 months 31 [49–52]

age > 24 months 47 [49–53]

doi:10.1371/journal.pone.0161769.t001
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Fig 2. Theoretical immunity dynamics by age class (for a given sex) over 12 months after a vaccination campaign. The one-month age classes are
represented by the space between two horizontal lines. The age structure of the population is represented at each time t by the vertical lines. Each portion of
the vertical lines (between two horizontal lines) represented the animals who composed a given age class. Green and white areas represent immunized and
susceptible animals. For clarity, the age has been truncated to 24 months.

doi:10.1371/journal.pone.0161769.g002
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Consequently, the numbers of immunized sheep of age classe i and sex s at the successive
times t were calculated as follows:

nið0Þ ¼ xs;ið0Þ � yið0Þ
nið1Þ ¼ xs;ið1Þ � yi�1ð0Þ

. . .

niðtÞ ¼ xs;iðtÞ � yi�tð0Þ

where the animal numbers (xs;iðtÞ) were derived from the population matrix model.

In the second category, animals were not targeted by the vaccination but were potentially
immunized by the maternal antibodies during the first months of their life. The calculations of
the probability to be immunized for these animals were more complex than for the first cate-
gory. They jointly accounted for the probability for a newborn lamb to be born immunized at
time i (β(t), not detailed here, it depended both on (i) the number of newborn produced by a
reproductive female and the proportion of immunized reproductive females in the population
at time t − 1), and (ii) the decay (probability ν) of colostral antibodies in lambs from birth to
the age of three months. Consequently:

n1ðtÞ ¼ xs;1ðtÞ � bðtÞ � n1
n2ðtÞ ¼ xs;2ðtÞ � bðt � 1Þ � n2
n3ðtÞ ¼ xs;3ðtÞ � bðt � 2Þ � n3

ni>3ðtÞ ¼ xs;i>3ðtÞ � bðt � iþ 1Þ � 0

The PIR(t) were estimated for a total of 432 scenarios: 12 scenarios of Tabaski month (from
January to December) × 12 scenarios of vaccination month (from January to December) ×
three scenarios of vaccination coverage efficiency (p = 1, p = 0.8, p = 0.6):

PIRðtÞ ¼
X

i
ns;iðtÞX
i
xs;iðtÞ

where t = 0,1,. . .,12, with t = 0 representing the population immunity state at the time of the
vaccination.

Four indicators were considered to summarize and compare the estimates:

— Pvacc: the proportion of sheep belonging to the vaccinated cohorts (older than three
months) during the vaccination campaign (i.e. at t = 0).

— N70: the number of months for which PIR(t) was higher than or equal to 70%, over the
year.

— PIR(12): the final population immunity rate (i.e. one year after the vaccination
campaign).

— MPIR: the mean population immunity rate over the year:MPIR ¼ 1
12

P12
t¼1 PIRðtÞ.

Statistical estimation of model parameters and PIR simulations
Demographic rates of the population matrix model (components of matrices Bj; j = 1,. . .,12)
were estimated from the observed demographic data, using a model-averaging and multi-
model inference framework to account for model selection uncertainty, i.e. related to the selec-
tion of the dependent variables in the statistical models [55]. The candidate statistical models
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for model selection and multi-model inference were binomial logistic or Poisson log-linear
regression models depending on the demographic rate. They were fitted by the maximum like-
lihood [56, 57] and ranked according to the Akaike information criterion with small-sample
correction (AICc), or quasi-AICc (QAICc). The latter was used if over-dispersion—with
respect to the expected binomial or Poisson distribution—was observed in the data due, to
herd-clustering effects [58]. The (Q)AICc differences between the “best”model and the follow-
ing were used to compute the Akaike weights, forming themselves the basis for model averag-
ing and multi-model inference.

As a first step, the statistical models included the year as a dependent variable to compare
the estimated and observed seasonal dynamics. When relevant, the other dependent variables
were the sex, the age group (juveniles: zero to six months, sub-adults:� six to 10 months,
adults:� 10 months) and the season. For all the rates except the male offtake probabilities poff,
the year was split into four periods (January to March, April to June, July to September, Octo-
ber to December) to form a “season” dependent variable. The estimation of the male offtake
seasonality required a specific approach since one objective of the study was to quantify the
effect of the Tabaski month on the PIR dynamics according to its month of occurrence. How-
ever, in the available data (i.e. between 1989 and 1995), Tabaski only occurred between May
and July. To overcome this problem, the seasonal variations of the offtake rate were modeled
using a two-level qualitative factor, where the first level was the “Tabaski period” (T = months j
− 1, j, j + 1 where j was the month of Tabaski) and the second level was the “out-of-Tabaski
period” corresponding to the nine other months. As an illustration, Figs 3 and 4 show the sea-
sonal demographic patterns occurring in the monitored sheep population.

In a second step, the demographic rates were averaged over the whole study period, by mar-
ginalizing the year effect using unweighted means [59], for representing an average year. These
averaged rates and their standard errors were used for simulating the PIR dynamics and uncer-
tainty. The Tabaski period was successively centred on each month of the year to represent the
12 scenarios of Tabaski month considered in the study. Assuming Gaussian distribution for
the average demographic rates estimates [60], 10,000 Monte Carlo replications of the PIR
dynamics were run with the population matrix model for the 432 scenarios. For each scenario,
95% confidence intervals of the PIR outputs were estimated by the 2.5% and 97.5% quantiles of
the resulting empirical distributions. For preventing biases in the comparisons of PIR dynamics
due to artificial demographic effects, the sheep population was assumed, in each replication, to
have a constant annual population multiplication ratem = 1, wherem was the ratio between
the population size at the end and the start of the year. This was achieved by a simple adjust-
ment of the adult female offtake rates [61, 62] after all the rates were simulated from the Gauss-
ian distributions.

The population matrix model was developed with the mmage add-on package [63] for the R
software environment for statistical computing and graphics [64].

Results
The estimated demographic parameters and associated standard errors are provided as MS
Excel files in S2 Table.

Demographic patterns
The population dynamics model accurately reproduced the demographic patterns of Ndiagne’s
sheep population for the seven simulated years (Fig 5; Spearman’s correlation coefficient
between simulated and empirical data was r̂ ¼ 0:97 (P< 10−4). Driven by the parturition peak
(Fig 3), the population size increased from October-November to March-April (Fig 5). With
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the quasi-absence of births during the dry season (Fig 3), it decreased during the rest of the
year due to animal exits (natural mortality and offtake) (Fig 5).

The 12 demographic models built with varying Tabaski month showed similar demographic
patterns (Fig 6). Nevertheless, the amplitude of demographic variation was different among the
Tabaski scenarios. When the Tabaski occurred during the lambing season (December-Febru-
ary), the seasonal variations were limited (Fig 6a). The impact of births on demography was
masked by the male offtake. When Tabaski occurred soon after the lambing season, the popula-
tion peak was higher than in the previous case but was limited to the beginning of the year; the
population size quickly decreased thereafter because of both the Tabaski offtake peak and the
minimal reproduction (Fig 6b). When the Tabaski occurred long after the lambing season, the
seasonal variations were maximal. Offtake related to Tabaski exacerbated the population decay
(Fig 6c and 6d). When Tabaski occurred before the lambing period, its effect on population
size was minimal (Fig 6d). However, the estimation of Pvacc showed that the proportion of ani-
mals belonging to the vaccinated cohort varied over the year, reaching its maximum in July

Fig 3. Variations in estimatedmonthly parturition rates for ewes older than 10 months, Ndiagnemunicipality, Senegal.

doi:10.1371/journal.pone.0161769.g003
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and its minimum in April, whatever the Tabaski month (Fig 7). Therefore, the Tabaski festival
did not influenced the population structure between young (� 3 months) and juveniles/adults
(>3 months).

PIR dynamics
The PIR dynamics obtained assuming full vaccination coverage (p = 1) is shown on Fig 8.

Fig 8A shows the result of a vaccination campaign and Tabaski both occurring in January.
The starting point (upper left) of the curve was the proportion of immunized sheep at the end
of the vaccination campaign. Then, the simulated PIR decreased and fell under the threshold of
70% until reaching a plateau. The starting point was 84.2% [86.7; 87.8] (95% confidence inter-
val in brackets). This value depended on the vaccination coverage and the proportion of sus-
ceptible animals in the unvaccinated cohort (lambs� three months). Because the vaccination
coverage was 100%, the susceptible animals (15.8%) were lambs having lost their colostral
immunity. The PIR remained higher than 70% during 6.4 months [5; 11] after the vaccination
campaign and reached 68.5% [65.7; 71.4] in July.

Fig 4. Variations in estimatedmonthly offtake rates in rams older than 10months, Ndiagne municipality, Senegal.

doi:10.1371/journal.pone.0161769.g004
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Fig 8B shows the results of a vaccination campaign in January associated with each of the 12
Tabaski months: the 12 distinct curves were nearly superimposed, showing that for this vacci-
nation month, the PIR dynamics did not vary according to the Tabaski month.

Fig 8C shows the results of the 144 scenarios: 12 vaccination months (12 plots) × 12 Tabaski
months (12 lines per plot). On the 12 plots, the 12 lines are nearly superimposed, showing that,
whatever the vaccination month, the Tabaski month did not affect the PIR dynamics. However,
substantial differences in PIR pattern were observed according to the vaccination month.

• When vaccination occurred during the lambing season (December-February first row of
plots), the proportion of immunized animals in the population at the end of the vaccination
campaign (PIR(1)) was 88.1% [86.7; 90.1], i.e. well above the 70% threshold. The PIR slowly
decreased during a few months, then sharply dropped before reaching a plateau around July:
PIR(12) = 68.1% [65.4; 70.6], Fig 9B. The number of months with PIR(t)> 70% was highly
sensitive to the demographic parameters: N70 = 7 [5;11], Fig 9C. The mean population
immunity rate over the year (MPIR) was 74.1% [72.4; 75.8], Fig 9.

• When vaccination occurred just after the lambing season (March-May; Fig 8C, second row
of plots), the PIR(1) were similar (87.3%, [85.8; 89.7]) because many lambs were older than
three months at the vaccination date. The PIR decay was slow and reached PIR(12) = 67.7%
[65.3; 70.1] at the end of the year. It remained above 70% during N70 = 11 months [10; 12].
TheMPIR were 77.2% [74.5; 80.4] (Fig 9).

• When vaccination occurred long after the lambing season (June-August; Fig 8C, third row of
plots), the PIR(1) were higher (95.4% [93.1; 96.9]) because most lambs were old enough to be
vaccinated at the vaccination date. After a short plateau, the PIR decreased and reached 70%
after N70 = 10 [9; 11] months. The PIR(12) were 63.7% [60.7; 66.7].MPIR were 82.7% [81.1;
84.6] (Fig 9).

Fig 5. Comparison between simulated (solid line) and observed (dashed line) sheep population dynamics from 1989 to 1995, Ndiagne
municipality (Senegal). Lambing period and Tabaski celebration are represented by the vertical light and dark gray strip.

doi:10.1371/journal.pone.0161769.g005
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• When vaccination occurred within three months before the lambing period (September-
November; Fig 8C, fourth row of plots), the PIR(1) were still high (94.5% [92.3; 95.8])
because few offspring were born during the three previous months. The PIR dynamics fol-
lowed a plateau till the lambing season, then quickly decreased to reach a second plateau in
June / July with PIR(12) = 64.3% [61.3; 67.3]. The PIR remained above 70% over N70 = 8 [7;
9] months withMPIR = 78.0% [75.2; 80.4] (Fig 9).

With vaccination coverage set to p = 0.8, PIR patterns were similar to those with full vacci-
nation coverage (see Supporting information S1 Fig). The global indicators were drawn in
green, Fig 9. The range of PIR dropped by 7–11% (Fig 9b and 9c). Nevertheless, the vaccination
scenarios providing the highest N70 were obtained for vaccination campaign implemented
between May and November. With vaccination campaigns between January and April, N70 was
lower than four months (Fig 9a).

Fig 6. Seasonal population dynamics in Sahelian sheep, Ndiagnemunicipality, Senegal simulated under 12 Tabaski scenarios. Tabaski month is
represented by a dark gray vertical strip and the lambing season by a light gray vertical strip (December to February). a) Tabaski occurring during the lambing
season; b) Tabaski occurring soon after the lambing season; c) Tabaski occurring long after the lambing season; d) Tabaski occurring before the lambing
season.

doi:10.1371/journal.pone.0161769.g006
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With vaccination coverage set to p = 0.6, PIR patterns were similar to those with higher p
(S2 Fig). The global indicators are shown in red in Fig 9. The range of values dropped again by
7–11%. The PIR briefly reached the 70% threshold when vaccination campaigns were imple-
mented between July and October (N70 = [1; 5], Fig 9a), because of the presence of animals ini-
tially immunized, including colostral immunity in offspring. Otherwise, when vaccination was
simulated between December and May, N70 = 0 or 1, the single favorable month being the vac-
cination month.

Discussion

Tabaski month
Simulations showed that, for PPR vaccination in an epidemiological unit taken from a Sahelian
smallholder sheep farming system, the PIR dynamics were mostly influenced by the date of the
vaccination campaign, and much less by the date of the Tabaski festival. The most prominent
Tabaski effect on demographic parameters was a strong, seasonal increase of male offtake in
age classes around 1 year old. The Tabaski strongly influenced the shape of demographic

Fig 7. Estimated monthly proportion of animals older than 3 months according to the Tabaski month (Pvacc).

doi:10.1371/journal.pone.0161769.g007
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patterns, but not the population structure when considering 2 age classes: younger or older
than 4 months. The effect of Tabaski on PIR dynamics was probably low because, in these
farming systems, most adult sheep are ewes (irrespective of Tabaski date). As a matter of fact,
farmers utilize the young rams which they consider as the economic interest of their productive
capital (sheep herd), to cover their familial needs. For sheep herds of regular size in this farm-
ing system (say 20–50 adult ewes), they only keep one adult ram for mating purpose [25, 26].
For those farmers, Tabaski festival is an opportunity to sell young rams which would have been
utilized anyway. In addition Tabaski-related offtake do not involve the adult females who pro-
vide colostral antibodies to their offspring, nor the young rams from unvaccinated age classes.
Therefore, the proportion of vaccinated sheep during the campaign is only weakly related to
the Tabaski date.

Vaccination month
The study of global indicators showed that the PIR was never kept above the 70% threshold
over the whole year: PIR(12)< 70%, and N70 < 12 (Fig 9B). The residual post-vaccination
immunity rate one year after vaccination was little influenced by the vaccination date. None-
theless, the highest rates were obtained when the vaccination campaign occurred between
December and May: in these conditions, the lambing peak occurred one year after vaccination,

Fig 8. Annual dynamics of post-vaccination PIR in Sahelian sheep, Ndiagne municipality (Senegal),
assuming full vaccination coverage (p = 1). A) Vaccination campaign and Tabaski in January; B)
Vaccination campaign in January and changing Tabaski month; C) Changing vaccination month (12 plots)
and Tabaski month (12 lines). On each plot, the origin of the x axis is the vaccination month.

doi:10.1371/journal.pone.0161769.g008
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thus resulting in a high number of immunized lambs (colostral antibodies) in the sheep
population.

Simulations showed that PPR vaccination campaigns implemented from April to July
would provide the highest post-vaccination immunity rate. Indeed, such vaccination cam-
paigns would theoretically cover a larger part of the population (highest Pvacc) than during
other periods, because of the quasi-absence of lambs younger than 3 months. Moreover,
because of the low number of lambing till December, the PIR remained at a high level during a
long time.

Vaccination coverage
The reduction of vaccination coverage from 100% to 80% (-20%) did not proportionally reduce
the PIR(12) (-7 to -11%). As a matter of fact, the existence immunized females in the popula-
tion (before vaccination) “buffers” the reduction of vaccination coverage because they provide
colostral antibodies to their offspring, irrespective of their vaccination status. This has impor-
tant practical consequences, because trying to reach 100% vaccination coverage is difficult and
expensive in most cases: given the lack of vaccination facilities in most cases (pens, corridors,
etc.), sorting and catching all the sheep is cumbersome. On the other hand, convincing a
majority of farmers to bring a large proportion of their animals for vaccination is not an impos-
sible task. For instance, after many years of mass vaccination against rinderpest in Senegal, the
population immunity rate reached 70% in the general cattle population [65]. Similar figures
were reported after the mass vaccination campaigns implemented during three successive
years in Morocco following PPR emergence in 2008. Though PPR was eliminated from this
country during several years, with no evidence of PPRV circulation according to a strict sur-
veillance program, the post-vaccination immunity rate was only 70% in the general sheep pop-
ulation [33]. Of course, the major problem in such situations would be to make sure that no
sub-population pocket exists where the proportion of PPRV-susceptible animals remains high,
thus making possible the virus persistence in the environment. Indeed, simulation studies are
not enough: carefully designed field epidemiological studies are undoubtedly needed to assess
the actual post-vaccination immunity level.

Moreover, when we assessed imperfect vaccination coverage (p = 80% or 60%), PIR(12)
reached 48% or 41%, whatever the vaccination month. Though these rates might be insufficient
to fully stop PPRV transmission, they would represent a noticeable achievement for the first
year of vaccination. Indeed, because the Global strategy relies on two mass vaccination cam-
paigns targeting all the eligible sheep, the initial coverage from the second campaign would
benefit from the former PIR(12). Implementing two successive vaccination campaigns might
provide more optimistic results.

The main difference related to the vaccination coverage was observed for the N70. With
lower vaccination coverage, the vaccination campaigns implemented at the beginning of the
year (January to May) were not able to cover the sheep population with high immunity rates.
Under our assumptions, only vaccination campaigns achieved between June and November
allowed reaching the 70% threshold for more than one month (N70 > 1). According to our
modeling results, we would recommend to implement vaccination during this period, with a
slight preference for scenarios with vaccination campaigns occurring between July and August.

Fig 9. PIR indicators according to the simulated vaccination month:N70,MPIR, and PIR(12). From the top to the bottom, the plots show
(a) the number of months for which PIR(t)� 70% (N70), (b) the mean annual PIR (MPIR) and (c) the PIR one year after the vaccination campaign
(PIR(12)).

doi:10.1371/journal.pone.0161769.g009
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Comparison with OIE & FAO recommendations
Nevertheless, PPR mass vaccination campaigns cannot be decided on the single basis of simu-
lated immunity rates. As a matter of fact, vaccination campaigns are unwelcome during the
rainy season (from July to September) because farmers are busy with the rain-fed crops:
groundnuts, millet, etc. [66–68]. Also, village accessibility is often an issue for vaccination
teams because of flooding and impracticable roads and tracks.

The implementation of vaccination campaigns is not suitable during the warm, dry season
(April to June), commonly called the “hunger gap”. At this period, farmers’ cash reserves are at
their lowest level: there are no more income from crops. Therefore, they cannot afford for the
sheep vaccination fees. Moreover, forage availability is at its minimum level: most sheep are
underfed and in a poor body condition. In this physiological status, the immunized system of
sheep does not operate correctly, with a low globulin rate and a reduced immunized response
to the vaccine [69–72]. In addition, sheep are left straying freely and they need to be gathered
for the vaccination, which is a cumbersome work for the farmers at this period.

As a consequence of these constraints, a trade-off has to be found between suggestions
derived from our simulation studies and practical considerations. Following our results, a pos-
sible recommendation would be to implement the vaccination campaign as soon as possible
after July to reach appropriate PIR and keep it at a high level. On the other hand, given the
above-mentioned constraints, the officially recommended period for the implementation of
PPR vaccination campaigns in arid and semi-arid regions such as in the Ndiagne area, is
between September and November, i.e. at the end of the rainy season and before the lambing
season (Appendix 3.4 in [7]). Though this time period did not provide the best simulated indi-
cators, it is still acceptable in terms of PIR.

Planning disease control requires knowledge and tools to adapt the strategy and maximize
the efficiency of control actions. In the best cases, the strategies are based on the results of dis-
ease surveillance and other epidemiological studies [73, 74], disease transmission models [21,
75], and economic studies [2, 76, 77]. Post-vaccination evaluation of vaccination campaigns
use similar tools and methods [7, 78, 79]. In this frame, the use of models is relatively new [17,
80]. We believe that the improvement of the method initially developed by Lesnoff et al.[17]
provides an useful tool for ex ante assessment of vaccination strategies. It might be adapted to
other vaccination programs for any other domestic species as long as as accurate and long-
term demographic data are available.

Further work might couple this PIRmodel with a virus transmission model such as an SIR
model to assess the impact of PIR dynamics on PPRV transmission. Our method might also be
useful to economists as a corner stone to assess cost / efficiency or cost / benefit ratios for vacci-
nation campaigns.

Supporting Information
S1 Matrix. Population state vector structure and projection matrix. x: number of animal for
a given sex and age class; ρ: proportion of female at birth; s: survival rates for a given sex and
age class (assuming equal rates for male and female newborn); f: reproduction rate for the
female belonging to a given age class.
(PDF)

S1 Table. Observed demographic data collected in Ndiagne sheep herds (northern Senegal)
from 1989 to 1995. The structure of the table is described in the chapter 7.3 of Lesnoff et al,
2011 [81] and in the French version freely available at http://livtools.cirad.fr/laserdemog,
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together with toy datasets and worked examples of analyses.
(CSV)

S2 Table. Marginal means and standard errors of monthly demographic parameters. The
parameters were estimated for three age classes: juveniles sub-adults and adults (1: zero to six
months, 2:� six to 10 months, 3:� 10 months), two sexes (F: female; M: male) and according
to four periods (1: January-February-March; 2: April-May-June; 3: July-August-September; 4:
October-November-December), except for the male offtake rates which were estimated accord-
ing only two periods: i) Tabaski: the month preceding the Tabaski, the Tabaski month, the
month following the Tabaski and ii) the 9 other months).
(ZIP)

S1 Fig. Annual dynamics of post-vaccination PIR in Sahelian sheep, Ndiagne municipality
(Senegal), assuming 80% of vaccination coverage (p = 0.8). A total of 144 vaccination scenar-
ios are represented crossing the vaccination month (12 plots) with the Tabaski month (12
lines). On each plot, the origin of the x axis is the vaccination month.
(TIF)

S2 Fig. Annual dynamics of post-vaccination PIR in Sahelian sheep, Ndiagne municipality
(Senegal), assuming 40% of vaccination failure (p = 0.6). A total of 144 vaccination scenarios
are represented crossing the vaccination month (12 plots) with the Tabaski month (12 lines).
On each plot, the origin of the x axis is the vaccination month.
(TIF)
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