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Abstract 

The extracellular matrix (ECM), closely linked to the dynamic changes in the tumor microenvironment (TME), plays 
a critical role in modulating tumor immunity. The dual role of the ECM in tumor progression, encompassing both pro-
motion and inhibition, is attributed to its components influencing immune cell activation, migration, and infiltration. 
This mechanism is intricately connected with the efficacy of immunotherapies. Currently, there is limited understand-
ing of how ECM remodeling spatially and temporally coordinates with immune checkpoint inhibitors (ICIs) or adop-
tive cell therapies. Furthermore, strategies to selectively target pathological ECM components while preserving 
their homeostatic functions urgently require systematic investigation. In this review, we summarize current findings 
on the interplay between ECM and tumor immune regulation, with a particular focus on how key ECM components 
contribute to immune modulation. Furthermore, we discuss emerging strategies targeting ECM-related mechanisms 
to enhance the efficacy of immunotherapies, including approaches that remodel the ECM to improve immune 
infiltration and strategies that synergize with existing immunotherapies. By integrating these insights, we provide 
a perspective on leveraging ECM-targeted interventions to overcome immune evasion and optimize cancer immuno-
therapy outcomes.

Introduction
Recently, significant breakthroughs have been made 
in the cancer diagnosis and treatment with the clini-
cal application of immune checkpoint inhibitors (ICIs). 
It has been found that within the context of the tumor 

microenvironment (TME), tumor cells alter immune 
homeostasis by regulating T cells, allowing them to 
escape immune surveillance [1]. ICIs restore and main-
tain the immune system’s ability to target tumor cells by 
blocking specific signaling pathways. Despite the fact 
that some patients show significant responses to immu-
notherapy, a significant percentage of patients still have 
poor or even ineffective treatment. This variability in 
treatment response is closely related to the high com-
plexity of the TME.

TME, consisting of tumor cells, diverse cell compo-
nents surrounding the tumor cells, and the extracel-
lular matrix (ECM), plays an important role in tumor 
occurrence, development and metastasis [2]. The TME 
influences the function of immune cells through vari-
ous mechanisms, such as altering immune cell pheno-
types, and regulates tumor cell growth, invasion, and 
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metastasis, all of which are crucial for tumor progres-
sion and therapeutic outcomes.

This dynamic regulation not only affects the recruit-
ment and function of immune cells, but may also lead 
to immunotherapy resistance. During the process, 
TME showed both the heterogeneity of spatial distribu-
tion and characteristics of dynamic changes over time. 
Additionally, cancer cells interact with surrounding 
non-cancerous host cells mainly through intercellular 
interactions and paracrine signaling, facilitated by the 
ECM. As a key component of the TME, the ECM serves 
as a reservoir for nutrients, enzymes, and growth fac-
tors. During its dynamic remodeling, the ECM plays 
critical roles in providing mechanical support, trans-
mitting biochemical signals, and maintaining microen-
vironmental homeostasis.

The ECM is a complex, dynamic network of macromol-
ecules that provides structural and biochemical support 
to cells within tissues. Several reviews have investigated 
how ECM influences the cancer invasion. However, ECM, 
as an essential component of the TME, plays a role far 
beyond its role in structural support and cancer invasion. 
The ECM not only serves as a physical barrier to immune 
cell infiltration but also modulates immune cell behav-
ior through biochemical cues, affecting the recruitment, 
activation, and functionality of immune cells. Moreover, 
ECM components contribute to the architectural and 
mechanical properties of the TME, thereby influencing 
tumor cell behavior and immune cell responses. Addi-
tionally, ECM remodeling mediated by cancer-associated 
fibroblasts (CAFs), including ECM degradation, deposi-
tion and cross-linking, enhances ECM stiffness, alter-
ing the TME and potentially facilitating immune escape 
mechanisms. Although ICIs have demonstrated clinical 
success, their efficacy remains limited in solid tumors due 
to the dual barriers of ECM-mediated immune exclusion 
and active immunosuppression mediated by mechano-
chemical signaling and dynamic ECM-TME crosstalk [3]. 
Current strategies to target ECM often fail due to indis-
criminate disruption of physiological ECM functions. 
A critical gap remains in understanding spatiotempo-
ral ECM dynamics, such as how ECM stiffening during 
therapy narrows the treatment window. Furthermore, 
the process of continuous deposition of ECM which is 
associated with fibrosis in multiple organs can be exacer-
bated by mitochondrial activity through various signaling 
pathways. Consequently, the ECM-mitochondria com-
munication mechanism can enhance immune responses. 
Therefore, this review not only further explores the het-
erogeneity and functional roles of ECM components 
within the TME, but also summarizes the complex cross-
talk among ECM and immune cells, which may affect the 
efficacy of immunotherapy. In addition, we discuss the 

potential for targeting ECM and the feasibility of these 
strategies in clinical settings (Fig. 1) (Table 1).

The ECM–TME crosstalk
The complexity of ECM and TME
Solid tumors represent a highly heterogeneous form of 
cancer, characterized by a complex ecosystem shaped 
by interactions among malignant cells, non-malignant 
cells, and the ECM [45]. The local environment sur-
rounding the tumor constitutes the TME, which includes 
tumor cells, diverse immune cell types, stromal cells, the 
ECM, blood and lymphatic vessels, and nerve endings 
[46] (Fig.  2). This intricate interplay between the ECM 
and TME is crucial for understanding tumor behavior 
and progression, which is associated with the efficacy of 
immunotherapy.

TME is a dynamic and complex system, characterized 
by variations in its cellular composition and functional 
states influenced by factors such as tumor type, stage of 
progression, and organ specificity [47]. For example, in 
the advanced or metastatic stages of breast cancer, the 
proportion of immunosuppressive cells, such as immu-
nosuppressive or anti-inflammatory macrophages and 
regulatory T (Treg) cells, gradually increases, facilitat-
ing immune evasion and promoting tumor growth. This 
shift in immune cell composition is often accompanied 
by changes in the ECM, which can alter the physical and 
biochemical properties of the TME. Moreover, these 
immune cells exhibit distinct activity patterns at different 
metastatic sites, such as the bone and lung [48].

The ECM is a complex and dynamic three-dimensional 
network, primarily composed of the basement mem-
brane and the stromal connective tissue matrix. The 
basement membrane acts as a barrier while support-
ing cell adhesion, migration, proliferation, and differen-
tiation. The stromal matrix regulates the TME through 
both physical support and biochemical signaling. The 
ECM consists chiefly of structural proteins, glycosami-
noglycans (GAGs), proteoglycans, growth factors and 
cytokines, remodeling-associated proteases, small mol-
ecules and metabolites, as well as extracellular vesicles 
and microvesicles [49–51]. The structural proteins con-
stituting the ECM include COL, elastin, fibronectin, and 
laminin, which form a proteinaceous network that pro-
vides mechanical support [52]. GAGs mainly include 
HA, chondroitin sulfate, dermatan sulfate, and heparan 
sulfate. Proteases mediating ECM remodeling consist of 
matrix metalloproteinases (MMPs), cathepsins, A Disin-
tegrin and Metalloproteinase (ADAM) and A Disinteg-
rin and Metalloproteinase with Thrombospondin Motifs 
(ADAMTS) family proteases, as well as serine proteases, 
which disrupt the structural integrity and stability of 
the ECM, thereby facilitating cancer cell invasion and 
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metastasis [53, 54]. This remodeling of the ECM not only 
supports tumor progression but also alters the TME in 
ways that can enhance or inhibit immune cell infiltration 
and activity. Thus, ECM-TME crosstalk holds the key to 
understanding tumor biology and developing effective 
therapeutic strategies.

Cellular dynamics in ECM‑TME crosstalk
Cell–cell communications in the TME
The interaction between cancer cells and surrounding 
non-cancerous host cells, along with the dynamic process 
of vascular and ECM remodeling, is regulated through 
intercellular interactions and paracrine signaling. Modes 
of cell–cell contact primarily include adhesion molecule-
mediated interactions, membrane protein-receptor inter-
actions, and local nanotube-mediated communication. 
Adhesion molecules include cadherins, integrins, selec-
tins, and members of the immunoglobulin superfam-
ily. E-cadherin mediates calcium-dependent adhesion, 
forming tight connections with adjacent cells to main-
tain epithelial integrity and mediate signal transduction 

[55]. The functional loss of E-cadherin is central to epi-
thelial-mesenchymal transition (EMT), enabling reduced 
cell–cell adhesion and enhanced mesenchymal motility 
during cancer progression. Additionally, the intracellular 
portion of E-cadherin binds to β-catenin at the cell mem-
brane, inhibiting its translocation to the nucleus, where it 
would otherwise promote the expression of genes associ-
ated with EMT and facilitate cancer metastasis [56]. The 
downregulation of E-cadherin in tumor cells was previ-
ously thought to promote tumor metastasis and invasion 
[57, 58]. However, recent studies suggest that in invasive 
ductal breast carcinoma metastasis, E-cadherin helps 
metastatic tumor cells withstand environmental stresses 
induced by molecules such as transforming growth 
factor-β (TGF-β) and reactive oxygen species (ROS), 
the absence of which affects cell viability. In addition, a 
soluble fragment of E-cadherin (sE-cad) facilitates tumor 
progression by enhancing cellular invasiveness and meta-
static potential through disruption of intercellular adhe-
sion and activation of pro-migratory signaling pathways, 
which serve as a prognostic marker for solid tumors [59]. 

Fig. 1  Overview of the extracellular matrix dynamics in tumor immunoregulation: from tumor microenvironment to immunotherapy. Though 
significant breakthroughs have been made in the cancer diagnosis and treatment with the clinical application of immune checkpoint inhibitors 
(ICIs), the benefit of which is limited to a minority of patients. This variability in treatment response is closely related to the high complexity 
of the extracellular matrix (ECM) in the tumor microenvironment (TME). Therefore, this review not only further explores the heterogeneity 
and functional roles of ECM components within the TME, but also summarizes the complex crosstalk among ECM and immune cells, which may 
affect the efficacy of immunotherapy
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The dual functions of E-cadherin could be linked to the 
presence of interacting partners on the cell surface that 
associate with intact E-cadherin, along with the regula-
tion of soluble E-cadherin production. One research 
found that the modulator, TMEM52B, may explain this 
phenomenon [60]. Therefore, the presence of E-cadherin 
may be more conducive to tumor survival [61].

Communication between cancer and non-cancer cells 
in the TME involves not only cell adhesion and migra-
tion but also complex autocrine and paracrine signaling, 
facilitated by the ECM. As a key component of the TME, 

the ECM serves as a reservoir for nutrients, enzymes, 
and growth factors. During its dynamic remodeling, the 
ECM plays critical roles in providing mechanical sup-
port, transmitting biochemical signals, and maintaining 
microenvironmental homeostasis.

ECM‑cell communications in the TME
The interaction between ECM and cells, such as cancer 
cells, immune cells, and stromal cells in the TME plays 
a vital role in tumorigenesis and development [62]. This 
intricate communication is particularly evident in the 

Fig. 2  The extracellular matrix (ECM) in the tumor microenvironment (TME). The local environment surrounding the tumor constitutes the tumor 
microenvironment (TME), which includes tumor cells, diverse immune cell types, stromal cells, the extracellular matrix (ECM), blood and lymphatic 
vessels, and nerve endings. ECM, as a key component of the TME, plays critical roles in providing mechanical support, transmitting biochemical 
signals, and maintaining microenvironmental homeostasis during its dynamic remodeling. Collagen-dominated protein molecules within the ECM 
are cross-linked by lysyl oxidase (LOX), transglutaminase (TGase), and prolyl hydroxylase (PHD), enzymes secreted by cancer-associated fibroblasts 
(CAFs), which reinforce the matrix’s structural stability and mechanical properties
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behavior of tumor-associated macrophages (TAMs), 
which secret matrix-modulating enzymes like MMPs 
in the process of ECM remodeling, facilitating tumor 
progression and metastasis. The altered ECM also 
influences TAM behavior, enhancing their pro-tum-
origenic functions and creating a feedback loop that 
further supports the TME [63]. Moreover, ECM com-
ponents and arrangement can affect the migration and 
activation of immune cells, limiting the effectiveness of 
immunotherapy. For instance, the normal function of T 
cells can be impaired by ECM remodeling, underscor-
ing the importance of ECM-cell interactions in shap-
ing immune responses. ECM remodeling can alter the 
physical and biochemical properties of the extracellular 
environment, affecting T cell migration, activation, and 
differentiation. Mechanisms include changes in ECM 
composition, stiffness, and the availability of signaling 
molecules, which can disrupt T cell receptor signaling 
and hinder effective immune responses. Consequently, 
impaired T cell function may lead to inadequate 
immune surveillance and diminished responses to 
infections or tumors [64]. Therefore, targeting the ECM 
represents a promising emerging strategy to enhance 
the efficacy of immunotherapy. In the context of cancer, 
the metabolic reprogramming of Endothelial cells (ECs) 
not only restricts the infiltration and activity of T lym-
phocytes but also attracts pro-angiogenic immune cells. 
Under conditions of nutrient deprivation, cells can uti-
lize the ECM as a source of amino acids, altering their 
interaction with the ECM. This change can affect the 
composition and mechanical properties of the ECM, 
potentially influencing the cellular mechanotransduc-
tion pathways and resulting in phenotypic changes. 
Additionally, Metabolic reprogramming reshapes the 
ECM through the metabolic activities of CAFs and 
TAMs. CAFs enhance amino acid metabolism to sup-
ply essential nutrients like glutamine, while TAMs alter 
the ECM composition through fatty acid oxidation and 
lipid metabolism, further promoting tumor progres-
sion [65]. Loss of ECM-cell adhesion in spherical aggre-
gates enhances cell–cell adhesion, resulting in localized 
hypoxia and metabolic reprogramming that relies on 
glutamine to sustain lactate and adenosine triphosphate 
production. This condition also induces autophagy to 
delay cell death and may activate mitophagy, with vary-
ing effects on reactive oxygen species levels influenced 
by the soft ECM and its interactions with the actin 
cytoskeleton [66]. This metabolic shift, driven by ECM 
cues, can attract pro-angiogenic immune cells and 
contribute to an immunosuppressive TME. The inter-
play between ECs, the ECM, and tumor cells creates an 
immunosuppressive TME that can promote cancer pro-
gression and therapeutic resistance [67].

The physical barrier formed by ECM remodeling is a 
mesh structure of 20–500 nm size, which limits the infil-
tration of cancer cells [68]. Additionally, the pore size 
is more commonly 50–200  nm in solid tumors. There-
fore, nanoparticles smaller than 50 nm can penetrate 
the matrix pores and are widely utilized in drug delivery 
systems due to their ability to navigate the ECM barriers 
in tumor tissues [69]. Both cell motility and drug deliv-
ery is regulated by the pore size in the ECM. When ECM 
pore sizes exceed cellular nuclear size, cells can navigate 
through pre-existing structural pathways without requir-
ing enzymatic degradation, with migration patterns 
governed by intrinsic mechanical traits such as integrin-
mediated adhesion and cytoskeletal contractility [70]. For 
example, the glycocalyx consisting of glycoproteins and 
proteoglycans can affect the efficacy of ICIs and other 
drugs by acting as a diffusion barrier. Dense ECM com-
ponents, such as COL deposition, restrict T cell migra-
tion toward the tumor core by reducing pore size, and 
synergize with the glycocalyx to establish an immune-
excluded phenotype [71].

Stromal cells, one of the main sources of ECM, provide 
not only structural support and nutrients to tumor cells 
but also regulate tumor growth and metastasis through 
the secretion of various cytokines and ECM components. 
Within the TME, CAFs, which exhibit diverse subtypes 
with distinct functions and phenotypes, can actively 
participate in the cross-talk with cancer cells. Among 
the various phenotypes of CAFs, myCAF is the primary 
cell type regulating ECM deposition. Excessive ECM 
deposition increases tumor stiffness, affecting the per-
meability of drugs. MyCAFs, characterized by α-SMA, 
enhance ECM secretion and remodeling. They promote 
ECM stiffness through a series of crosslinking enzymes. 
The deposited ECM hinders immune cell infiltration into 
the tumor core, suppresses and isolates CD8+T cells and 
other immune cells, thereby aiding tumor immune eva-
sion. Meanwhile, the rigid ECM maintains the activated 
state of fibroblasts through mechanical signaling stimula-
tion, further exacerbating matrix deposition and stiffness 
[72–74]. In pancreatic ductal adenocarcinoma (PDAC), 
CAFs are closely associated with the metastatic and inva-
sive characteristics of the tumor by being responsible 
for ECM deposition [75]. The pro-tumorigenic role of 
myCAF in clear cell renal cell carcinoma (ccRCC) [76], 
breast cancer [77] and cholangiocarcinoma [78] has been 
reported in several studies. Col I is a critical component 
of ECM deposition in PDAC [73], and its crosslinking 
accelerates tumor metastasis [79]. In the mouse mod-
els of PDAC, epidermal growth factor receptor (EGFR)-
activated myCAFs promote the metastasis of PDAC 
[80]. Kalluri and colleagues were the first to propose that 
aSMA+ myCAFs suppress the recruitment of CXCL5 to 
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myeloid-derived suppressor cells (MDSCs) in pancreatic 
cancer, the depletion of which accelerates tumor pro-
gression [81]. Karin and colleagues demonstrated that 
the cleavage forms of COL I determine its function in 
PDAC. The COL-cleaved form and the uncleaved form 
exhibit opposing roles, with the uncleaved form (iCol I) 
suppressing pancreatic tumor growth by downregulat-
ing the DDR1/NFκB/p62/NRF2 pathway [82]. This fur-
ther underscores the heterogeneity of ECM components 
and CAF subtypes within the TME, suggesting that other 
ECM components and matricellular proteins may exhibit 
similarly complex dynamics. Our review will further 
explore the heterogeneity and functional roles of ECM 
components within the TME.

Non‑cellular dynamics in ECM‑TME crosstalk
ECM crosslinking and mechanosignaling in tumor invasion 
and proliferation
ECM dynamics play a crucial role in the TME, where 
COL-dominated protein molecules are cross-linked by 
lysyl oxidase (LOX), transglutaminase (TGase), and pro-
lyl hydroxylase (LH), enzymes secreted by CAFs, which 
reinforce the matrix’s structural stability and mechanical 
properties [83, 84]. Col cross-linking mediated by Procol-
lagen-Lysine, 2-Oxoglutarate 5-Dioxygenase 2 (PLOD2) 
expressed by CAFs enhances tumor invasiveness in a 
mouse model of lung adenocarcinoma [85].

The increased stiffness of the ECM influences cellular 
mechanotransduction by activating pathways including 
TGFβ, PI3K/AKT, and insulin-like growth factor (IGF), 
which promote tumor cell growth [86–88]. For exam-
ple, changes in ECM stiffness affect the activation of 
EGFR signaling in breast and pancreatic cancer models, 
which in turn regulates cell proliferation and survival 
[89]. Additionally, it also triggers the Yes-Associated 
Protein/Transcriptional Coactivator with PDZ-Binding 
Motif (YAP/TAZ) pathway, enhancing the self-renewal 
capacity and pluripotency of tumor stem cells [90]. Cel-
lular responses to mechanical stress exhibit heterogene-
ity, with those expressing high levels of YAP being more 
capable of surviving and proliferating under such stress. 
YAP/TAZ pathway acts as mechanosensors, transducing 
mechanical stress into biochemical signals that orches-
trate cytoskeletal reorganization and adaptive cellular 
responses, which are crucial for tumor cell migration 
[91, 92]. However, one research found that YAP and TAZ 
can inhibit tumor growth by promoting the activation of 
surrounding normal hepatocytes, which highlights the 
dynamic changes in the cellular competition mechanism 
of YAP and TAZ in bidirectional regulation [93]. Addi-
tionally, integrins, in conjunction with various adhesion 
molecules such as cadherins, also take part in the compo-
sition and dynamics of the cytoskeleton, facilitating the 

mechanical coupling. By modulating the actin cytoskel-
eton, integrins like α5β1 and αvβ3 drive cellular migra-
tion and invasion, crucial for tumor progression [94]. 
For example, stromal stiffness promotes cell migration 
and invasion through integrin activation of the FAK-SRC 
signaling pathway [95]. Therefore, targeting integrins 
enables precise control of cancer cell migration, offer-
ing innovative strategies for the design of anti-cancer 
biomaterials and advancing therapeutic approaches for 
tumor metastasis [96]. Several reviews have analyzed in 
detail the role of matrix biomechanics in tumor migra-
tion and proliferation [97, 98]. In brief, matrix-derived 
mechanical stress drives tumor metastasis by activating 
mechano-immunomodulatory pathways that reshape 
both cancer cells and the immune microenvironment. 
Key downstream mediators involved in mechanotrans-
duction include the YAP-TAZ, MEK-ERK, FAK-SRC, 
and ROCK signaling pathways. These mechanobiologi-
cal insights compel us to rethink the dynamic changes 
between ECM and TME, where physical forces and bio-
chemical signals co-evolve. We reasonably surmise that 
targeting the mechanical memory of the TME, while pre-
serving immunosurveillance, may unlock more durable 
therapeutic synergies against metastatic adaptation.

Metabolic reprogramming and ECM‑mitochondria crosstalk
Mitochondria, as the central hub for energy metabo-
lism and signal transduction, play a crucial role in the 
exchange of metabolic substances between cancer cells, 
immune cells, and CAFs in the TME. Dysfunction of 
mitochondria impacts various aspects of cancer cell 
metabolism, proliferation, invasion, and more. A sub-
stantial body of literature has reviewed the impact of 
mitochondrial homeostasis on tumor progression and 
metastasis, however, few studies were carried out to 
explore the exact mechanisms through which ECM regu-
lates it.

Studies have shown that ECM stiffness can transmit 
mechanical signals by regulating mitochondrial fission 
through the phosphorylation of MIEF1 and the recruit-
ment of dynamin-related protein 1 (DRP1). This process 
can influence cell proliferation by modulating transcrip-
tion factors such as YAP/TAZ, SREBP1/2, and NRF2 
[99]. YAP, as a mechanosensor, activates ECM stiffness 
through multiple signaling pathways. For example, YAP 
enhances mitochondrial OXPHOS and immunosup-
pressive functions in TI-Tregs by promoting the tran-
scriptional upregulation of Lars2, which is dependent 
on the amino acid leucine as a substrate [100]. Moreo-
ver, ECM stiffness can regulate mitochondrial trans-
location through the RhoA/ROCK1 pathway, which 
was found in a single-cell sequencing in gastric cancer, 
resulting in oxaliplatin resistance in gastric cancer cells. 
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The increased drug resistance may be due to mechanical 
signaling prompting mitochondrial translocation in gas-
tric cancer cells and decreasing mitochondrial autophagy 
[101]. At the same time, the soft tumor stroma, proved 
to be a double-edged sword for cancer, increases mito-
chondrial division via actin, leading to an increase in 
mitochondrial reactive oxygen species (mtROS) and 
enhancing chemotherapy resistance [102]. During this 
process, actin regulates mitochondrial fission by facilitat-
ing the recruitment of DRP1 to the mitochondria, which 
is essential for the division process. This mechanotrans-
duction pathway highlights the interplay between the 
tumor microenvironment and mitochondrial metabolism 
in cancer cells.

Tumor progression is slowed in soft three-dimensional 
ECM where autophagy-lysosome-histone protease axis 
mediates YAP1 degradation via CTSL to make can-
cer cells dormant [103]. The increase in stiffness during 
ECM remodeling generates external forces activating 
integrins to promote actin polymerization and regulate 
mitochondrial function and dynamics. The recruitment 
of DRP1, which relies on the cytoskeleton, participates in 
mitochondrial function and dynamics by regulating the 
localization of DRP1 to mitochondria. The endoplasmic 
reticulum-associated INF2 protein interacts with Spire1C 
to promote actin polymerization, and induces mitochon-
drial contraction by driving the recruitment of myosin II, 
thereby facilitating DRP1 binding and mitochondrial fis-
sion [104–106].

Continuous ECM deposition disrupts tissue architec-
ture, which is associated with fibrosis in multiple organs, 
including the kidneys, heart, and lungs. Mitochondrial 
damage drives and exacerbates this process [107–109]. 
Studies have shown that TMEM2-mediated ECM remod-
eling affects mitochondrial function, triggers the TGF-β 
response, and induces mitochondrial fission and the 
unfolded protein response. Consequently, the ECM-
mitochondria communication mechanism can enhance 
immune responses [110]. The intact ECM suppresses 
hypoxia, thereby reducing aberrant collagen cross-link-
ing and inhibiting the formation of pre-metastatic niches 
that facilitate tumor dissemination [111].

Bidirectional regulation of hypoxic microenvironment
In the TME, hypoxia induces a series of biological 
changes in stromal cells, promoting cancer initiation 
and progression. It also affects the efficacy of immuno-
therapy, targeted therapy, radiotherapy, and other anti-
cancer treatments [112]. The formation of the hypoxic 
microenvironment in cancer is due to a variety of factors, 
among which the activation and proliferation of stromal 
cells and the increase of stromal components are cru-
cial. This process leads to remodeling of the cancerous 

form, such as compression of blood vessels, which fur-
ther leads to thrombosis and increased tissue hypoxia. 
The hypoxic TME serves as a dynamic niche that orches-
trates bidirectional crosstalk between ECM remodeling, 
immunosuppression, and therapeutic resistance, primar-
ily through hypoxia-inducible factor-1α (HIF-1α)-driven 
signaling [113]. HIF-1α transcriptionally activates genes 
that enhance collagen deposition and ECM crosslink-
ing, thereby increasing tissue stiffness and fostering a 
fibrotic TME. ECM stiffness not only promotes tumor 
invasion by mechanically activating integrin-ROCK-
YAP/TAZ pathways but also recruits immunosuppressive 
cells, including Tregs and MDSCs. On one hand, ECM 
crosslinking and elevated interstitial fluid pressure (IFP) 
impede oxygen diffusion, creating a distance-dependent 
hypoxic gradient [114]. On the other hand, excessive 
deposition of COL I and IV activates an invasive tumor 
cell phenotype via the integrin β1-FAK signaling path-
way while compression of the vasculature limits oxygen 
delivery [112]. Moreover, mesenchymal hypertension 
also activates the YAP/TAZ pathway through mechanical 
stress and promotes the maintenance of tumor stem cell 
properties [115]. Therefore, targeting mechanosignaling 
may become an important direction for future interven-
tion in TME hypoxia.

Hypoxia-driven suppression of DNA repair mecha-
nisms fosters genomic instability, amplifying tumor 
mutational burden and immunogenicity, which para-
doxically sensitizes tumors to ICIs by enhancing neoan-
tigen presentation and T cell recognition. For instance, 
hypoxia-induced mismatch repair deficiency via MutL 
Homolog 1/MutS Homolog 2 downregulation creates a 
“hot” immune microenvironment, while breast cancer 
gene-mutated cancers under hypoxia exhibit synthetic 
lethality with poly ADP-ribose polymerase inhibitors, 
revealing a therapeutic window for combinatorial immu-
notherapy [116]. This suggests that hypoxia-induced 
genomic instability may not only drive tumor progression 
but also create an opportunity for combined “hypoxia-
immunotherapy” strategies to improve treatment 
outcomes.

In conclusion, the mechanisms of TME hypoxia for-
mation are complex, multidimensional, and dynamic. 
Not only can abnormal vascular structures with insuffi-
cient pericyte coverage lead to inefficient oxygen deliv-
ery, but also high metabolic demand of tumor cells and 
mesenchymal hyperpressure further exacerbate oxygen 
depletion and diffusion impairment [117]. TME hypoxia 
drivers tumor evolution by inducing genomic instabil-
ity, remodeling the immunosuppressive microenviron-
ment and promoting treatment resistance. Clinically, 
the dynamic interplay between anti-angiogenic thera-
pies and the hypoxic TME presents both challenges and 
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opportunities. Anti-angiogenic treatments may inad-
vertently exacerbate hypoxia in some cases, leading to 
increased HIF-1α activity and further ECM remod-
eling. Therefore, targeting hypoxic pathways, such as 
HIF inhibitors, may represent a promising strategy to 
enhance the effectiveness of existing therapies. By dis-
rupting the hypoxic signaling cascade, it may be possi-
ble to reduce ECM stiffness, diminish Treg recruitment, 
and ultimately improve the response to radiotherapy and 
immunotherapy.

ECM‑driven physical barriers and therapeutic resistance
Our review has discussed the effect of ECM stiffness 
before, including establishing physical barriers, influenc-
ing metabolic reprogramming and causing TME hypoxia, 
which all obstruct the smooth delivery of drugs. For 
example, the viscoelasticity and mechanical plasticity of 
the ECM further regulate cancer cell migration [118]. In 
the process of ECM remodeling, IFP was elevated within 
the tumor, thus sustaining tumour cell proliferation, and 
promoting migration and invasion [119]. Compared to 
normal tissues, elevated IFP in the tumor can enhance 
cancer migration and provide nutrients to the tumor, 
thereby exacerbating volume expansion. IFP results in 
the collapse of blood vessels in the tumor, which not 
only results in inadequate perfusion of the tumor tissue, 
but also further inhibits the infiltration of immune cells, 
as well as impedes drug delivery and distribution. One 
research targeted IFP in tumors, which enhanced drug 
delivery efficacy, as demonstrated by the improved thera-
peutic outcomes of GNP-docetaxel/quercetin/imatinib 
nanoparticles in metastatic breast cancer treatment 
[120]. However, since transient reduction of IFP may trig-
ger compensatory ECM remodeling, spatiotemporal reg-
ulation of dynamic barriers is difficult.

Excessive ECM accumulation not only imposes steric 
hindrance to molecular transport, thereby significantly 
diminishing therapeutic agent accumulation, but also 
fosters biomechanically immunosuppressive niches 
via elevated interstitial stress, which spatially excludes 
tumor-infiltrating lymphocytes (TILs) and desensitizes 
immunotherapies. For instance, the stiffened ECM binds 
to β1-integrin, activating the ILK/PI3K/AKT pathway, 
which induces stem cell-like characteristics in cancer 
cells, thereby enhancing their resistance to treatment 
[121]. Although it has been demonstrated in preclinical 
models that integrin inhibitors may reverse radiation or 
chemotherapy resistance, it has not been approved for 
clinical use due to its lack of clinical efficacy [122]. In 
pancreatic cancer, the barrier effect of ECM makes it dif-
ficult for T cells to reach tumor cells, limiting the efficacy 
of ICIs [123]. The high hardness of ECM also affects the 
migration and activation of T cells, making it difficult 

for them to exert anti-tumor effects. Moreover, dynamic 
changes in ECM components influence macrophage 
polarization and induce secretion of immunosuppres-
sive factors, weakening the efficacy of immunotherapy, 
which we would discuss and analyze in detail in the lat-
ter part of this review. Currently, anti-tumor therapies 
based on immune cells, such as natural killer (NK) and 
T cells, face significant challenges and have low over-
all clinical responsiveness. Much of this is attributed to 
the tight ECM structure outside the tumor as well as the 
inhibitory TME, which makes it difficult for immune cells 
to infiltrate inside the tumor, thus limiting their ability 
to exert anti-tumor viability. Increasingly, studies have 
shown that by normalizing the tumor vasculature, nano-
particle carriers and biocarriers can effectively increase 
the oxygen concentration in the TME, improving drug 
delivery and immunotherapy efficacy [124].

ECM dynamics modulates tumor immunity
ECM organization and mechanics regulate immune cell 
function
Biomechanical signaling in immune cell dysfunction
CAF-mediated ECM deposition and remodeling alter 
the TME and influences tumor immunity by affecting 
the biomechanical properties and signaling pathways 
of the ECM [71] (Fig. 3). In addition, the migration and 
activation of immune cells can be affected by the com-
ponents and arrangement of ECM [125]. For example, 
the spatial distribution and directional alignment of COL 
fibers influence the migration pathways of T cells within 
the TME, which is mentioned in the part of function of 
COL. A rigid and interlinked ECM results in an imbal-
ance of tissue hydraulics, ultimately hindering chemo-
therapy drugs diffusion and immune cells infiltration, 
and inducing the inflammatory activation of dendritic 
cells (DCs) and macrophages [3, 126]. The signal path-
ways promoting the process include TAZ/YAP, mTOR, 
and calcium signaling pathways. Among them, the posi-
tive feedback loops of YAP function and ECM stiffness 
can enhance tumor invasion and metastasis, but the cur-
rent relevant studies are mainly focused on breast cancer 
models, further validation in other cancers needed in the 
future [127]. T-cell activation has been confirmed to be 
correlated with biomechanics [128, 129], mainly through 
the regulation of the lifespan of the TCR-pMHC bond 
varying with the types of biomechanics [130]. Therefore, 
ECM biomechanics have an impact on tumor-responsive 
CD8+T cells, though how it induces the dysfunction of 
CD8+T cells is still unclear. One recent study revealed 
Osr2 as a biomechanical checkpoint in response to 
mechanical stress in the tumor hardness microenviron-
ment through single-cell sequencing and in  situ stain-
ing analysis, leading to the dysfunction and depletion of 
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CD8+T cells by recruiting HDAC3, the process of which 
is mediated by the surface mechanoreceptor Piezo1 [131]. 
In renal cell carcinoma, through the Ca2⁺/calpain/YAP 
signaling pathway, Piezo1 promotes renal tumor cells 
migration driven by substate stiffness [132]. Tumor cell 
stiffness is crucial for T cell cytotoxicity, as demonstrated 
in previous studies, but how it regulates T cell exhaus-
tion is controversial. In addition, methods for isolating T 
cells from the fibrotic TME require further optimization. 
Though dysregulated ECM remodeling in tumors often 
promotes immune evasion and therapy resistance, the 
ECM can also exert tumor-suppressive effects by main-
taining tissue structural integrity and restricting cancer 
cell invasion through biomechanical signaling pathways 
[133]. Additionally, ECM degradation can enhance drug 
delivery within tumor tissues, thereby improving the effi-
cacy of both chemotherapy and immunotherapy [134].

TGF‑β signaling and immune suppression
The role of CAFs in ECM remodeling through TGF-β 
signaling inhibits the efficacy of immunotherapy in 
multiple cancers, including colorectal cancer, urothe-
lial carcinoma, and pancreatic cancer [135–137]. The 

precise mechanisms underlying the dual roles of TGF-β 
in cancer, both tumor-suppressive and tumor-promot-
ing, remain incompletely elucidated. Under physiologi-
cal conditions, TGF-β, acting as a tumor suppressor, 
upregulates the activity of CDK inhibitors, activates 
Smad4 to inhibit 4E-BP1 activity, and downregulates 
the expression of the oncogene Myc [138–140]. TGF-β 
induces the polarization of immune cells into immuno-
suppressive phenotypes, such as immunosuppressive or 
anti-inflammatory-polarised macrophages, N2-polar-
ised neutrophils, and Treg cells. These immune cells, 
in turn, secrete immunosuppressive cytokines and pro-
tease, promoting ECM degradation and remodeling 
[141]. The positive feedback loop exists between TGF-
β, primarily derived from CAFs and stromal myofi-
broblasts and ECM remodeling [142, 143]. While the 
activation pathways of TGF-β secreted by CAFs are 
being studied, it remains unclear whether TGF-β1 is 
the predominant isoform secreted by CAFs. Further-
more, the TGF-β signaling pathway can modulate the 
activation of immune cells in the TME, including NK 
cells and T cells [141].

Fig. 3  ECM remodeling facilitates the formation of immunosuppressive TME. Tenascin-C (TNC) and SPARC are both intricate proteins in the matrix 
associated with dysregulated tumor immunity and tumor metastasis. In breast cancer, TNC, inducing CXCL12 through TLR4, not only promoted 
the activation of M2-polarised macrophages, but also inhibited the infiltration of CD8 + T cells into tumor cell islet. Higher SPARC mRNA levels 
correlated with the expression of macrophage-related pro-tumor genes in colorectal cancer (CRC), indicating the central role of M2-like 
macrophages in SPARC-driven matrix remodeling. Additionally, expressed SPARC in breast cancer cells were found to induce EMT and formation 
of MDSCs hindering the proliferation of CD4+T cells and CD8+T cells. Additionally, collagen in the ECM, primarily produced by CAFs, can influence 
cancer cell proliferation by activating the DDR signaling pathway
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ECM remodeling modulates cancer progression 
through oncoimmunity regulation
Macrophage heterogeneity and ECM crosstalk
The central immune cells involved in ECM remodeling 
mediated by CAFs are macrophages, which exhibit dif-
ferent phenotypes with distinct roles in tumor progres-
sion and immune regulation [144]. The positive feedback 
loop between ECM and macrophages promotes COL 
deposition and enhances the ECM stiffness. In pancre-
atic cancer, both angiogenesis and immune suppression 
are closely linked to the TAMs within the TME. Stud-
ies have shown that TGFBI, a key molecule secreted and 
expressed by TAMs, serves as a critical link between 
macrophages and pancreatic cancer cells, promoting 
immunosuppressive or anti-inflammatory.

polarization of macrophages and facilitating the prolif-
eration of pancreatic cancer cells [145].

Tissue-resident macrophages (TRMs) maintain tissue 
homeostasis and ECM remodeling through self-prolifer-
ation [146]. In the breast, a higher proportion of TIM4+ 
PVMs, capable of regulating ECM remodeling, corre-
lates with improved survival and enhanced activation of 
effector CD8+T cells [147]. TRM-driven fibrosis exerts a 
protective effect in pancreatitis, but the production and 
remodeling of ECM molecules may contribute to the 
pathogenesis of pancreatic cancer [148]. Macrophage 
subpopulations are diverse, and their molecular charac-
teristics differ between humans and mice. For instance, 
GATA6+ macrophages are abundant in the mouse omen-
tum but scarce in humans. Conversely, CCR2+ or GLUL+ 
macrophages, commonly observed in humans, have not 
been identified in corresponding subpopulations in mice. 
These discrepancies pose challenges for translational 
research between mouse models and human studies, 
highlighting the need for more precise characterization 
of macrophage subpopulations across species [149]. 
TRMs serve as key regulators of fibrosis, with FAP+ 
fibroblasts and SPP1+ macrophages in the TME, medi-
ated by the interaction with TGF-β and IL-1, remodeling 
the ECM and correlating with poor prognosis in colorec-
tal cancer (CRC) [150]. In addition, the pro-tumorigenic 
mechanisms of TRM varies in different tumor types, such 
as in lung adenocarcinoma (LUAD), TRM attenuating 
anti-tumor adaptive immune responses through promi-
nent Treg cell induction [151]. However, in ovarian can-
cer, CD163+ TIM4+ TRMs are associated with metastatic 
spread of cancer cells by providing a protective ecological 
niche for tumor stem cells [152].

ECM remodeling influences cancer progression 
through immune cells, which is mainly caused by matrix-
degrading proteases. For example, MMP1 and MMP13 
derived from B cells can induce cancer invasion. Addi-
tionally, MMP9, predominantly expressed by neutrophils 

and macrophages, plays a crucial role in early pancre-
atic islet carcinogenesis by activating angiogenesis [153]. 
Dysadherin, the membrane glycoprotein correlated 
with cancer, promotes CRC metastasis by upregulating 
the expression of MMP9 through the Focal Adhesion 
Kinase (FAK)/c-JUN axis [154]. In conclusion, MMP9 
contributes to the immunosuppressive TME by remod-
eling the ECM. During this process, MMP9 induces 
MDSC recruitment, activates CAFs, and hinders T cell 
infiltration.

Integrin‑mediated immune microenvironment reshaping
Integrins mediate interactions with the ECM, partici-
pating in the regulation of cell signaling and controlling 
cell adhesion and migration. Tumor cells modify the 
composition and stiffness of the ECM through integrin-
mediated signaling, thereby promoting tumor progres-
sion [155]. Integrins perform distinct functions across 
different tumor types. The αVβ3 integrin enhances tumor 
cell proliferation and migration through multiple signal-
ing pathways, including the FAK/Src and PI3K/AKT/
mTOR pathways. Additionally, it enhances ECM remod-
eling by upregulating TGF-β signaling, creating a type 
of TME conducive to tumor growth and invasion [156, 
157]. Studies have shown that MYC can inhibit αVβ3-
induced cell invasion in breast cancer [158]. Both α2β1 
and α1β1 integrins are COL receptors, whose binding to 
COL inhibits tumor proliferation. For example, in brain 
metastatic tumors, COL deposition in the TME mediated 
by HSP47 promotes microglial polarization toward the 
immunosuppressive or anti-inflammatory macrophages 
via the α2β1 integrin/NF-κB pathway, suppressing the 
anti-tumor responses of CD8+T cells [159]. Although 
theoretically integrin inhibitors can block tumor cell pro-
liferation and migration, there are currently no effective 
drugs with relevant targets in clinical trials. In view of the 
dynamics and complexity of ECM in the TME, integrin-
targeted therapies may be most useful in combination 
with other drugs. Additionally, the integration of molecu-
lar profiling and advanced imaging modalities enables 
real-time patient stratification, facilitating precision dos-
ing strategies for integrin-targeted therapies in clinical 
oncology.

ECM components modulate tumor immunity
The ECM is primarily composed of the basement mem-
brane and the stromal connective tissue matrix spatially 
[160]. The basement membrane is a sheet-like structure 
that separates epithelial cells, ECs, or other parenchymal 
cells from the surrounding stroma. Its main components 
include laminin, COL IV, and heparan sulfate, which not 
only serve as a barrier but also facilitate signal transduc-
tion within the TME. The stroma, on the other hand, is 
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a loose fibrous matrix that fills the space between cells 
and blood vessels. Its key components include COL I, 
COL III, HA, fibrin, and CAFs. It provides the physical 
framework for tumor tissues and regulates immune func-
tions [49]. The dynamic nature of the ECM in the TME 
exerts immunomodulatory effects both through physi-
cal barriers and biological signal transmission. While 
promoting tumor progression, the ECM can also inhibit 
tumor growth by restricting metastasis and influenc-
ing nutrient metabolism [161]. Key components of the 
ECM, including COL, HA, and proteoglycans, promote 
tumor immune evasion by modulating IFP and immune 
cell activity [162]. In addition, the glycocalyx, a glycan 
layer on the extracellular surface of the cell membrane, 
mediates cell adhesion to the ECM and facilitates signal 
transduction, thereby regulating the TME [163, 164]. 
Therefore, it is crucial to understand the dynamic roles of 
individual ECM components in tumor immunomodula-
tion (Table 2).

Collagen
Collagen, which differs from most protein structures by 
consisting of a right-handed triple helix formed by three 
polypeptide chains, is the most abundant protein in the 
ECM and mammalian tissues. The repeating Gly-X–Y 
sequence in its structure typically features proline and 
hydroxyproline as the X and Y amino acids [52, 198]. 
Tumor cells, TAMs, and CAFs are all sources of COL 
in the TME [199]. A total of 28 types of COL have been 
identified, including fibrillar COL, reticular COL, beaded 
filament COL, and transmembrane COL [200]. For 
example, COL I, II, III, V, and XI are fibrillar collagens; 
COL IX, XII, and XIV are fibril-associated collagens with 
interrupted triple helices; and COL IV, VIII, and X form 
network collagens. Among them, COL I, COL III, and 
COL V are primarily synthesized by fibroblasts, whereas 
COL IV is mainly produced by epithelial and endothelial 
cells. Therefore, the influence of collagen on tumor devel-
opment depends on its type. Overall, in desmoplastic 
environments, fibrillar collagen promotes stromal stiff-
ening, tumor invasion, and immune evasion by activat-
ing mechanosensitive pathways and restricting cytotoxic 
immune cell infiltration. Non-fibrillar collagen compart-
mentalizes tumor-stroma interactions, while abnormal 
collagen alignment enhances therapy resistance by limit-
ing drug penetration and immune access [165].

Direct impacts
Not only can COL promote tumor growth through inte-
grin signaling and ECM remodeling, but also form a 
physical barrier that restricts immune cell infiltration and 
excludes T cells. Meanwhile, COL exhibits tumor-sup-
pressive effect, as its degradation fragments can enhance 

immune responses (Fig.  4). Additionally, the mechani-
cal barrier limits tumor cell dissemination. And acti-
vated discoidin domain receptors (DDR) play dual roles 
in both tumor promotion and suppression [201]. How-
ever, how COL kinetics regulates tumor progression and 
its oncogenic effects in multiple carcinomas other than 
pancreatic cancer remain to be explored. This complex-
ity underscores the need for targeted therapies that can 
manipulate COL dynamics to either enhance anti-tumor 
immunity or inhibit tumor progression, depending on 
the context.

Receptor and immune cell dynamics
DDR, a transmembrane tyrosine kinase receptor that can 
bind to COL [202], is involved in ECM remodeling. COL 
in the ECM, primarily produced by CAFs, can influence 
cancer cell proliferation by activating the DDR signal-
ing pathway [82, 203], which is a key component in COL 
fiber alignment. In the mouse models of triple negative 
breast carcinoma (TNBC), DDR1-extracellular domain 
(ECD) remodels COL alignment and creates a physical 
barrier that hinders T-cell infiltration [204]. In contrast, 
in human models of TNBC and head and neck cancers, 
DDR1 not only maintains tumor cell dormancy through 
COL III and STAT1, but also remodels the ECM and 
restricts cancer cell proliferation [205]. However, DDR1 
induces tumor cell transformation to a basal-like pheno-
type in basal-like breast cancer, enhancing mesenchymal 
fibrosis and tumor invasiveness [206]. Therefore, the role 
of DDR1 in tumor immune modulation may be cancer-
type specific and species-specific. Nevertheless, how 
DDR1, as a relatively low-activity tyrosine kinase recep-
tor, induces strong downstream effects and contributes to 
tumor immune regulation remains an unresolved ques-
tion. Furthermore, the cell surface fibrillar COL receptor 
DDR2 in CAFs enhances the stiffness of the TME by reg-
ulating the activity and mechanotransduction functions 
of COL-binding β1 integrin [207]. COL not only spatially 
restricts T-cell migration but also inhibits T-cell prolifer-
ation at high densities. The upregulation of Treg cells by 
COL weakens anti-tumor immune responses [208].

COL I is the most abundant COL type, composed of 
a heterotrimer consisting of two α1 chains and one α2 
chain [209]. Tumor progression is promoted by COL I 
binding to various cell surface receptors such as DDR1, 
DDR2, and leukocyte-associated immunoglobulin-like 
receptor 1 (LAIR-1) [165]. However, its deficiency can 
upregulate CXCL5 through SOX9, leading to the recruit-
ment of MDSCs and the suppression of anti-tumor 
immune responses [4]. The interaction between COL  I 
and DDR1 activates the DDR1/PKCθ/SYK/NF-κB sign-
aling pathway in the PDAC, promoting CXCL5 synthe-
sis and the recruitment of tumor-associated neutrophils 
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(TANs) to form neutrophil extracellular traps (NETs), 
thereby enhancing tumor invasion and metastasis [166]. 
Furthermore, COL I deposition promotes neutrophil 
accumulation in breast cancer, suggesting that tumor 
progression and metastasis prefers a COL-dense TME 
[167]. COL I produced by pancreatic tumor cells is a 
homotrimer composed of three α1 chains due to the 
lack of the α2 chain encoded by Col Ia2, which regu-
lates the recruitment and function of immune cells by 
binding to integrins. Moreover, an immunosuppressive 
microenvironment is formed through the activation of 
the downstream integrin α3β1/FAK/AKT/ERK signal-
ing pathway [210]. Resistance to MMP cleavage by COL I 
homotrimers secreted by cancer cells affects their activa-
tion of DDR1 [211]. However, one study found that COL 

I homotrimer activated DDR, FAK, and AKT signaling, 
highlighting its clear pro-tumorigenic function [212]. 
Therefore, the absence of homotrimeric COL I promotes 
T-cell infiltration and improves the immune response 
to ICIs. As mentioned earlier, the intact and cleaved 
forms of COL  I produced by CAFs exhibit distinct 
roles in PDAC [81, 82]. Among them, cCol I stimulates 
mitochondrial biogenesis and PDAC energy biology by 
regulating MMP activity and protein expression. Conse-
quently, the cleavage status of COL I serves as an impor-
tant prognostic marker in PDAC. Therapeutic strategies 
targeting the associated signaling pathways and mito-
chondrial biogenesis warrant further investigation.

The interaction between COL and LAIR-1, an inhibi-
tory receptor expressed on the surface of immune cells, 

Fig. 4  Signaling pathways of diverse types of collagen affecting tumor progression by regulating tumor immunity. This figure illustrates 
mechanisms of diverse types of collagen (COL) regulating tumor immunity. The deficiency of COL I can upregulate CXCL5 through SOX9, 
leading to the recruitment of myeloid-derived suppressor cells (MDSCs) and the suppression of anti-tumor immune response. The interaction 
between cleaved COL I and DDR1 activates the DDR1/PKCθ/SYK/NF-κB signaling pathway in the PDAC, promoting CXCL5 synthesis. Additionally, 
DDR1/PYK2/JNK1/c-Jun is another signaling pathway through which cleaved COL I regulating tumor immunity. At the same time, intact COL 
I exerts the reverse effect. Moreover, an immunosuppressive microenvironment is formed by the activation of the downstream Integrin α3β1/
FAK/AKT/ERK signaling pathway. The interaction of COL with LAIR-1, an inhibitory receptor expressed on the surface of immune cells, activates 
downstream SHP-1, inducing CD8+ T cell exhaustion. LAIR2 inhibits this process. The endotrophin peptide (ETP), a c5 fragment of COL6A3 cleavage, 
enhances tumor metastasis by inducing TGF-β-dependent epithelial mesenchymal transition. In addition, COL VI ETP increases macrophage 
recruitment and upregulates inflammatory factors such as IL-6 and TNF-α to promote tumor inflammation. In human models of triple negative 
breast carcinoma (TNBC) and head and neck cancers, DDR1 maintains tumor cell dormancy through COL III and STAT1. These diverse mechanisms 
highlight how collagens can exert both pro-tumorigenic and anti-tumorigenic functions
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activates downstream SHP-1, suppressing activating sig-
nal transduction and modulating immune cell numbers 
and phenotype. This pathway inhibits NK cell activation 
and facilitates bone metastasis of tumor cells in estrogen 
receptor-positive (ER-positive) breast cancer patients 
[213]. In human and murine lung tumors, the interaction 
between COL and LAIR-1 induces CD8+T cell exhaus-
tion, contributing to lung cancer resistance to ICIs. This 
finding highlights the potential application of LAIR-1 
inhibitors in the treatment of patients with advanced 
lung cancer [214].

Though LAIR-1 expression has been found to be 
upregulated in various cancers, including brain, renal, 
and ovarian cancers [215], the effect of COL I-LAIR1 
interactions on tumor immunity differs from the cancer 
types. In addition, the regulation of tumor immunity is 
influenced by the structural forms of COL. For example, 
COL III has been shown to maintain tumor dormancy. 
COL III inhibits breast cancer metastasis by enhancing 
stromal organization through regulating fibrillar colla-
gen density and alignment, thereby suppressing tumor 
cell invasion via integrin-β1/FAK signaling. Additionally, 
COL III reduces cancer cell proliferation and promotes 
apoptosis, while its deficiency disrupts ECM homeosta-
sis, facilitating NETs-mediated awakening of dormant 
cells [168]. Moreover, COL VI upregulates HIF-1α to 
participate in tumor angiogenesis [170], contributing 
to the metastasis of lung cancer, human glioblastoma, 
and breast cancer [171, 172]. Furthermore, the interac-
tion between COL I and COL V hinders the function of 
COL I, leading to impaired autophagic flow in CD8+ T 
cells, thereby exhibiting pro-tumor characteristics [38]. 
COL VI secreted by macrophage protects its phenotype 
of the matrix, regulates immune responses and remodels 
ECM. The anti-inflammatory and matrix-protective mac-
rophage phenotype of the matrix is protected by COL VI 
secreted by macrophage because of its promotion of cell–
cell adhesion and immune cell communication, regulat-
ing immune responses and remodeling ECM. Therefore, 
T6C production is associated with the activation status of 
macrophages. T6C may play a critical role in tissue repair 
and stabilization, while regulating immune responses and 
ECM remodeling [216]. It has been shown that COL VI, 
through its major mediator COL VI endotrophin peptide 
(ETP), recruits macrophages and upregulate inflamma-
tory factors such as IL-6 and TNF-α to promote tumor-
associated inflammation. The crucial role of COL VI ETP 
in promoting tumor growth within the TME of breast 
cancer is highlighted by the process [171]. It is interest-
ing that a recent study confirms that obesity promotes 
an increase in COL VI in TNBC, which is related to the 
progress of tumor [217]. This may be due to the fact that 
COL VI is primarily produced by cells of the stromal 

vascular fraction and adipose stem and progenitor cells. 
Chronic obesity continuously stimulates its increased 
abundance, which leads to further reshaping of the TME. 
Therefore, targeting COL VI may be more effective in the 
early stage of obesity. In addition, COL VI participates 
in tumor metabolic reprogramming through various 
signaling pathways. Targeting COL VI to interfere with 
the anabolic metabolism of tumor cells warrants further 
exploration though the related research is limited. Nor-
mally, the infiltration of myeloid-lineage immune cells, 
such as neutrophils and macrophages plays a crucial role 
in shaping the TME and influencing disease progression 
in solid tumors. TAMs actively mediate the structural 
reorganization of COL I, VI, and XIV through fiber dep-
osition, enzymatic crosslinking, and spatial alignment, 
which collectively reinforce ECM remodeling at invasive 
tumor margins [218]. Notably, in breast cancer, elevated 
stromal COL10A1 expression inversely correlates with 
reduced TILs, suggesting a collagen-mediated immu-
nosuppressive microenvironment that dampens inflam-
matory cell recruitment despite myeloid cell dominance 
[219]. Other collagen types also serve important roles 
in various biological processes. For instance, the expres-
sion of COL IV has been linked to the levels of fibronec-
tin and laminin in the context of central nervous system 
metastasis. Additionally, COL XV, in contrast to COL I, 
III, IV, and V, interacts with fibronectin, laminin, and vit-
ronectin to impede the adhesion and migration of fibro-
sarcoma cells [220]. These findings underscore collagen 
isoform-specific regulation of metastatic niches through 
matrix receptor binding specificity and biomechanical 
signaling modulation.

Physical stress
COL deposition and degeneration stimulate macrophage 
activity. And the deposition and crosslinking of COL I, 
VI, and XIV can be regulated by TAMs [218, 221]. Immu-
nosuppressive or anti-inflammatory macrophages pro-
mote immunosuppression and COL deposition, whereas 
inflammatory macrophages enhance the production of 
MMPs, facilitating COL degradation and activating NK 
cells to induce apoptosis of hepatic stellate cells [222]. 
Additionally, NF1-recruited mast cells promote COL 
deposition through the stem cell factor/c-kit signaling 
pathway [223]. COL-dense tumors can stimulate the pro-
duction of granulocyte–macrophage colony-stimulating 
factor (GM-CSF) [167].

The highly crosslinked structure of COL, which is dis-
tributed around tumor nests in various cancers, increases 
ECM stiffness, thereby restricting T-cell infiltration and 
mobility [3, 224]. In addition, the migration pathways 
of T cells within the TME can be influenced by the spa-
tial distribution and directional alignment of COL fibers 
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[225]. Immune cell nuclei migrate via amoeboid move-
ment within loose and well-aligned COL matrices [226]. 
Studies have shown that COL alignment can regulate 
fibroblast morphology and behavior, influencing their 
activation and proliferation [227]. However, further 
investigation is needed to elucidate the mechanisms 
regulating COL fiber alignment and how COL fibers 
influence T-cell infiltration. Understanding these mech-
anisms could pave the way for innovative strategies to 
remodel the TME, potentially enhancing the efficacy of 
immunotherapies.

One research, classifying tumors into three subtypes 
based on COL activity and immune infiltration, found 
that the subtype characterized by low COL activity and 
high immune infiltration exhibited better responses to 
ICIs across various cancers [228]. The pro-tumorigenic 
or anti-tumorigenic roles of different COL subtypes 
vary across distinct cancer types, making more detailed 
understanding and classification of COL subtypes 
urgently needed. It is necessary to further investigate 
their roles in tumor immunoregulation. This classifica-
tion could serve as a foundation for developing more 
effective immunotherapies tailored to the specific ECM 
characteristics of individual tumors, ultimately improv-
ing patient outcomes.

Glycoprotein
Tenascin-C (TNC) is intricate matrix protein associ-
ated with dysregulated tumor immunity and tumor 
metastasis [229, 230]. TNC was found to diminish can-
cer cell adhesion, a crucial characteristic of cancer inva-
sion, which supports the interaction between TNC and 
cancer metastasis, commonly discovered in malignant 
tumors especially breast cancer and oral squamous 
cell carcinoma [231]. In breast cancer, TNC, inducing 
CXCL12 through TLR4, not only promoted the activa-
tion of immunosuppressive or anti-inflammatory-polar-
ised macrophages, but also inhibited the infiltration of 
CD8+T cells into tumor cell islets [232]. Furthermore, 
CXCL12 promoted the adhesion of CD8+T cells to TNC 
fibers in  vitro, emphasizing the role of matrix compo-
nents in modulating tumor immunity.

Secreted protein acidic and rich in cysteine (SPARC), 
also known as glycoprotein osteonectin, is a secre-
tory glycoprotein located in the ECM. Higher SPARC 
mRNA levels were correlated with the expression of 
macrophage-related pro-tumor genes in CRC, indicating 
the central role of immunosuppressive or anti-inflamma-
tory macrophages in SPARC-driven matrix remodeling 
[233]. Additionally, SPARC expression in breast cancer 
cells has been shown to induce EMT and formation of 
MDSCs, which hinder the proliferation of CD4+T cells 
and CD8+T cells [234] (Fig. 3).

Thrombospondin 1 (TSP1) is a calcium ion-binding 
glycoprotein that regulates T cell and tumor immunity, 
which mainly maintains tumor cell dormancy [178]. 
TSP1 enhances macrophage recruitment and inflam-
matory macrophages polarization in tumors, promot-
ing antitumor immunity through PAI-1-mediated 
macrophage activation and superoxide production [179]. 
Therefore, the combination of anti-angiogenic treatment 
with TSP1 and radiotherapy was conducted in the anti-
tumor therapy [180].

Laminins (LMs), non-collagenous components of the 
basement membranes, assist in cell attachment to the 
basement membrane through integrin and non-inte-
grin receptors. LMs are divided into several subtypes 
based on their chain composition. LMs may inhibit 
tumor progression in the early stages of tumorigenesis. 
For example, defective laminin anchoring, often due to 
reduced LARGE expression, disrupts ECM signaling 
and contributes to tumor progression, particularly in 
aggressive cancer subtypes like breast and brain cancers 
[235]. Meanwhile, in most human cancers, changes in 
the expression or distribution of various LMs and spe-
cific LM chains are linked to the poor prognosis [236]. 
For example, LAMC2 regulates critical pathways such 
as TGF-β signaling pathway to drive tumor metastasis 
[237]. Though several studies have proved that specific 
LM isoforms promote the tumor invasion, little investi-
gated how the cancer stromal cell biology was impacted 
by them.

Fibronectin (FN), a kind of ECM Glycoprotein, regu-
lates tumor immunity through activating TILs [181]. 
FN takes part in tumor cell adhesion and migration pro-
cesses. The main pathway which FN induces macrophage 
migration is SFK-FAK/CSF-1R signaling pathway [238]. 
Additionally, in dormant breast cancer cells, FN was 
produced and assembled consistently through αvβ3  and 
α5β1  integrin adhesion, and TGFβ2 stimulation [239]. 
Meanwhile, dormant tumor cells can be reactivated in 
certain conditions. For example, TGF-β-mediated FN 
deposition increases ECM stiffness, activates CAF and 
increases tumor invasiveness. P38 activity was sup-
pressed by FN fibrils while ERK activity was activated, 
which interrupted the tumor dormancy [240]. In addi-
tion, FN promotes immune cell infiltration within the 
tumor, whereas it is able to promote tumor progression 
around the tumor [241].

Glycosaminoglycans
GAGs, composed of repeating disaccharide units, includ-
ing aminohexoses and glyoxylates, is one of the important 
components of the ECM. Based on its disaccharide units 
and sulfation patterns, GAGs include HA, chondroitin 
sulfate, dermatan sulfate, heparan sulfate, heparin, and 
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keratan sulfate [189, 190]. This heterogeneity is essen-
tial for maintaining the dynamic nature of the ECM, as 
it influences tissue mechanics and cellular interactions. 
TME stiffness can be altered by dysregulation of GAG 
synthesis and degradation. Moreover, the combination 
of GAGs and cytokines modulates immune cell functions 
and influences the efficacy of anti-cancer therapies [242].

Hyaluronic acid
HA is a non-sulfated GAG composed of repeating disac-
charide units, which are linked by β−1,3-glycosidic bonds 
between D-glucuronic acid and N-acetyl-D-glucosamine. 
In the TME, ECM remodeling is closely associated with 
structural and functional abnormalities of HA, whose 
role varies depending on its molecular weight [182]. 
High molecular weight HA (HMW HA) maintains ECM 
homeostasis and inhibits tumor metastasis. In contrast, 
low molecular weight HA (LMW HA) not only remod-
els the ECM, induces immune response activation and 

signaling dysregulation, but also assists tumor cells in 
immune evasion [184]. However, this issue remains con-
troversial. HMW HA exerts anti-inflammatory effects by 
upregulating PPARγ and inhibiting the MAPK and NFκB 
signaling pathways [243]. Accumulation of HMW HA in 
the mouse model has been found to be accompanied by 
COL deposition and increased hypoxia, thereby promot-
ing tumor drug resistance [244] (Fig. 5).

The most common mechanism of HA remodeling the 
TME involves binding to CD44, which promotes the 
conversion of fibroblasts and macrophages to CAFs and 
TAMs, while inhibiting the anti-tumor immune func-
tions of NK and T cells. The phenotype of macrophages 
in the TME tends to polarize toward immunosuppres-
sive or anti-inflammatory macrophages, which has an 
anti-inflammatory and pro-tumorigenic effect, but the 
polarization tendency depends on tumor stages. In a 
mouse model of breast cancer, the HA/CD44/ERK1/2/
STAT3 pathway plays a crucial role in the process of HA 

Fig. 5  Signal ways of diverse types of HA affecting tumor progression by regulating tumor immunity. High molecular weight HA (HMW HA) 
maintains ECM homeostasis and inhibits tumor metastasis. However, low molecular weight HA (LMW HA) not only remodels the ECM, induces 
immune response activation and signaling dysregulation, but also assists tumor cells in immune evasion. HMW HA inhibits the MAPK and NFκB 
signaling pathways and exhibits anti-inflammatory effects by producing IL-4 and IL-10. Moreover, MMP activation can be diminished by this 
pathway. The most common mechanism of HA remodeling the TME involves binding to CD44, which promotes the conversion of fibroblasts 
and macrophages to CAFs and TAMs, inhibiting the anti-tumor immune functions of NK and T cells. When LMW HA and Oliga HA bind to LYVE-1 
and CD44, the MAPK/ERK and Akt pathways can be triggered. Therefore, ECM degradation and cancer cell proliferation are further promoted
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stimulating the formation of immunosuppressive or anti-
inflammatory macrophages-like TAMs [245], consistent 
with the findings of Kim et  al. [185]. How HA induces 
macrophage polarization needs to be further inves-
tigated. Additionally, the upregulation of hyaluronan 
synthase 2 (HAS2) may be associated with immunosup-
pressive macrophage synthesis [246]. Furthermore, HA 
recruits Treg cells to further impair the immune response 
[247].

CD44, as an adhesion receptor involved in immune cell 
activation and phenotypic remodeling, is associated with 
cancer cell progression and metastasis [248]. CD44 iso-
forms have distinct functions respectively, with CD44v6 
promoting HA production by enhancing the expression 
of HA synthase genes [249]. Furthermore, CD44 acti-
vates breast cancer CSC characterization through the 
PDGFRβ/Stat3 pathway [250]. However, the roles and 
mechanisms of its various isoforms in tumor progression 
remain unclear, particularly with regard to the different 
roles of CD44s and CD44v [251]. The Sebastian team 
has been exploring the mechanisms by which HA-CD44 
regulates macrophages. Following their discovery that 
CD44-HA mediates the endocytosis of iron ions to reg-
ulate the epigenetic plasticity during EMT [252], they 
further identified that copper ions in the mitochondria 
of macrophages can regulate cellular plasticity, thereby 
affecting cellular metabolism and epigenetic reprogram-
ming [253].

Extracellular vesicles (EVs), as crucial mediators of 
intercellular communication, can remodel the ECM and 
influence the activation of immune cells within the TME 
[254]. CAF-derived EVs promote tumor proliferation 
and invasion by activating tumor signaling pathways. HA 
also promotes immunosuppressive or anti-inflammatory 
macrophage polarization, which is consistent with the 
immunosuppressive or anti-inflammatory macrophage 
polarization observed when macrophages are exposed 
to EVs in colorectal cancer [255]. Therefore, the activa-
tion of immune cells may be associated with HA carried 
by EVs. The PH20 hyaluronidase carried by EVs degrades 
HA in the TME, and the resulting oligo-HA during which 
promotes dendritic cell (DC) maturation and CD8+ T cell 
activation [247]. However, only a few small-scale stud-
ies have been conducted in carcinomas such as colorec-
tal cancer, and further exploration of the mechanisms 
involved is needed.

In addition to CD44, HA also binds to various other 
cell surface receptors, which have been summarized in 
several reviews [256]. For example, Pro-inflammatory 
cytokines such as IL-2 and IFN-γ can be generated during 
the activation of the NF-κB pathway by the interaction 
between LMW HA and TLR2. Additionally, the interac-
tions between HA and other components of the ECM 

also play a role in immune regulation within tumors. For 
example, the proteoglycan secreted by tumor cells binds 
to HA, and through the activation of the TLR2/TLR6 
complex and CD14, it induces the production of TNF-
α, promoting an inflammatory microenvironment and 
enhancing the tumor’s metastatic potential [257]. A pro-
teoglycan of the ECM, Versican, and the ECM-associated 
protein TSG-6, by binding to HA, enhance the interac-
tion between HA and CD44, thereby regulating the 
migration of inflammatory cells [258, 259].

The interactions between HA and various cell surface 
receptors, as well as ECM components, play a crucial 
role in tumor immune regulation. The molecular weight 
of HA influences its regulation of macrophage immune 
responses. However, the interactions between HA and 
some less common proteoglycans, fibrous proteins, and 
atypical ECM components remain unclear. Research on 
HA’s impact on DCs is limited, but it is known that HA 
can promote the immune phenotypic maturation of DCs 
and stimulate the production of IL-1β, TNF-α, and IL-12.

Chondroitin sulfate, heparan sulfate and keratan sulfate
Chondroitin sulfate and Heparan sulfate, significant 
components of the ECM, take part in several physi-
ological and pathological process such as angiogenesis 
and growth factor signaling especially when covalently 
attached to core proteins. Versican which is a large chon-
droitin sulfate proteoglycan has the ability to L-selectin, 
P-selectin, and CD44 [187]. It is has been proved that 
high expression of versican can inhibit CD8+T cell infil-
tration [188].Additionally, the increase of TAM infiltra-
tion is associated with chondroitin sulfate derived from 
mast cell, the mechanism of which may explain the dif-
ferent functional changes [260]. Linker glycan, specific 
enzyme, and cofactor or substrate are all necessary fac-
tors for GAGs binding to core protein. Among them, 
B3 GALT6-mediated GAGs synthesis is associated with 
poorer survival outcomes for patients. One recent study 
revealed that heparin-6-O-sulfation enhances FGF1 sign-
aling to promote RTC survival in both models of micro-
environment-induced dormancy and treatment-related 
dormancy [261]. Moreover, the important for RTC sur-
vival of B3GALT6/HS6ST1/FGF1/FGFR2 pathways were 
proposed. Though most proteoglycans promote cancer 
progression, some chondroitin sulfate proteoglycans 
(CSPGs) such as Bikunin exert anti- inflammatory and 
anti-tumor effects by inhibiting the release of inflamma-
tory factors such as TNF and IL-6.

Keratan sulfate (KS) mainly plays roles in electrosen-
sation and neural guidance. KS is categorized into three 
types (KS-I, KS-II, and KS-III), each with distinct attach-
ment sites to core proteins of keratan sulfate proteogly-
cans (KSPGs). Notably, compared to primary tumors, the 
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expression of CHST6, an enzyme involved in KS sulfa-
tion, is upregulated in pancreatic metastatic tissues, indi-
cating a correlation between increased KS sulfation and 
tumorigenesis [262]. Highly sulfated KS chains can attract 
immunosuppressive cells, creating a microenvironment 
that supports tumor growth. Therefore, investigating the 
mechanisms by which keratan sulfate influences the TME 
could provide valuable insights for developing new strat-
egies for anti-tumor immunotherapy.

Leucine‑rich proteoglycans
The small leucine-rich proteoglycans (SLRP) are clas-
sified into five categories, which are further categorized 
into canonical and non-canonical classes. Biglycan and 
decorin are both SLRPs, which are mainly expressed 
among mammalian tissues, regulating inflammation 
and autophagy. The autophagy process of decorin helps 
maintain tumor cells metabolic integrity, supports the 
functionality of mitochondria, and reduces DNA dam-
age. When autophagy is compromised, the homeostasis 
of lymphatic endothelial cells (LECs) can be disrupted. 
One recent research found that decorin inhibited the 
growth of breast cancer and induced tumor lymphangio-
stasis by interacting with the VEGFR3 signaling pathway 
[192]. Therefore, targeting decorin may be a promising 
therapeutic strategy due to its pro-inflammatory effects 
and its ability to inhibit tumor growth [263]. However, 
the potential of biglycan and decorin to be carcino-
genic or tumor-suppressive is still uncertain. For exam-
ple, biglycan may suppress tumorigenesis by selectively 
binding to a specific TLR and modulating downstream 
signaling through TLR adaptor molecules. Though most 
research has shown that biglycan plays a negative role 
in tumor immunity by being secreted by CAFs, which 
correlates with reduced patient survival and therapy 
response, likely due to its immunomodulatory effects. 
Besides biglycan and decorin, which belong to Class I of 
SLRPs, the expression of lumican, classified as Class II, is 
associated with tumor prognosis by modulating tumor 
development. The secretion of lumican mainly reduced 
responsiveness to chemotherapy while overexpression of 
lumican can enhance apoptosis in melanoma cells. Con-
sequently, studying the correlation between small SLRPs 
and tumors in specific tissues is particularly crucial, as 
it can provide valuable insights into their roles in tumor 
biology and potential therapeutic implications.

ECM degradation
The disruption of protein cross-linking within the ECM, 
which contributes to its stiffness, can lead to ECM deg-
radation. The functions of degrading enzymes have 
been extensively reviewed in the literature. In sum-
mary, MMPs, particularly MMP2 and MMP9, are the 

predominant hydrolases involved. Additionally, serine 
proteases, ADAM and ADAMTS family proteases, along 
with lysosomal enzymes, also play significant roles [194, 
195]. Matrix proteins are primarily secreted by CAFs, 
which exhibit diverse phenotypes. Although the classi-
fication of CAF subtypes remains inconclusive, myCAF, 
iCAF, and apCAF are widely recognized as the three 
major subtypes. A study that established a CAF biobank 
from non-small cell lung cancer (NSCLC) patients iden-
tified three functional CAF subtypes. It revealed that the 
functional heterogeneity of CAFs is regulated by intrin-
sic TGF-β signaling, which suppresses the expression of 
HGF and FGF7. These findings provide valuable insights 
for personalized treatment strategies in NSCLC [264]. 
Single-cell sequencing in TNBC has confirmed the het-
erogeneity and plasticity of CAFs, revealing that SPP1+ 
TAMs may facilitate tumor angiogenesis through interac-
tions with adjacent CAFs undergoing EMT [265].

Small bioactive peptides produced during ECM deg-
radation, referred to as matricellular factors, play critical 
roles in cell signaling and can exert either pro-tumor or 
anti-tumor effects [266]. CAF-derived Hyaluronan and 
Proteoglycan Link Protein 1 (HAPLN1) is a matricellu-
lar factor that binds to HA and various proteoglycans. It 
enhances the levels of HA and decreases the expression 
of ICAM1 in ECs, thereby maintaining the integrity of 
melanoma-associated vasculature and promoting tumor 
cell dissemination [196]. GF-β1 derived from gastric can-
cer cell activates the TGF-β1/Smad signaling pathway, 
upregulating the expression of HAPLN1 in gastric fibro-
blasts, thereby further contributing to ECM remodeling 
[197]. Furthermore, HAPLN1 contributes to the mecha-
nism of bortezomib resistance in multiple myeloma 
(MM) by activating the NF-κB pathway [267]. HAPLN1 
affects the arrangement, quantity, density, and length of 
COL fibers in the ECM, but the relationship between 
these factors and tumor invasiveness remains unclear 
[197, 268].

Biomarkers and therapeutic targets
Given that the reshapement of ECM can affect the effi-
cacy of immunotherapy for cancers, major ECM compo-
nents have significant potential value as biomarkers and 
therapeutic targets. In addition, altering ECM deposi-
tion by targeting ECM-remodeling enzymes and related 
receptors and molecules can also represent a potentially 
effective treatment strategy (Table 3).

Biomarkers
The various components of the ECM can regulate tumor 
immunity. We explore the value and potential of ECM 
components as biomarkers for immunotherapy within 
the dynamic and complex system of the TME.
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Collagen
Multiple studies have revealed the prognostic value of 
various subtypes of COL in cancers [199]. Not only can 
COL content prognose the clinical outcomes of cancer, 
but also the alignment and distribution of COL affect 
cancer prognosis [269]. Biomarkers reflecting altera-
tions in COL metabolism, including secretion, post-
translational modifications, and structural interactions, 
hold potential for early tumor detection and monitoring 
in cancers like hepatocellular carcinoma (HCC) [270]. 
Elevated collagen drives immunotherapy resistance via 
LAIR1-induced T cell exhaustion, while collagen deple-
tion or LAIR1 inhibition restores anti-programmed cell 
death-1 (PD-1) response, with collagen-LAIR1 levels cor-
relating with poor clinical outcomes in immunotherapy-
treated patients [214].

Previously tumor-associated COL signatures (TACS) 
were presented by multiphoton microscopy (MPM), 
indicating different characteristics of COL which maybe 
associated with the survival of cancers, especially breast 
cancer [271, 272]. However, the prognostic value of the 
complete COL signature remains unclear. Well-organized 
COL fibers (TACS1, 4, 7) were generally recognized as 
favorable prognostic factors, while disorganized or per-
pendicular fibers (TACS5, 6, 8) promote invasion and 
predict poorer prognosis [272, 273]. One study recently 
incorporated the complete COL signature which includes 
TACS, TCMF1, and TCMF2 into the TNM staging sys-
tem and discovered their independent prognostic value 
in breast cancer [274]. While TACS focuses on the tumor 
stage, it lacks specificity in terms of how ECM compo-
nents might directly inform therapeutic outcomes, par-
ticularly in the context of immunotherapy. Emerging 
studies suggest that TACS act as physical barriers to T 
cell infiltration via DDR1-dependent collagen alignment, 
while computational models reveal their spatiotempo-
ral constraints on tumor-immune interactions [275]. 
Additionally, TACS can accurately predict peritoneal 
recurrence of gastric cancer (GC) by the application of 
a multitask machine learning model [276]. COL-related 
biomarkers require further validation in clinical settings 
to establish their specificity, sensitivity, and utility in 
combination with existing diagnostic methods, offering 
potential to enhance early cancer detection and improve 
patient outcomes.

Glycoprotein
Recent advancements in liquid biopsy, along with chemi-
cal and AI technologies, promoting intensive study of 
glycoproteins, which may predict anti-tumor efficacy 
including immunotherapy [277]. The prognostic value 
of TNC has been proved in multiple cancers. For exam-
ple, in breast cancer, it served as an early indication of 

invasion [278]. Increased TNC staining is more likely 
to be found in invasive carcinoma [174]. Additionally, 
the high expression of TNC is associated with several 
adverse clinicopathological features in breast cancer 
[173]. Promotion of the spread of lung adenocarcinoma 
cells of TNC, mainly originated from CAFs, was investi-
gated by quantitative mass spectrometric profiling of the 
ECM composition [175].

TSP-1, effective endogenous angiogenesis inhibitory 
factor, reduced expression of which has been found in a 
variety of tumors, indicating poorer prognostic outcomes 
for patients. Laminin, a key component of the basement 
membrane barrier, is highly expressed in tumor tissues 
and significantly correlates with poor patient prognosis. 
Laminin maintains tumor dormancy by preserving integ-
rity. However, during inflammation-induced neutrophil 
extracellular trap (NET) formation, proteolytic cleavage 
of laminin by neutrophil elastase (NE) and MMP-9 gen-
erates remodeled fragments that activate integrin α3β1 
signaling, thereby awakening dormant cancer cells [279]. 
Tumors are more susceptible to infection and destruction 
if laminin expresses higher, which means better response 
to lysosomal virus therapy [6]. Therefore, laminin may 
serve as a biomarker to classify cancer patients and pre-
dict their response to H-1PV-based therapies.

Recently, one study carried in gastric cancer found that 
high SPARC expression indicated poor prognosis and 
high grade of GC, supporting the LCN2/24p3R/JNK/c-
Jun/SPARC axis as novel biomarker for cancer [176]. Fur-
thermore, the relationship between SPARC expression of 
pancreatic cancer, hepatocellular carcinoma and other 
cancers has been proved [177, 280]. Both versican and its 
bioactive protein hydrolyzed fragments are involved in 
cancer, inflammation and anti-tumor immune response. 
At the same time, versican exerts anti-apoptotic effects 
by enhancing cellular matrix interactions and protect-
ing cells from oxidative stress-induced cell death, which 
supports versican as a prognostic marker and potential 
therapeutic target for cancer. Brevican expresses in the 
TME of glioma and performs complex functions due to 
its variable structure, which includes multiple splice vari-
ants, cleavage products, and glycoforms [281]. Therefore, 
proteoglycans in the ECM including versican, brevican, 
and several microproteoglycans are all potential bio-
markers valuable of further investigation and application 
in clinical therapy.

HA
HA levels are higher in malignant carcinoma tissues than 
in benign or normal tissues, as shown by histological 
studies [282]. Multiple studies have shown that the HA 
level is a prognostic indicator for malignant carcinoma, 
such as NSCLC and prostate cancer [283–286]. Current 
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research suggests that HA is primarily concentrated in 
the stromal tissue surrounding tumors rather than in the 
tumor parenchyma, and its levels in the plasma of cancer 
patients could serve as a valuable predictive biomarker 
[287, 288]. With the increased synthesis of HA in tumors, 
the activity of hyaluronidase (HYAL) is also abnormally 
heightened, and HYAL1 in tumor tissue has been identi-
fied as a potential tumor marker [289, 290]. HYAL1 is the 
only HYAL isoform that can be secreted into the periph-
eral blood and detected, few studies have been conducted 
to confirm the prognostic value of it [289]. CD44, as 
the specific receptor for HA, is an important biomarker 
and target in cancer therapy in view of its upregulation 
in cancers [291, 292]. For example, The combination of 
CD44 and E-selectin can predict clinical outcomes of 
T-cell acute lymphoblastic leukemia (T-ALL) patients 
who are chemoresistant [293].

ECM degradation
The process of ECM degradation typically involves vari-
ous MMPs and their inhibitors, which play important 
roles in tumor progression. Several studies have shown 
that high expression of specific MMPs, especially MMP2 
and MMP9, is closely associated with enhanced inva-
siveness and metastatic potential of tumors. MMPs have 
been proved to be associated with reduced survival rates 
in most cancers, including colorectal cancer, lung cancer, 
breast cancer, ovarian cancer, and gastric cancer. Despite 
the numerous subtypes of MMPs, the potential of most 
subtypes as tumor biomarkers remains unclear.

As a molecule that has received significant attention in 
the field of tumor research in recent years, HAPLN1 has 
a complex and close relationship with tumor prognosis. 
For instance, in a mouse model for peritoneal carcinoma-
tosis, HAPLN1 promotes TNF-mediated upregulation of 
HA by upregulating TNFR2, supporting tumor growth 
and metastasis. It serves as a potential prognostic marker 
for PDAC [294]. Higher levels of HAPLN1 are associated 
with poor prognosis in gastric cancer patients. Detect-
ing HAPLN1 levels can help more accurately assess the 
severity and progression of the gastric cancer. Future 
research should focus on elucidating the specific mecha-
nisms of HAPLN1 in different tumor types, as well as its 
potential for combined application with other biomark-
ers, in order to better utilize HAPLN1 as a tool for prog-
nosis assessment and therapeutic intervention.

Therapeutic targets
Due to the dual roles of the ECM within the TME in 
promoting and suppressing tumor progression, a sin-
gle-targeted ECM therapy is unlikely to achieve optimal 
clinical outcomes. Currently, targeting various ECM 
components, remodeling enzymes, inhibiting signal 

transduction pathways, modulating ECM stiffness, and 
modulating the function of CAFs are all potentially effec-
tive therapeutic strategies. Herein, we discuss the current 
progress in the clinical applications of targeting ECM.

Collagen
Immunotherapy has significantly improved survival in 
cancer patients, but some still derive limited benefit, and 
there is a lack of effective biomarkers to guide the use 
of ICIs. COL accumulation reduces T cell infiltration 
and induces T cell exhaustion, impacting the efficacy of 
immunotherapy, which makes COL a potential target for 
enhancing the effectiveness of ICIs [214]. The biological 
processes of COL, including production, modification, 
interaction, and degradation, all could emerge as prom-
ising therapeutic targets for cancers [295]. For example, 
post-translational modifications (PTM) COL undergo 
can lead to the creation of a nearly limitless variety of 
matrices, the process of which may enhance immune 
cell migration into the tumor if targeted. Therefore, tar-
geting LOX, MMP, and PAD which take part in COL 
deposition and secretion can help inhibit tumor metas-
tasis [296–298]. However, the treatment value of simply 
targeting extracellular LOXL2 such as Simtuzumab is 
limited, which indicates that it may be more effective to 
block both intracellular and extracellular LOXL2 [299]. 
Copper is a critical cofactor for LOXL’s enzymatic func-
tion, the inhibition of which leads to anti-angiogenic and 
anti-fibrotic effects [300]. The precise mechanism of how 
the inhibition of copper regulates LOXL, contributing to 
T-cell infiltration remains unclear [301]. Above all, eluci-
dating and addressing the biological mechanisms related 
to COL provide valuable insights for developing innova-
tive therapeutic strategies.

COL-targeted agents mainly directly deplete COL 
or change COL alignment, the effects of which are still 
unclear. Traditional drugs have focused on regulating 
COL by targeting tumor cells [302]. The combination 
of COL-targeted drugs with other standard anti-tumor 
strategies maybe promising [303, 304]. In view of com-
plicated functions of COL, which could play the oppo-
site role in various cancer stages or continue to promote 
the metastasis of cancer though degraded, it is difficult 
to develop effective COL-targeted drugs. Currently, 
nano-mediated relevant therapeutic options exhibit the 
expected gratifying properties. For example, a bioad-
hesive immune niche domain (BIND) enhances cancer 
immunotherapy by delivering COL-targeted nanovac-
cines, dynamically modulating the TME, and promot-
ing durable, non-exhausted T-cell responses [305]. 
RhCOLIII, a type of recombinant humanized COL, 
was reported to inhibit the invasion of OCCs and pro-
mote the infiltration of CD8+T cells [306]. A dormant 
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collagenase-producing Clostridium, coated with a metal-
anesthetic network, degrades tumor COL, causing the 
destruction of tumor matrix which causes tumor metas-
tasis [307]. In summary, targeting COL involves not only 
its composition but also balancing its content and distri-
bution to enable more precise treatments, while consid-
ering the genetic heterogeneity of tumors.

Glycoprotein
Changes in the expression and structure of glycopro-
teins in the ECM can promote the growth and metastasis 
of tumor cells. For example, increased TSP-1 normal-
izes blood vessels, metronomic chemotherapy which 
increases TSP-1 levels can help more cancer cells killed 
[308]. TSP-1 inhibits tumor angiogenesis by induc-
ing endothelial cell apoptosis and other mechanisms, 
thereby preventing tumor growth. Therefore, promoting 
gene expression of the angiogenesis inhibitor TSP-1 is a 
potentially effective anti-tumor strategy. In addition, the 
prognostic model based on TNC expression along with 
clinicopathological characteristics is promising, which 
simultaneously investigated the clinical application value 
of inhibiting TNC [309]. Specific inhibitors targeting gly-
coproteins such as FN, versican, brevican, and several 
microproteoglycans also have the potential of inhibiting 
tumor growth. For example, one research showed that 
disrupting ECM-cell adhesions, especially by targeting 
laminin-associated integrins, can be a novel therapeutic 
strategy. Meanwhile, the importance of three-dimensiona 
lmodels for validation was emphasized since tumor biol-
ogy failed to be preserved by 2D culture [310].

HA
As previously discussed, HA significantly promotes 
tumor progression and invasion. Therefore, oncological 
treatment aimed at diminishing HA activity may be effi-
cient such as blocking the binding of HA and receptors, 
inhibiting HA synthesis, and accelerating HA breakdown 
[183]. UDP-GlcA is an essential substrate for HA synthe-
sis and can be consumed by 4-MUG, which is converted 
from 4-MU [311]. 4-MU has been reported to decrease 
tumor proliferation by affecting downstream signaling 
pathways of HA and enhance the efficacy of chemother-
apy and other anticancer drugs [312, 313]. 4-MU exerts 
its anti-prostate cancer effects by disrupting androgen 
receptor (AR) activity and its downstream signaling 
pathways [314]. Recently, it is reported that OVV-Hyal 
1 enhanced antitumor efficacy by degrading HA in solid 
tumors, reshaping the TME to facilitate viral spread, drug 
delivery, immune cell infiltration, and immune activation 
[315].

It seems promising to treat with HA molecules as 
receptor and downstream signaling activation affected by 

HA size. Oligo-HA disrupts the HA-CD44 interaction, 
inhibiting the ErbB2/PI3K/AKT/β-catenin/COX-2 sign-
aling pathway, thereby suppressing tumor cell survival 
and proliferation in colorectal cancer [316]. Addition-
ally, oligo-HA may help enhance chemotherapy sensi-
tivity in various cancers [317, 318]. HA can be degraded 
by the targeted delivery of hyaluronidase, with the limi-
tation of unstable activity [319, 320]. Numerous articles 
have summarized PH-20, a member of the human hya-
luronidase family, as an effective therapeutic agent for 
degrading HA and controlling tumor progression [321]. 
Exo-PH20-mediated hyaluronan degradation enhances 
DC activation and CD8+T cell-mediated anti-tumor 
immunity [247]. A recent study showed that the cofor-
mulation of atezolizumab with PH20 for subcutaneous 
administration demonstrated noninferior drug exposure, 
comparable efficacy, safety, and immunogenicity to intra-
venous administration, providing a convenient alterna-
tive for advanced NSCLC treatment [322]. PEGPH20, a 
polyethylene glycol (PEG) recombinant human hyalu-
ronidase, specifically degrades HA in the tumor stroma 
while enabling long-lasting in vivo recycling of hyaluro-
nidase. Its therapeutic effect has been explored in pan-
creatic tumors, gastric cancer, and ovarian cancer [323, 
324]. Increased H2O2 may help degrade HA and remodel 
the ECM, which has the potential of enhancing immune 
recognition [325]. HA-modified zinc peroxide-iron 
nanocomposites (FZOH) enhance breast cancer immu-
notherapy by remodeling the stromal microenvironment, 
inducing ferroptosis and pyroptosis, and boosting αPD-1 
antitumor responses [326].

In addition, HA has emerged as an ideal nanocarrier for 
drug delivery in cancer therapy owing to its excellent bio-
compatibility and ease of modification. One study dem-
onstrated that iron-platinum nanoparticles (FePt NPs) 
overcome TKI resistance in mesenchymal-state cancer 
cells by promoting HA-CD44-mediated endocytosis, 
inducing ferroptosis, and providing a promising new 
strategy for cancer treatment [327]. Coating nanocarri-
ers with HA not only boosts therapeutic efficacy but also 
reduces side effects [186]. Controlled-release hydrogel 
based on HA can improve antitumor therapy in the TME 
by promoting the infiltration of immune cells and upreg-
ulating the production of key antitumor cytokines [328]. 
It has been widely used to target cancer cells by apply-
ing the interaction of HA and CD44 with nanoparticles. 
Soluble CD44 (solCD44) inhibits melanoma cell prolif-
eration by interfering with HA-CD44 interactions, with 
mutations in the HA binding site preventing this effect 
[329]. Although HA-based nanomaterials are widely 
applied in targeting tumor cells, a key challenge remains 
in effectively controlling the degree of substitution on the 
HA backbone to maximize therapeutic efficacy.
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ECM degradation
Given the important role of stromal factors in tumor cell 
migration and growth, they contribute to a more diverse 
approach to targeting and treating tumors. The regula-
tion of ECM degradation is of great significance in tumor 
treatment, and a Zn2 + organometallic framework vac-
cine promotes antigen presentation and enhances the 
immune response by activating the cGAS-Sting signaling 
pathway, and enhances the activity of MMP2 to promote 
the degradation of ECM and exert anti-tumor effects, 
which provides an effective idea for the development of 
a new type of tumor vaccine [330]. ECM impairs endo-
cytosis of nanoparticles, and therefore, degradation of 
COL, its key component, is beneficial for enhancing the 
radiosensitizing efficacy of nanoparticles in pancreatic 
cancer [331].

FAK inhibitors induce ECM invasion by preventing 
maturation of adhesion patches and reducing the acti-
vation of MMP, overcoming the fibrosis and enhancing 
response to immunotherapy [332]. However, FAK inhibi-
tors have a limited effectiveness in cancer treatment. For 
example, FAK inhibitors, including GSK2256098, defac-
tinib (VS-6063) and conteltinib (CT-707), showed limited 
clinical success in treating the tumor [333–335]. Ongoing 
clinical studies are combining FAK inhibitors with other 
antitumor agents to improve the effectiveness and are 
developing multitargeted types of FAK with ALK, EGFR, 
and S6K1 [336]. The results of such studies have not yet 
been reported. Additionally, Diosmin, an anti-FAK drug, 
inhibited LUAD metastasis by reversing the process of 
EMT.

Given the crucial role of CAFs in ECM deposition and 
remodeling, CAF depletion is theoretically an effective 
avenue for antitumor therapy. The most common tar-
geted therapy in CAF-targeting strategies is the targeting 
of fibroblast activation protein (FAP), a classical marker 
of CAFs. However, multiple FAP blocking antibodies 
showed limited efficacy in controlling the progress of 
tumor in phase 1/2 trials [337]. A recent review summa-
rized the research progress of CAF-targeted therapies in 
terms of directly or indirectly depleting CAF, targeting 
CAF-related signaling pathways, limiting ECM remod-
eling, and targeting TAMs [338]. Single-cell sequencing 
can help identify fibroblast subsets and understand their 
heterogeneity, which is closely related to tumor immu-
nity. Additionally, beyond CAF depletion, reprogram-
ming CAFs deserves further attention as a promising 
approach for CAF-targeted therapies [302, 339].

Promising targets and clinical applications
The renin-angiotensin system (RAS) inhibitors which 
are typically used to treat hypertension can attenuate 
matrix remodeling by inhibiting ECM deposition, LOX 

expression and COL production [340]. These changes 
induced by anti-RAS drugs probably promote T-cell 
migration to improve tumor immunity, which is currently 
being explored for efficacy in tumor immunotherapy 
applications [341]. It was recently reported that activa-
tion of the ACE2 axis mitigates the immunosuppressive 
microenvironment in hepatocellular carcinoma (HCC), 
which help enhance the effectiveness of immunotherapy 
[342]. Since anti-VEGF drugs can increase the expression 
of ECM components, such as HA and GAGs [341], the 
combined application of anti-RAS and anti-angiogenesis 
drugs can enhance sensitivity to anti-PD-L1 therapy [343, 
344]. Additionally, ARBs inhibited COL I expression 
and improved therapeutic efficacy when combined with 
ICIs [345]. Recently, RAS inhibitors have been shown to 
improve survival in colorectal cancer, glioblastoma, and 
melanoma [346–348]. Whether its association with other 
antitumor agents plays a role in immunomodulation 
remains to be clearly demonstrated.

The formation of tunneling nanotubes (TNTs) requires 
the support of F-actin in the cytoskeleton. Local nano-
tubes facilitate the transmission of various substances 
and signaling molecules between cells [349, 350]. Nano-
tubes transmit substances such as mitochondria between 
tumor cells and stromal cells, enhancing the survival of 
tumor cells. Therefore, studies have explored the com-
bination of ICIs with pharmacological agents that inter-
fere with nanotube-mediated mitochondrial transport to 
assess their anti-tumor efficacy in breast cancer [351]. A 
recent study revealed that in the TME, mitochondria can 
be transferred from bone marrow-derived mesenchymal 
stromal cells to CD8+T cells via nanotubes. This pro-
cess enhances the metabolic activity of CD8+T cells and 
improves the resistance to exhaustion, as well as boosting 
tumor suppression by both lymphocytes and engineered 
T cells. These findings pave the way for next-generation 
cell-based therapies [352]. With the widespread use of 
ICIs, nanotube-mediated intercellular interactions have 
the potential to not only enhance therapeutic efficacy 
but also lay the foundation for optimizing cell-based 
therapies.

We have reviewed in detail the role of DDR1 in tumor 
immunomodulation, supporting it as a novel target for 
tumor immunotherapy. Additionally, Remodeling of TME 
by DDR1 antibodies may have synergistic anti-tumor 
effects when combined with existing immunotherapies. 
Soft matrix induces DRP1 recruitment and mitochon-
drial fission and autophagy in breast cancer by promoting 
endoplasmic reticulum-mitochondrial calcium transport, 
indicating that ECM stiffness is a potential target for anti-
tumor therapy [353]. Moreover, TMEM126A, a mito-
chondrial transmembrane protein, inhibits breast cancer 
metastasis by inhibiting mitochondrial dysfunction and 
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ROS production, preventing ECM remodeling and EMT, 
which is associated with breast cancer prognosis [354].

Researchers have found that by clustering mitochon-
dria at the center of cancer cells, excessive ROS produc-
tion leads to mitochondrial damage, causing cancer cells 
to die due to the inability to metastasize. This suggests 
a potential strategy for mitochondrial-targeted can-
cer therapy. However, the survival of some cancer cells, 
which switch to glycolysis to survive, remains an unre-
solved challenge [355]. Additionally, PAX mutation, the 
interaction between kindlin-2 and PYCR1, and the block-
ade of α5β1 integrin all affect mitochondrial function and 
structure [356–358].

Unlocking ECM’s Potential in tumor Immunity
Development of effective biomarkers in ECM
Dynamic ECM alterations serve as critical biomarkers 
for predicting immunotherapy responses. For instance, 
abnormal COL deposition and HA accumulation create 
physical barriers that impede cytotoxic T-cell infiltra-
tion into tumor cores while recruiting immunosuppres-
sive cells. Recent studies demonstrate that quantifying 
ECM stiffness or immunosuppressive ECM proteins can 
predict patient sensitivity to ICIs. Single-cell sequencing 
further enables the identification of ECM-immune cell 
interaction networks, providing precision biomarkers for 
optimizing combination therapies.

The predictive role of a single biomarker in tumor 
immunotherapy is limited, while the combined predic-
tive potential of multiple ECM biomarkers is significant. 
However, the immune regulation of ECM within the 
TME is often overlooked, which may lead to the miss-
ing identification of promising predictive and prognostic 
biomarkers.

Dilemma of current biomarkers in ECM
Given the significant role of ECM in the TME, the devel-
opment of biomarkers within the ECM holds great 
potential. With the development of single-cell sequenc-
ing and high-throughput omics techniques, the complex 
composition of the ECM can be analyzed more compre-
hensively. However, the temporal and spatial heterogene-
ity of the ECM determines its dynamic nature, which in 
turn leads to the lack of universality in biomarkers. This 
phenomenon leads to existing biomarkers lacking suf-
ficient specificity and sensitivity, resulting in unsatisfac-
tory outcomes in clinical applications. Due to the pivotal 
role of the ECM components in tumor immunity, the 
development of effective biomarkers within the ECM is 
crucial for predicting responses to immunotherapy. To 
date, there are no strong biomarkers within the ECM that 
signal responses to immunotherapy, nor are there any 
predictive biomarkers available for routine clinical use.

Perspective of effective biomarkers in ECM
In view of the dynamics of ECM, real-time monitor-
ing of its changes can be enhanced to promptly capture 
variations in biomarkers. For instance, spatiotemporal 
single-cell sequencing can provide valuable insights into 
the dynamic interactions between ECM components 
and immune cells, facilitating the identification of ECM 
biomarkers that predict responses to immunotherapy. In 
addition, Analyzing the composition and function of the 
ECM by integrating multi-omics data, including genom-
ics, transcriptomics, proteomics, and metabolomics 
will aid in identifying potential biomarkers. In this era 
of advanced technologies, a novel biomarker discovery 
framework leveraging machine learning and multi-omics 
data should be established to systematically analyze the 
dynamic composition of the ECM, its interactions with 
immune cells, and its role in tumor progression. This 
approach will facilitate the identification of ECM-based 
biomarkers that can predict immunotherapy responses 
and improve the efficacy of targeted therapies.

Development of ECM‑targeted therapy
ECM-targeted therapies aim to dismantle immunosup-
pressive barriers and amplify immunotherapy efficacy. 
For example, inhibiting COL-crosslinking enzymes or 
DDR enhances T-cell infiltration and suppresses tumor 
growth by disrupting ECM-mediated immune evasion. 
Nanoparticles engineered to degrade HA or deliver 
ECM-modulating drugs improve Chimeric Antigen 
Receptor T-Cell penetration and cytotoxicity. Addition-
ally, targeting ECM-associated immune checkpoints 
reverses T-cell exhaustion, synergizing with ICIs. Emerg-
ing strategies, such as CAF reprogramming and mecha-
notherapy, further normalize ECM stiffness to restore 
immune surveillance.

Drugs targeting the ECM have been continuously 
developed, but their efficacy has not been entirely satis-
factory. The inherent heterogeneity and dynamic nature 
of ECM components present both opportunities for ther-
apeutic strategies and challenges that must be addressed 
and overcome.

Dilemma of ECM‑targeted therapy
In most clinical trials, the efficacy of ECM-targeted ther-
apy is limited. For one hand, the complexity and dynamic 
nature of the ECM result in numerous potential targets, 
but selecting precise and effective ones remains challeng-
ing. For another hand, precise regulation of multi-target 
synergistic effects still faces technical challenges, includ-
ing insufficient specificity of the delivery system and the 
difficulty of dynamically adapting to the heterogene-
ous TME. Additionally, the off-target effects that ECM-
targeted therapy may trigger and the potential adverse 
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impacts on the ECM of normal tissues are difficult to 
accurately assess. Concerns over safety have restricted its 
widespread clinical application. Moreover, existing ani-
mal models struggle to replicate the complexity of human 
ECM, leading to inconsistencies between preclinical data 
and clinical trial results. Future research needs to focus 
on the interactions between ECM, cancer cells, and stro-
mal cells, in order to develop new therapeutic targets and 
strategies.

Perspective of ECM‑targeted therapy
Though immunotherapy can improve the prognosis of 
tumor patients, only a limited number can significantly 
benefit from it and even exhibit innate resistance. ECM, 
as indispensable components of TME, which is one of 
mechanisms of resistance, if targeted, may offer a novel 
approach to enhance the efficacy of immunotherapy. 
ECM regulates tumor immunity dynamically in the TME, 
making it potential to enhance the efficacy of immuno-
therapy and overcome resistance. The rapid development 
of technologies such as gene sequencing and proteom-
ics makes it possible for understanding the differences 
in ECM among individuals, enabling the customization 
of personalized treatment plans for patients. Precisely 
selecting the corresponding targeted drugs can not only 
improve the treatment effect but also reduce unneces-
sary drug side effects. Additionally, it is expected that 
smart drug delivery carriers will be developed, capable 
of responding to specific signals in the ECM to achieve 
precise drug delivery. Lastly, gene editing technologies 
may offer more effective means to regulate the expression 
of ECM-related genes. Moreover, Though various drugs 
inhibiting MMP, DDR, LOX, CD44 and other effective 
targets has made breakthroughs, the multi-targeted ther-
apy based on the patient’s ECM-specific characteristics is 
a more reasonable choice. Meanwhile, the combination 
of ECM-targeted drugs with other anti-tumor drugs is 
also promising. For example, the inhibition of LAMC2, 
which regulates a transcriptional network linked to 
tumor progression and survival, when combined with 
MEK1/2 inhibitors exhibits synergistic antiproliferative 
effects [359].

Conclusion
ECM-TME crosstalk affects tumor immune regulation, 
inhibiting or promoting tumor progression. Given its 
complex regulatory role, single-targeted therapy for ECM 
is insufficient. The clinical translation of ECM-based 
strategies, including the identification of biomarkers and 
development of novel therapeutic approaches, presents 
significant opportunities to enhance cancer treatment. 
However, we have mentioned the differences between 
animal models and human patients, which hinder clinical 

translation of results from animal models to clinical set-
tings. Furthermore, the disruptions of mitochondrial 
function induced by ECM composition or stiffness can 
alter the metabolic reprogramming of immune cells, such 
as macrophages and T cells, thereby modulating their 
antitumor activities. This highlights a critical intersec-
tion between ECM remodeling, cellular metabolism, and 
immune response-an area that is rapidly gaining atten-
tion in the context of tumor immunology. Further eluci-
dation of the mechanisms underlying ECM dynamics in 
tumor immunoregulation will optimize anti-tumor strat-
egies and advance precision therapies. In conclusion, as 
our understanding of ECM-mediated tumor immunoreg-
ulation deepens, there is increasing potential to leverage 
ECM-targeted strategies in cancer therapy.
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