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The graft-versus-host reaction (GVHR) 1 is initiated by immune responses of  
donor T cells towards allogeneic histocompatibility antigens of  the recipient. 
One of the possible outcomes of  a systemic GVHR is acute graft-versus-host 
disease (GVHD), which is termed lethal GVHD (LGVHD) when fatal. Acute 
GVHD is characterized by a brief initial lymphoid stimulation during the first 
week of the GVHR (1-3), which rapidly thereafter turns into severe hypoplasia 
of the entire lympho-hemopoietic tissue (1-5). The  clinical symptoms of acute 
GVHD include weight loss, aplastic anemia (1-4), hypogammaglobulinemia (1, 
4), and sepsis (4). A different form of  the GVHR is referred to as chronic GVHD. 
It is characterized by long-term stimulatory symptoms of the lymphoid tissue (1- 
4, 6), the formation of  autoantibodies characteristic of  systemic lupus erythe- 
matosus (SLE), and the development of  various pathological lesions including 
immune-complex glomerulonephritis (ICGN) (3, 6-9). Both forms of GVHR are 
known to be induced by donor T cells (4, 6, 9-11), but little is known about the 
T cell subpopulations involved. 

The dissection of  the cellular mechanisms that are responsible for the hyper- 
plastic and hypop|astic pathological GVH symptoms requires GVH-mode|  sys- 
tems that consistently induce either stimulatory or suppressive pathological 
symptoms. Several different GVH systems approaching this goal have been 
elaborated in our laboratory. In each system, parental strain T cells were injected 
into nonirradiated adult FI hybrid mice differing at H-2. The results of  these 
studies indicated that those inocula of  donor cells that preferentially reacted by 
the alloreactive T helper (T H) cells caused the stimulatory symptoms of chronic 
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GVHD, whereas donor cell inocula that appeared to preferentially react by their 
alloreactive T suppressor (T s) cells caused the suppressive pathological symptoms 
of acute GVHD (2-4, 7, 8, 10). Moreover, when unselected donor T cells were 
injected into F1 recipients, which differed solely at class II H-2 antigens (I-A/I- 
E), exclusively stimulatory GVHD was found; in contrast, a difference in the Fl 
recipients at both class I (H-2 K/D) and class II antigens was needed for the 
induction of  acute GVHD (3, 8). Neither clear-cut stimulatory nor suppressive 
GVH symptoms were found in those FI recipients that differed from the donor 
solely at class I H-2 antigens (3). 

From studies on the allogenetic effect in vitro it is known that class II (I-A/I- 
E) antigenic differences activate Lyt-1 +2- T H cells, which then provide maximal 
allohelp (12, 13). By contrast, the activation of  alloreactive T s cells requires the 
presence of  Lyt-l+2 + cells as well as incompatibility, on the allogeneic B cells, at 
class I H-2 antigens (12, 13). Moreover, it seems from these studies in vitro that 
in order to become fully activated, the class I-reactive Lyt-l+2 ÷ T s cells must be 
induced by class I I-reactive Lyt-1 ÷2- cells (13, 14). These findings suggest that 
the class II (I-A/I-E) incompatibilities in the F1 recipients previously studied (3, 
8) selectively activated the alloreactive T H cells out of  the pool of  unselected 
donor T cells; the activated T H cells might then have caused the formation of 
SLE-like autoantibodies and the development of other stimulatory GVH symp- 
toms. In contrast, an incompatibility in the Fl recipient at both class II (I-A/I-E) 
and class I (K/D) antigens might have activated both the class II-reactive T H or 
inducer cells and the class I-reactive T s effector cells (3). It should be noted here 
that alloreactive donor T s cells, and not cytotoxic T cells, appear to be important 
effector cells in acute GVHD. These T s cells seem to be the effector cells, because 
they suppress the physiologic proliferation of lympho-hemopoietic cells and thus 
cause the pancytopenia of acute GVHD (4). 

The intra-H-2 requirements for the induction of either stimulatory (chronic) 
GVHD or suppressive (acute) GVHD (3, 8) parallel those for the induction of 
positive and negative allogeneic effects in vitro (12, 13). The missing link between 
the studies performed in vitro and the GVH experiments in vivo concerns the 
Lyt subsets of donor T cells that are required for the induction of either 
stimulatory or suppressive GVHD. We therefore injected different Lyt subsets 
of  B10 donor T cells into (B10 X DBA/2)F1 (BDFI) mice. The results indicate 
that Lyt-l+2 - T cells are able to induce SLE-like GVHD, but are incapable of  
inducing acute GVHD and LGVHD. The induction of  acute GVHD and 
LGVHD on the other hand required unseparated donor T cells, which comprise 
both Lyt-l+2 - and Lyt-l÷2 + cells. 

Materials and  Methods  
Mice. B10 mice (H-2 b/b, Lyt-l.2, Lyt-2.2, Thy-l.2) and BDFI hybrids (H-2 b/a) were 

purchased from Olac 1976 Ltd. (Bicester, Oxon, U.K.). Female mice, 8-10-wk old, were 
used. 

Preparation of Donor Cells. For induction of GVHR, single-cell suspensions of donor 
spleen and lymph node cells were prepared, as described (7). 

Monoclonal Antibodies. Monoclonal murine anti-Lyt- 1.2 (IgG2b, no. NEI-017) and anti- 
Lyt-2.2 (IgM, No. NEI-006) antibodies were obtained from New England Nuclear (Boston, 
MA). Monoclonal murine anti-Thy-l.2 (IgM, clone F7D5) was purchased from Olac 1976 
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Ltd. (Bicester, Oxon, U.K.). 
Pretreatment of Donor Cells with Monoclonal Antibodies and Complement (C). Donor cells 

consisted either of spleen cells or of a mixture of spleen cells (2 parts) and lymph node 
cells (1 part). For treatment with antiserum, cell suspensions were prepared in Hepes- 
buffered RPMI 1640 that contained 5% fetal calf serum. Suspensions of 3 x 107 live 
cells/ml were incubated for 45 rain on ice with either anti-Thy-l.2 serum, diluted 1 in 
1,000, or anti-Lyt-l.2 or anti-Lyt-2.2 serum, each diluted 1 in 3,000. As a control, cells 
were treated with normal mouse serum (NMS) diluted 1 in 3,000. After incubation, the 
cells were spun down and resuspended with 6 ml rabbit C, which had been selected for 
low cytotoxicity and was diluted 1 in 12 in Hepes-buffered RPMI 1640 (not containing 
fetal calf serum). The suspensions were incubated for 45 min at 37 °C, and thereafter the 
cells were washed three times. In some experiments the donor cells were treated twice 
with antisera and C, according to this procedure. Hereafter, cells treated with anti°Lyt- 
1.2 and C, anti-Lyt-2.2 and C, anti°Thy-l.2 and C, or NMS and C will be referred to as 
anti-Lyt-l-, anti-Lyt-2°, anti°Thy-l-, and NMS-treated cells, respectively. Unless men- 
tioned otherwise, these cells had been treated once. 

Nylon-wood Passage of Pretreated Donor Cells. In one experimental approach, B 10 spleen 
cells, which had been pretreated twice with either NMS or anti-Lyt antibodies, were 
passed through nylon-wool columns (13) in order to reduce the fraction of non-T cells. 

Induction of GVHR. All donor cells were injected intravenously. In the first experiment 
(Fig. I and Table I) nonirradiated mice were used as recipients. In the second experiment 
(Fig. 3 and Table II) the prospective BDF~ recipients were first irradiated with 750 rad 
by using 662-KeV gamma rays, emitted from a ~37Cs source (gammator, model 381, 
Isomedic) at a dose of 375 rad/min. Within the next 3 h, these mice were repopulated 
with 3 x 107 live untreated spleen cells obtained from syngeneic (BDF~) donors; 1 d later, 
the GVHR was induced by injection of B10 T cells. The donor cell inocula are specific in 
the results section. 

Primary Anti-Sheep Erythrocyte (SRBC) Response. The primary plaque-forming cell (PFC) 
response to SRBC in vitro was performed as described elsewhere (13). 

Clinical Signs of GVHR. Twice a week, the F1 mice undergoing GVHR (GVH Fi) were 
inspected for symptoms of acute GVHD, such as weakness, diarrhea, and ruffled fur; 
weight loss was determined by weighing the mice weekly. The number of dead mice was 
recorded. Anemia was determined by two-weekly measurements of hematocrit. At weekly 
intervals, the GVH F~ mice were tested for elevated proteinuria (5300 mg protein per 
100 ml urine) by means of Albustix test sticks (no. 2872, Ames, Div. of Miles). Elevated 
proteinuria in GVH F1 mice is a reliable indicator of ICGN (9). 

Detection of Autoantibodies. The presence ofautoantibodies in the serum was determined 
at two-weekly intervals, starting at week 2 and lasting until week 16 after the initiation of 
the GVHR. Autoantibodies to erythrocytes were detected by the direct Coombs' test 
using anti-mouse IgG serum, as described (7). Autoantibodies to thymocytes were detected 
by a C-dependent cytotoxicity test, as described (7); using 5~Cl-labeled thymocytes of 
normal BDF 1 mice as target cells. Mice were scored positive for autoantibodies against 
thymocytes when a 1 in 5 dilution of their serum lysed 40% or more of the target cells. 
IgG antibodies against nuclear antigens were detected by an indirect immunofluorescence 
technique using cryostat sections of mouse liver as antigenic substrate, as described (7). 
IgG autoantibodies against double-stranded DNA (dsDNA) were determined by an 
indirect immunofluorescence technique using the extranuclear dsDNA of Crithidia luciliae 
as antigenic substrate, as described (7). For the determination of both antinuclear and 
anti-dsDNA antibodies, the initial dilution of mouse serum was 1 in 10; the highest serum 
dilution at which specific immunofiuorescence was seen was called the titer. 

Resu l t s  

Lyt Subsets of Donor T Cells Involved in the Induction of LGVHD in Nonirradiated 
F1 Mice. In o rde r  to de t e rmine  which dono r  T-cell subset(s) is (are) responsible 
for  the induction of  L G V H D ,  groups  of  noni r rad ia ted  BDFI mice were injected 
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FIGURE l. Induction of LGVHD as a function of the Lyt subsets of parental T cells 
administered. Groups of nonirradiated BDF~ mice were injected on both day 0 and day 7 with 
a mixture of 5 x 10 7 viable Bl0 donor cells; the original mixture was composed of one-third 
lymph node cells and two-thirds spleen cells. The B10 donor cells had been pretreated either 
once (A) or twice (B), as indicated. Each of the groups of BDFa mice, which had received the 
donor cells pretreated once, consisted of 15 mice; the groups of BDFt mice, which had received 
the donor cells pretreated twice, consisted of 10 mice each. 

with various inocula, each o f  which contained 10 a viable B 10 cells. As expected,  
the vast majori ty (73%) o f  the F1 recipients o f  B10 cells that had been t reated 
once with NMS succumbed to a typical acute G V H D  (Fig. 1A); their  L G V H D  
was always p receded  by a 2 0 - 3 0 %  reduct ion o f  the hematocr i t  values (hematocri t  
values o f  N FI mice ranging f rom 43 to 48). None  o f  the FI recipients o f  anti- 
Thy- l - t r ea t ed  B10 cells developed acute GVHD,  not  to ment ion L G V H D  (Fig. 
1 A); consistent with this observation,  the hematocr i t  values o f  these F~ recipients 
were normal  (ranging f rom 42 to 48). T r e a t m e n t  o f  the B10 donor  cells with 
anti-Lyt-2 completely abolished their  capacity to induce acute G V H D  and 
LGVHD;  none o f  the G V H  F] mice o f  this g roup  had reduced  hematocr i t  values. 
After  a single t rea tment  o f  the B10 donor  cells with anti-Lyt-1, one-third o f  the 
FI recipients still developed acute G V H D  (hematocri t  values between 30 and 35) 
and eventually died f rom acute G V H D  (Fig. 1 A). After  the d o n o r  cells had been 
t reated twice with anti-Lyt-1, however,  the inoculum of  108 viable B10 cells had 
lost its capacity to induce L G V H D  (Fig. 1 B) and even acute G V H D  (hematocri t  
values ranging f rom 43 to 48). Donor  cells, which had been t reated twice with 
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T A B L E  I 

Development of SLE-like GVHD in Nonirradiated BDF~ Mice as a Function of the Lyt Subset of 
Parental T Cells Administered 

Nonirradiated BDFI recipients:* Cumulative percentage of surviving mice (week 16) 
with autoantibodies against Percentage 

Pretreatment of 
Group BI0 donor cells :t Number of mice 

of mice Thymo- Erythro- Nuclear antigens dsDNA (titer) I with ICGN i 
tested ! cytes cytes (titer) I 

1 NMS 4 0 0 50 (1/40-1/160)  0 ( - )  0 
2 Anti-Thy-I 15 0 0 20 (1/20-1/160)  0 (-)  0 
3 Anti-Lyt-I 10 10 0 20 (1/40-1/160)  0 ( - )  0 
4 Twice anti-Lyt-I 10 0 0 10 (1/80) 0 (-)  0 
5 Ami-Lyt-2 15 100 93 100 (1/160-1/2,560) 40 (1/20-1/160)  33 

* All mice received a total of 10 s viable donor cells; the cells were administered in two equal portions on day 0 and day 7. The original 
donor-cen inocula were composed of 2 parts of spleen cells and 1 part of lymph node cells. 

;t Unless mentioned otherwise, the donor cell inocula were pretreated once. After treatment, all inocula were adjusted to the number 
of viable cells. 

! Represents the number of mice that did not die from acute GVHD (see Fig. 1). Group 1, 2, 3, and 5 initially consisted of 15 recipient 
mice; group 4 initially consisted of 10 recipient mice. 

I Range of maximal titers in positive mice. 
I Mice showing elevated proteinuria for at least 3 subsequent weeks as well as distinct granular deposits of IgG along the glomerular 

basement membrane when examined by immunofiuorescence technique, as described elsewhere (9). 

NMS, had retained their capacity to induce LGVHD (Fig. 1B). These findings 
indicate that the donor T cells involved in the induction of acute GVHD must 
be Lyt-2 ÷ as well as Lyt-1 +. 

The Donor T Cells That Cause SLE-Like GVHD in Nonirradiated F1 Recipients Carry 
the Lyt-l+2 - Phenotype. The above-described nonirradiated F1 recipients, which 
had been studied for acute GVHD and LGVHD, were also studied for the 
development of SLE-like GVHD (Table I). In addition, we studied control 
groups, each of which consisted of eight syngeneically injected BDF1 or B10 
recipient mice. The syngeneic cells injected were either NMS-, anti-Lyt-l-, or 
anti-Lyt-2-treated. None of these control mice produced antibodies to thymo- 
cytes, erythrocytes, or dsDNA, let alone developed ICGN. Only one or two 
animals out of each of these groups produced autoantibodies against nuclear 
antigens. The maximal titer of  these antibodies ranged from 1 in 40, to 1 in 160 
(data not shown). 

All groups of FI mice injected with antiserum-treated B10 donor cells initially 
consisted of 10 or 15 mice but, as already described in Fig. 1, many of the FI 
recipients in groups 1 and 3 of Table I had died from acute GVHD before the 
end of the experiment (week 16 after the first administration of B10 cells). 
However, none of these mice showed detectable amounts of lupus-like autoanti- 
bodies in their sera or had developed elevated proteinuria as a sign of ICGN 
(data not shown). 

Group 5 in Table I shows that treatment with anti-Lyt-2 rendered the B10 
cells capable of inducing an SLE-iike autoimmune disease in the BDF~ recipients. 
Already 2 wk after the first injection of donor cells, 53% of the FI mice had 
autoantibodies to thymocytes, nuclear antigens, and erythrocytes. At 4 wk after 
the induction of the GVHR, 100% of the F1 recipients had autoantibodies to 
thymocytes and nuclear antigens in their serum, and 93% were Coombs'-positive. 
All F1 recipients in this group remained positive for autoantibodies to thymocytes 
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and nuclear antigens until week 16. Moreover, 40% of the F1 recipients had 
autoantibodies to dsDNA in their serum at one or more times tested; and severe 
ICGN, as indicated by elevated proteinuria and immunofluorescence studies, 
was observed in 33% of  the F1 recipients. 

In marked contrast, none of the other GVH Fl mice shown in Table I (groups 
1 to 4) had comparable symptoms of  SLE-like GVHD. None of  them showed 
elevated proteinuria or immunohistoiogical evidence of ICGN, and none of  them 
had autoantibodies against erythrocytes and dsDNA. The titers of  antinuclear 
antibodies, if present at all, did not exceed the titers found in syngeneically 
injected control mice. Although the percentage of GVH F~ mice with antinuclear 
antibodies was increased in the F~ recipients of NMS-treated BI0 donor cells 
(group 1), this percentage (50%) represents only two long-term survivors out of  
the initial group of 15 GVH F~ mice. As expected, treatment of the B10 donor 
cells with anti-Lyt-1 did not render them capable of  inducing SLE-like GVHD 
(groups 3 and 4). 

Subpopulations of Donor T Cells Involved in the Induction of LGVHD in Irradiated 
Fi Recipients. Since "-,70% of the peripheral T cells in the mouse express the 
Lyt-2 antigen (l 5), the total number of  T cells among 108 viable Lyt-2-depleted 
B 10 cells comprised only about one-third of  the total number of  T ceils in NMS- 
treated cells. This total number of  donor T cells after the anti-Lyt-2 treatment 
might therefore have been too low to induce acute GVHD and thus caused SLE- 
like GVHD in the nonirradiated F1 recipients used. This explanation is unlikely 
though because small doses of untreated B10 donor cells (5 x 106 to 30 x 10 6, 
2 parts spleen cells and 1 part lymph node cells) induced only a limited autoan- 
tibody formation and failed to induce SLE-like GVHD (data not shown). T o  
further exclude this possibility comparable numbers of viable antiserum-treated 
B10 T cells were injected into irradiated BDF~ recipients. In order to adjust the 
various donor cell inocula to comparable numbers of  viable T cells, B 10 spleen 
cells that had been treated twice with either NMS, anti-Lyt-l, or anti-Lyt-2, were 
passed through nylon-wool columns. 

First, we determined the ailoreactivity of these three suspensions of B10 T 
cells by means of the primary anti-SRBC response in vitro (Fig. 2). Low numbers 
of  NMS-treated B10 T cells induced aIlobelp; higher numbers induced allo- 
suppression. The anti-Lyt-2-treated B 10 T cells exclusively induced allohelp, and 
the anti-Lyt-l-treated B 10 T cells were ineffective. These results are consistent 
with those reported elsewhere (12, 13). 

Fig. 3 shows the different capacities of  the same three suspensions of  B10 T 
cells to induce LGVHD in irradiated BDF~ mice were used, because they 
irradiated F~ recipients are much more susceptible than nonirradiated ones to 
the induction of LGVHD (11, 16). Whereas 90% of the F1 recipients of  the 
NMS-treated B10 T cells developed LGVHD, only one (10%) of the recipients 
of  anti-Lyt-2-treated T cells died, and none of  the F1 recipients of  anti-Lyt-1- 
treated B10 T cells died. 

Subset of Donor T Cells Causing Chronic GVHD in Irradiated F1 Mice. The same 
groups of irradiated BDFI mice that had been used for studying LGVHD were 
also used for testing the presence of  SLE-like autoantibodies in the serum (Table 
II). None of the F~ recipients that died from acute GVHD before the end of  the 
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FIGURE 2. Allogeneic effects caused by Lyt subsets of B10 T cells in vitro. The  effects of 
B10 T cells on the primary PFC responses of SRBC-stimulated BDF1 B cells were compared. 
Each culture contained 3 × 106 T cell-depleted BDFI spleen cells (B cells). As a source of T 
cells, graded numbers of live B 10 spleen cells that had been treated twice, as indicated, were 
used; after the second treatment,  these cells were passed through nylon-wool columns, adjusted 
to the same number  of live cells, and added to the B cell cultures. The  three T-cell suspensions 
tested here are the same that were used to perform the GVH experiments described in Fig. 3 
and Table II. 
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FIGURE 3. Induction of LGVHD in irradiated BDF] recipients as a function of the Lyt 
subsets of parental T cells administered. Groups of 750-tad irradiated BDF] mice were first 
rel~opulated with 3 × 10 ~ syngeneic (BDFI) spleen cells and on the following day injected with 
10' viable B10 cells as a source of T cells. The  T cells were obtained from B10 spleen cells 
that had been pretreated twice, as indicated; thereafter, the cells had been passed over nylon- 
wool. The  resulting cell suspensions were adjusted to the same concentration of live cells and 
then injected into the recipients. Each group of recipients initially consisted of 10 Fl mice. 

observation period (week 16) had shown autoantibodies before they died. In 
Table II, therefore, only the results obtained from the surviving GVH F] mice 
are shown. It is evident from the Table that the vast majority of the F] recipients 
of  anti-Lyt-2-treated donor cells showed a vigorous formation of SLE-like auto- 
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TABLE II 
Formation of SLE-lihe Autoantibodies in Irradiated BDFt Mice as a Function of the Lyt Subsets of 

BIO T Cells Administered 

T cells obtained from Irradiated BDF~ recipients:* Cumulative percentage of surviving F~ mice 
B 10 donors* with autoantibodies against 

Number of 
live cells admin- Pretreat- Number Thymo- Erythro- Nuclear antigens 

ment of cells tested 0 cytes cytes (titer) ! istered 
(x 10 6) 

dsDNA (titer) ! 

0 - -  10 0 0 20 (1/20-1/160) 0 (-) 
10 NMS 1 0 0 100 (1/160) 0 (-) 
10 Anti-Lyt-I 10 0 0 20 (1/40-1/160) 0 (-) 
10 Anti-Lyt-2 9 100 78 100 (1/40-1/2,560) 78 (1/40-1/80) 

* Same cells as those used for the experiments described in Figs. 2 and 3. 
* Same mice as those used for the experiment shown in Fig. 3. 

Represents the numbers of F~ recipients that had survived until the end of the experiment, i.e. 
week 16, after the injection of B 10 cells. At the start of the experiment, each group consisted of 
10 Fl mice. 

n Range of maximal serum titers of positive F~ mice. 

antibodies. In contrast, neither N MS-treated nor  anti-Lyt-l- treated B10 T cells 
were capable of  inducing a comparable autoantibody formation in the recipients. 

Discussion 

The  results of  the present study indicate that, depending on the Lyt phenotype 
of  the parental T lymphocytes injected, the F1 recipients developed either acute 
or chronic GVHD. 

Stimulatory or Chronic GVHD. In previous studies, it was shown that  injection 
into nonirradiated BDF1 recipients of  unseparated B 10 T cells led to only limited 
autoantibody formation (2) and failed to induce ICGN but, instead, caused acute 
GVHD and LGVHD (10). Using the same parent  ---* F~ combination, now we 
showed that depletion of  the allosuppressive Lyt-2 + cells rendered  the B 10 donor  
cells capable of  inducing a severe SLE-like au to immune disease that included the 
development of  ICGN (Table I). The  mechanism underlying the formation of  
autoantibodies during the GHVR is thought  to be a positive allogeneic effect 
caused by abnormal T-B-cell cooperation (3, 7, 8, 17-21). In this process, T cell 
help is provided by parental T cells that react against the allogeneic class-II (I- 
A/I -E)  antigens of  the F1 recipient's H-2 complex (3, 8). The  excess of  T cell 
help generated by this reaction, in combination with certain self-antigens, triggers 
those F~ B cells capable of  producing autoantibodies characteristic of  SLE (3, 7, 
8, 17, 21). The  autoantibodies in turn form immune complexes and cause ICGN 
(9). In the present study, we showed that the production of  multiple autoanti- 
bodies and ICGN during a GVHR requires the injection of  Lyt-l+2 - donor  cells; 
that Lyt phenotype is commonly associated with T n cells (15, 22, 23), including 
the T n cells that react against allogeneic class-II antigens (Fig. 2; 12, 13). In 
contrast, the B10 cells that had been pretreated with anti-Lyt-1 were unable to 
induce vigorous autoantibody formation in the recipients (Table I and II). The  
latter finding is hardly surprising, however, because virtually all T cells express 
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at least small amounts of Lyt-1 (24). The low level of antinuclear antibodies 
observed after the injection of anti-Lyt-1-treated cells barely exceeded that found 
in syngeneically injected or noninjected BDF~ mice. This low level of  spontaneous 
autoantibody formation conforms with previous reports (25, 26) that normal 
mice, especially at higher ages, may have antinuclear antibodies in the serum. 

The different forms of GVHD induced by different Lyt subsets of donor T 
cells argue against the pathogenesis of chronic GVHD postulated by Elkins (1, 
27). He proposed that the symptoms of chronic GVHD are only late indirect 
consequences of the cytotoxic damage and the subsequent infections caused by 
the initial alloaggression by donor T cells. The data presented in the present 
paper, however, as well as other data (2-4, 7, 8) indicate that stimulatory GVH 
symptoms can appear already at 2 wk after the initiation of the GVHR and do 
not require a preceding phase of lymphohemopoietic depletion (acute GVHD); 
instead, these symptoms are direct consequences of the allo-stimulation induced 
by donor T H cells. In fact, we observed that removing the Lyt-2 + donor T cells, 
the very cells that are needed for the induction of acute GVHD, was a prerequisite 
for the induction of SLE-like GVHD by B10 T cells. Nevertheless, viral infec- 
tions, including those acquired during GVHD, might lead to a GVH-like patho- 
genesis so that their symptoms are (almost) indistinguishable from those caused 
by alloreactive donor T cells (6, 17, 21). 

Acute GVHD. Following an initial phase of stimulatory symptoms in the first 
week of the GVH R (1, 2), acute GVHD rapidly produces suppressive pathological 
symptoms, such as pancytopenia accompanied by aplastic anemia and hypogam- 
maglobulinemia (1-5, 10). This biphasic course has led us to the concept (2) that 
acute GVHD in H-2-different recipients is due to a sequential activation, first of  
class-II-reactive donor T n or T inducer cells and, thereafter, of class-I-reactive 
donor T s cells. The activated donor T H cells might cause the initial phase of 
stimulatory symptoms, and, analogous to other systems (14), induce class-II- 
reactive donor T s cells. Optimally activated donor T s cells appear to cause the 
suppressive pathological symptoms of GVHD (2-4, 10, 28, 29). 

In the present paper, we showed the alloreactive B10 cells carrying the Lyt- 
1+2 - phenotype were unable, or almost unable, to induce acute GVHD and 
LGVHD in either nonirradiated or irradiated H-2-different F1 mice (Figs. 1 and 
3). This finding is consistent with the results published by Korngold and Sprent 
(30), who showed that Lyt-l+2 - donor T cells were unable to induce LGVHD in 
irradiated recipients differing from the donor at multiple non-H-2 loci. Our 
findings differ, however, from the studies reported by Valera et al. (16). Valera 
et al. studied the Lyt phenotype of the donor T cells responsible for the induction 
of LGVHD in irradiated recipients, which differed from the donor at all of  H-2 
as well as non-H-2 loci. They found that treatment of the donor cells with anti- 
Lyt-2 did not protect the recipient mice from LGVHD. The most likely expla- 
nation for this discrepancy with our data is that the single anti-Lyt-2 treatment 
of the donor cells used by Valera et al. (16) was not sufficient to remove all of  
the Lyt-2 + T cells and that the few spared T cells were responsible for the 
observed LGVHD in the irradiated recipients. In our hands, a single treatment 
with anti-Lyt-2 or alloreactive T cells often proved to be ineffective in abolishing 
their allosuppressor capacity in vitro (data not shown). In fact, Valera et al. (16) 
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reported that their treatment with anti-Lyt-2 did not completely abrogate the 
capacity of the donor cells to generate anti-host T killer cells in vitro. Others 
(15, 31), by contrast, have shown that T cells properly depleted of  Lyt-2 ÷ cells 
were no longer capable of  generating cytotoxic T cells across an H-2 difference. 
The possibility that, indeed, a very low number of spared Lyt-2 ÷ T cells might 
have caused the LGVHD observed by Valera et al. (16) receives further support 
by previous findings made by Korngold and Sprent (11). These authors observed 
that parental bone marrow cells, which contained as few as 0.3% mature T cells, 
i.e. 3 X 104 T cells, sufficed to induce LGVHD in irradiated F1 recipients that 
differed at multiple non-H-2 loci only. Moreover, very similar observations have 
recently been made in human recipients of  HLA-different bone marrow grafts 
(32). 

In agreement with Korngold and Sprent (30) and Valera et al. (16) we found 
that Lyt-l-2 + T cells, too, are unable to induce LGVHD. Together  with the 
observed inability of Lyt-1 +2- cells to induce LGVHD, the combined results lead 
to the conclusion that donor T cells carrying the Lyt-l+2 + phenotype must be 
involved in the pathogenesis of  LGVHD. This conclusion is identical with that 
of  Korngold and Sprent (30). It is not yet known, however, whether Lyt-l+2 - 
inducer T cells are required in addition to the Lyt-l÷2 + donor cells. 

As already mentioned, we think that alloreactive donor T s cells are the effector 
cells that cause the pancytopenia of acute GVHD (3, 4, 10). Our conclusion that 
donor Lyt-1 ÷2 + cells must be involved in the pathogenesis of LGVHD is consist- 
ent with this concept, because several groups of  investigators showed that the 
severe aliosuppression at the beginning of the second phase of acute GVHD, i.e. 
at about day 7, is caused by Lyt-l+2 ÷ donor T cells (33-35). Furthermore, 
recently we provided evidence that allosuppression induced in vitro also requires 
Lyt-l+2 + cells, because neither Lyt-l-2 + cells alone nor a mixture consisting of 
Lyt-l+2 - cells and increasing numbers of Lyt-l-2 ÷ cells were able to induce 
allosuppression across a full H-2 difference (13). These studies also showed that 
a class-II-reactive Lyt-l+2 - cell causes allohelp, whereas allosuppression in vitro 
appears to be caused by a class-I-reactive Lyt-l+2 + cells. Thus, the data of the 
present study have closed the gap between the studies performed in vitro (13) 
and the GVH experiments performed in vivo. In combination with previous 
findings (3, 8), we conclude that stimulatory GVHD is caused by class-II-reactive 
Lyt-l+2 - donor T H cells. In contrast, the development of  suppressive GVHD 
seems to require class-I-reactive Lyt-l÷2 + T s cells and, possibly also class II- 
reactive Lyt-l+2 - inducer cells of  the donor. However, experiments involving 
positively selected Lyt-1 +2 ÷ ceils will have to be performed in order to verify this 
concept. 

S u m m a r y  
Previous work from this laboratory has led to the hypothesis that the stimula- 

tory pathological symptoms of chronic graft-vs.-host disease (GVHD) are caused 
by ailoreactive donor T helper (T n) cells, whereas the suppressive pathological 
symptoms of acute GVHD are caused by alloreactive T suppressor (T s) cells of  
the donor. In the present paper we analyzed the Lyt phenotypes of B10 donor 
T cells required for the induction of  either acute or chronic GVHD in H-2- 
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different (B 10 x DBA/2)F1 recipients. First, nonirradiated F1 mice were used as 
the recipients. We found that unseparated B 10 T cells induced only a moderate 
formation of systemic lupus erythematosus (SLE)-like autoantibodies, but a high 
percentage of lethal GVHD (LGVHD). In contrast, Lyt-1 +2- donor T cells were 
unable to induce LGVHD in these recipients; these cells were capable, however, 
of inducing a vigorous formation of SLE-like autoantibodies and the formation 
of severe immune-complex glomerulonephritis. Lyt-l-2 + T cells were incapable 
of inducing either acute or chronic GVHD. 

In another experiment, the sensitivity and accuracy of the GVH system were 
increased by using irradiated F1 mice as recipients and by comparing donor-cell 
inocula that contained similar numbers of T lymphocytes. In addition, donor- 
cell inocula were used that had been tested for their alloheiper and allosuppressor 
effects on F~ B cells in vitro. In the irradiated FI recipients, too, unseparated 
donor T cells were superior to T cell subsets in inducing LGVHD; Lyt-l-2 + 
donor cells were completely and Lyt-1 +2- donor cells were almost incapable of 
doing so. In contrast, Lyt-l+2 - T cells, but neither unseparated T cells nor Lyt- 
1-2 + T cells, were capable of inducing a vigorous formation of SLE-like auto- 
antibodies. We conclude that the stimulatory pathological symptoms of chronic 
GVHD are caused by Lyt-l+2 - allohelper T cells. In contrast, the development 
of the suppressive pathological symptoms of acute GVHD appears to involve 
ailoreactive Lyt-1 +2 + T suppressor cells. 
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