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Abstract The relationships between structural and func-

tional measures of the human brain remain largely

unknown. A majority of our limited knowledge regarding

structure–function associations has been obtained through

comparisons between specific groups of patients and

healthy controls. Unfortunately, a direct and complete view

of the associations across multiple structural and functional

metrics in normal population is missing. We filled this gap

by learning cross-individual co-variance among structural

and functional measures using large-scale neuroimaging

datasets. A discover-confirm scheme was applied to two

independent samples (N = 184 and N = 340) of multi-

modal neuroimaging datasets. A data mining tool, gRAI-

CAR, was employed in the discover stage to generate

quantitative and unbiased hypotheses of the co-variance

among six functional and six structural imaging metrics.

These hypotheses were validated using an independent

dataset in the confirm stage. Fifteen multi-metric co-vari-

ance units, representing different co-variance relationships

among the 12 metrics, were reliable across the two sets of

neuroimaging datasets. The reliable co-variance units were

summarized into a database, where users can select any

location on the cortical map of any metric to examine the

co-varying maps with the other 11 metrics. This database

characterized the six functional metrics based on their co-

variance with structural metrics, and provided a detailed

reference to connect previous findings using different

metrics and to predict maps of unexamined metrics. Gen-

der, age, and handedness were associated to the co-vari-

ance units, and a sub-study of schizophrenia demonstrated

the usefulness of the co-variance database.

Keywords Structure–function association � Independent

component analysis � Data mining � Connectomics � Multi-

modal integration
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Introduction

Many structural and functional metrics have been devel-

oped in neuroimaging studies, each characterizing the

cerebral cortex from a different perspective. Brain struc-

ture metrics, such as cortical volume (vol), surface area

(area), cortical thickness (thick), mean cortical curvature

(curv), local gyrification index (lgi), and sulcus depth

(sulc), have been derived from surface modeling of the

cerebral cortex (Fischl et al. 1999) and widely applied to

investigate brain development and brain disorders. For

example, the vol, area, and thick metrics are popular

measures used to quantify brain morphometric abnormali-

ties in schizophrenia (e.g., Ohtani et al. 2014; Sprooten

et al. 2013; Xiang et al. 2013). In particular, these metrics

play different roles in distinguishing schizophrenia from

bipolar disorder patients (Rimol et al. 2012). The curv, lgi,

and sulc metrics have been developed to characterize gyri-

folding patterns (Schaer et al. 2008), reflecting complex

interactions between differential growth rates, various

physical processes, and the specific layout of cortical fiber

connections (White and Hilgetag 2011). These metrics

have been proposed as potential candidates of effective

brain-based markers for schizophrenia (e.g., Fornito et al.

2008; Nanda et al. 2014; Takahashi et al. 2013; White et al.

2003).

Similarly, a variety of functional metrics have been

derived based on the temporal dynamics of blood oxygen

level-dependent (BOLD) signals acquired under a task-free

state (Biswal et al. 1995). Low-frequency fluctuations in

task-free BOLD signal reflect intrinsic functional organi-

zations of the brain (Biswal et al. 2010; Kelly et al. 2012;

Yeo et al. 2011). In addition to traditional seed-based

temporal correlations, metrics, including amplitude of low-

frequency fluctuation (alff), degree centrality (dc), eigen-

vector centrality (ec), regional homogeneity (reho), and

fractional amplitude of low-frequency fluctuation (falff),

have been frequently used in functional imaging studies.

Indeed, alff and falff metrics have been employed to

quantify abnormalities in voxel-wise low-frequency fluc-

tuations in schizophrenia patients (Yang et al. 2007; Zou

et al. 2008; Zuo et al. 2010), and these metrics reflect

distinguishable locations of abnormality in the cortex

(Hoptman et al. 2010). The reho metric (Zang et al. 2004)

reflects the local synchronization of low-frequency fluctu-

ations as a local connectivity measure (for a comprehensive

review, see Jiang and Zuo 2015). The use of the surface-

based reho metric to exclude the influence of non-gray

matter signals (i.e., partial volume effects) has recently

been proposed (Zuo et al. 2013) in association with the

hierarchical architecture of functional organization in the

human brain (Jiang et al. 2015). The dc and ec metrics

characterize the intrinsic functional organizations of the

brain in a graph-theoretical perspective (Buckner et al.

2009; Bullmore and Sporns 2009; Lohmann et al. 2010;

Zuo et al. 2012; Zuo and Xing 2014), which has been

adopted in neuroimaging studies of schizophrenia to

investigate deficits in brain network hubs (Alexander-

Bloch 2010; Lord et al. 2011; for a review see Rubinov and

Bullmore 2013).

While a number of studies have demonstrated superior

performance of combining information from multiple

metrics (or imaging modalities) to examine neural mech-

anisms underlying behaviors and distinguish mental dis-

orders (Fan et al. 2008; Kim et al. 2012; Palaniyappan and

Liddle 2014; Wee et al. 2012; Zhang et al. 2011a), the

relationships between these structural and functional met-

rics are largely unknown. Specifically, our understanding

of the associations across multiple neuroimaging metrics is

restricted in three aspects: first, nearly all multi-modal

studies integrate no more than three metrics; second, many

studies combine information from multiple metrics based

on their spatial overlaps, but relevant metrics do not nec-

essarily overlap in space; and third, most studies compare

specific groups of patients to healthy controls. Due to these

practical issues, we currently only have indirect knowledge

about the similarities and differences across these metrics

(Sui et al. 2014), and a direct/complete view of the asso-

ciations across multiple structural and functional metrics in

normal population is lacking.

To map the cross-subject co-variance between the

aforementioned structural and functional metrics, we

applied a discover-confirm scheme to two independent

large samples (N = 184 and N = 340) of multi-modal

neuroimaging datasets. In the discover stage, we used the

first sample and a data-driven approach, generalized

ranking and averaging independent component analysis

(gRAICAR1; Yang et al. 2008, 2012) to generate quanti-

tative hypotheses about the cross-subject co-variance

among the 12 metrics. In the confirm stage, we examined

these hypotheses using the second dataset. This set of

analyses is able to address the practical difficulties men-

tioned above because (1) this data-driven approach gener-

ates unbiased hypotheses (imposes no constraint of spatial

similarity between metrics), (2) the discover-confirm

scheme is robust to artifacts introduced by odd images, and

(3) the model is simple enough to include a number of

metrics. We hypothesize that the co-variance relationships

among the 12 metrics, represented by multi-metric co-

variance units (MMCUs), are reliable and reproducible

across datasets, and that these MMCUs are able to interpret

1 The gRAICAR package is freely available at https://github.com/

yangzhi-psy/gRAICAR. It is also a part of CCS (https://github.com/

zuoxinian/CCS).
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variation in behavioral variables, to link existing findings

using different metrics, and to predict characteristics of

unexamined metrics for individual studies.

Methods

Datasets

We used two publicly available large datasets from the 1000

Functional Connectomes Project (FCP; http://fcon_1000.

projects.nitrc.org/fcpClassic/FcpTable.html) (Biswal et al.

2010) and the Consortium for Reliability and Repro-

ducibility (Zuo et al. 2014) (CoRR; http://fcon_1000.

projects.nitrc.org/indi/CoRR). Dataset 1 is from the FCP, the

Cambridge-Buckner site (FCP-Cambridge), where high-

resolution structural images and resting-state functional

images were collected from 198 healthy subjects (123

females, ages: 18–40) using a Siemens 3 T Trio scanner. The

imaging sequences included MP-RAGE for T1 image

acquisition (TR/TE/TI = 2200/1.04–7.01/1100 ms, Flip

Angle = 7�, FOV = 230 mm, 144 sagittal slices, voxel

size = 1.2 9 1.2 9 1.2 mm) and EPI for resting-state

functional MRI (rfMRI) image acquisition (TR/TE = 3000/

30 ms, FA = 85�, FOV = 216 mm, 47 axial slices, voxel

size = 3.0 9 3.0 9 3.0 mm, 124 volumes).

Dataset 2 is a part of the Consortium for Reliability and

Reproducibility (CoRR; Zuo et al. 2014) and contains 345

healthy college students (182 females; ages: 17–27) recrui-

ted from Southwest University in Chongqing, China (CoRR-

SWU). Each participant underwent both MP-RAGE (TR/

TE/TI = 1900/2.52/900 ms, Flip Angle = 9�, FOV = 256

mm, 176 sagittal slices, voxel size = 1.0 9 1.0 9 1.0 mm)

and rfMRI scanning (TR/TE = 2000/30 ms, FA = 90�,
FOV = 220 mm, 32 axial slices, voxel size = 3.44 9

3.44 9 4.0 mm, 242 volumes) using a Siemens 3 T Trio

scanner.

Preprocessing and quality control: structural images

All structural MRI images were first inspected for quality

control before being preprocessed using the structural

preprocessing pipeline of the Connectome Computation

System (CCS: Xu et al. 2015). This pipeline first cleaned

the images with a spatially adaptive non-local means filter

and corrected the intensity inhomogeneity. CCS then called

FreeSurfer (Dale et al. 1999) to implement the steps of

brain tissue segmentation and cortical surface reconstruc-

tion. Specific steps included: (1) brain extraction with a

hybrid watershed/surface deformation; (2) tissue segmen-

tation of the cerebrospinal fluid (CSF), white matter (WM)

and deep gray matter (GM); (3) cutting plane generation to

disconnect the two hemispheres and subcortical structures;

(4) fixation of the interior holes of the segmentation; (5) a

triangular mesh tessellation over a GM-WM boundary and

mesh deformation to produce smooth GM-WM (white

surface) and GM-CSF interfaces (pial surface); (6) topo-

logical defect correction on the surface; (7) individual

surface mesh inflation to a sphere; and (8) estimation of the

deformation between the resulting spherical mesh and a

common spherical coordinate system to align the cortical

folding patterns across subjects. As a quality assessment,

intermediate results from the above steps were visually

inspected based upon the screenshots generated using CCS.

Subjects with bad brain extraction, tissue segmentation and

surface reconstruction were excluded from the subsequent

analysis.

For each subject, six morphological metrics were

derived from the cortical surface model created using

FreeSurfer, including cortical vol, area, thick, curv, lgi,

and sulc. All abbreviations are listed in Supplementary

Text 1, and detailed descriptions of the meaning and

computation of these metrics are presented in Supple-

mentary Text 2. The area metric was set to the total area

of the triangles connected to a vertex (Fischl and Dale

2000). The total cortical area generated using the Free-

Surfer model was consistent with the surface area derived

from postmortem studies and has been validated on sev-

eral brain phantoms and compared with other surface-

based analysis packages (Lee et al. 2006; Makris et al.

2006). The thick metric was calculated using the average

linking distance between the pial and white surfaces

(Fischl and Dale 2000). This measure of cortical thickness

showed adequate test–retest reliability across time, scan-

ner manufacturers and field strengths (Han et al. 2006).

The vol metric was calculated as the product of the thick

and area metrics. The curv metric represents the mean of

the two principal curvatures, which measures the maxi-

mum and minimum bending of the cortical surface at the

vertex (Pienaar et al. 2008). The lgi is a metric that

quantifies the amount of cortex buried within the sulcal

folds compared with the amount of cortex on the outer

visible cortex. A cortex with extensive folding has a large

lgi, whereas a cortex with limited folding has a small lgi.

In Freesurfer, lgi was computed at thousands of points

over the entire cortical surface (Schaer et al. 2008).

Moreover, the sulc metric is the integrated dot product of

the movement vector with the surface norm during infla-

tion, indicating the large-scale geometry of the cortical

surface. When deep regions consistently move outward,

these regions have positive values of sulc, whereas when

superficial regions move inward, these regions have neg-

ative values.

Each of these metrics was computed in the native space

and subsequently transferred onto the fsaverage standard

spherical surface. To enable further comparisons with
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functional metrics, these metric maps were down sampled to

an fsaverage5 standard cortical surface with 10,242 vertices

per hemisphere, and a Gaussian filter (FWHM = 4 mm) was

applied to smooth the surface maps. An outlier detection

procedure was further performed to exclude subjects with

extremely low/high metrics. A subject was excluded from

subsequent analyses when any of the six metrics was an

outlier at any vertex of the fsaverage5 surface. The outliers

were determined using the generalized extreme Studentized

deviate test (p\ 0.001) (Rosner 1983).

Preprocessing and quality control: functional

images

Connectome computation system was employed to analyze

rfMRI data using a functional pipeline. The following

procedures were included: (1) eliminating the first 5 EPI

volumes from each scan for signal equilibration; (2) de-

spiking the time series to detect and reduce outliers (spikes)

using an hyperbolic tangent function; (3) slice timing using

Fourier interpolation to temporally correct the interleaved

slice acquisition; (4) aligning each volume to a ‘‘base’’

image (the mean EPI image) using Fourier interpolation to

correct between-head movements; (5) normalizing the 4D

global mean intensity to 10,000 to allow inter-subject

comparisons; (6) regressing out the WM/CSF mean time

series and the Friston-24 motion time series to reduce the

effects of these confounding factors; (7) filtering the

residual time series with a band-pass filter (0.01–0.1 Hz) to

extract low-frequency fluctuations; (8) removing both lin-

ear and quadratic trends; and (9) aligning individual

motion-corrected functional images to the individual

structural image using a GM-WM boundary-based regis-

tration (BBR) algorithm. The preprocessed time series

were subsequently projected onto the fsaverage5 standard

cortical surface.

For each subject in both preprocessed datasets, we

computed six functional metrics that character low-fre-

quency fluctuations (0.01–0.1 Hz), including alff and its

fractional variant (falff), dc, ec, and surface-based regional

homogeneity with length-one (reho) and length-two (re-

ho2) neighbors. These metrics were commonly used to

characterize properties of intrinsic connectivity networks

(see Zuo and Xing 2014 for a review). Here, we provide a

brief description of these metrics and more details are

presented in Supplementary Text 3. The alff metric indi-

cates the power of low-frequency oscillations in the BOLD

time series (Zang et al. 2007). The normalized form, falff,

further divides the alff value by the power of the entire

frequency spectrum (Zou et al. 2008). These metrics

characterize single voxel/vertex properties. In contrast,

from a graph-theoretical perspective (Bullmore and Sporns

2009), the dc and ec metrics depict the relationships of the

BOLD time series between a given location and all other

locations in the brain. The relationships between the time

series were characterized using Pearson’s Correlation

coefficients. The reho and reho2 metrics measure the multi-

vertex relationship in a local neighborhood (Zang et al.

2004; Zuo et al. 2013), reflecting the local homogeneity of

the BOLD time series. The radius of the local neighbor-

hood is different between the reho and reho2 metrics,

where the reho metric has a radius of 1 vertex, and reho2

has a radius of 2 vertices.

We conducted the following quality assessments for

functional images. To examine the head motion during

rfMRI acquisition, we computed (1) the maximum distance

of translational head movement (maxTran), (2) the maxi-

mum degree of rotational head movement (maxRot), and

(3) the mean frame-wise displacement (meanFD). To

evaluate the quality of functional–structural image

realignment with BBR registration, we collected the min-

imal cost of the BBR co-registration (mcBBR). Subjects

were excluded from further analysis when the following

criteria were not met: (1) maxTran B 2 mm, (2) max-

Rot B 2�, (3) meanFD B 0.2 mm, and (4) mcBBR B 0.75.

As a result of the quality control procedures for both

structural and functional images, 184 subjects from FCP-

Cambridge (female 117, age range 18–30) and 340 subjects

from CoRR-SWU (female = 180, age range 17–27) were

retained for further analyses.

Structure–function co-variance analysis: discovery

A discover-confirm scheme was illustrated in Fig. 1 and

was applied to the preprocessed FCP-Cambridge

(N = 184) and CoRR-SWU (N = 340) datasets. Besides

Fig. 1, we made an animation to demonstrate the proce-

dures.2 FCP-Cambridge was used in the discover stage. We

first decomposed the cross-subject variability of each cor-

tical metric in FCP-Cambridge into a number of indepen-

dent components. Specifically, an n by v matrix was

formed for each of the 12 metrics, where n is the number of

subjects (n = 184), and v is the number of vertices on the

surface map (for the ‘fsaverage5’ mesh, v = 20,484).

Independent component analysis (ICA), as implemented in

the MELODIC module of FSL software (Beckmann and

Smith 2004), was applied to the matrices (step 1 in Fig. 1).

The numbers of components were automatically deter-

mined using the Laplacian estimator in MELODIC. The

ICA outputs are referred to as surface component maps

(SCMs), each representing a spatial pattern of vertices.

Each SCM is accompanied with a subject course that

depicted the variation of the corresponding SCM across

2 Also available at http://ddl.escience.cn/f/qMsE.
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subjects. Since the SCM is an unthresholded, continuous

map of vertices, the values on the vertices indicate the

relative contribution of the vertices to the subject course.

The above ICA decomposition was applied to the 12

metrics separately.

Next, we adopted gRAICAR (Yang et al. 2008; Yang

et al. 2012) to cluster the SCMs from the 12 metrics (step 2

in Fig. 1). The gRAICAR algorithm is effective in

revealing intrinsic inter-subject relationships (Kyathana-

hally et al. 2015; Yang et al. 2014a) or patient subtypes

(Yang et al. 2014b). Supplementary Fig. 1 presents a

demonstration of the gRAICAR algorithm. Specifically,

gRAICAR first constructed a full similarity matrix (FSM)

containing pair-wise similarity between all the SCMs from

the 12 metrics (Fig. S1A). The similarity between the

SCMs was defined as the Pearson’s correlation coefficients

between their subject courses. The value of this similarity

reflects the coherence between two SCMs in terms of their

cross-subject variations. gRAICAR then searched through

the FSM for clusters of SCMs (demonstrated in Fig. S1).

The first operation in the search procedure was ranking the

SCMs according to their ‘‘popularity’’ among SCMs from

different metrics. The following steps were conducted to

compute the ‘‘popularity’’ of SCMs: (1) the FSM was

segmented into metric-blocks, so that the FSMs from the

same metric stayed together and the similarity values

between them were represented in a block within the FSM

(Fig. S1A). (2) The similarity values were converted into

relative values (Zrow) within each row in each metric-

block (Fig. S1B). (3) The maximal value in each row of

each metric-block in Zrow was then retained in a new

matrix (Zmax), and all other values were set to 0

(Fig. S1C). Each row in the Zmax matrix thus revealed the

most similar SCMs from different metrics to the SCM

represented in current row. (4) The Zmax matrix was

multiplied to its transform (multiply elements in corre-

sponding locations, Fig. S1D). This operation eliminated

unpaired inter-metric maximal similarities. (5) In the

resultant matrix, the sum of each row yielded the ‘‘popu-

larity’’ value for each SCM, representing a special form of

centrality that takes specificity and mutual correspondence

of SCMs into account. We then computed a standardized

FSM by adding the Zrow matrix to its transpose, so that the

similarity between a pair of SCMs from different metrics

was standardized among all SCMs from the relevant met-

rics (Fig. S1E). Starting from the top SCM in the popularity

rank, 11 SCMs from different metrics were identified in the

standardized FSM, by searching for maxima in metric-

blocks on the top SCM’s row (Fig. S1F).

As a result, the identified 12 SCMs shared similar trends

of variability across subjects, and were grouped as a multi-

metric co-variance unit (MMCU). An inter-metric co-

variance matrix was extracted from the FSM for each

MMCU to characterize the subject course similarity

between SCMs from different metrics (Fig. S1G). These 12

SCMs were thus eliminated from the popularity rank, and

the above procedure was repeated until all SCMs were

assigned to MMCUs. Because different metrics had dif-

ferent numbers of SCMs, the number of MMCUs detected

using gRAICAR equals the second maximal number of

SCMs among the 12 metrics (An MMCU at least associates

two metrics).

Structure–function co-variance analysis: validation

In the confirm stage, we examined whether the MMCUs

detected in FCP-Cambridge were reproducible across

datasets. This step is necessary because odd subjects or

image artifacts might influence the MMCUs obtained in

FCP-Cambridge. We first correlated each SCM in each

MMCU (obtained in FCP-Cambridge) to the corresponding

metric map of each subject in CoRR-SWU. As a result, we

obtained a series of correlation coefficients; each coeffi-

cient was from a participant in CoRR-SWU. We treated the

correlation coefficients as a cross-subject fluctuation course

in CoRR-SWU for a given SCM in a given MMCU

obtained in FCP-Cambridge (step 3 in Fig. 1). For instance,

we correlated the SCM of the vol metric (obtained in FCP-

Cambridge) to the vol map of all subjects in CoRR-SWU,

yielding a course of correlation coefficients that repre-

sented fluctuating contributions of the vol SCM to the

subjects in CoRR-SWU.

Next, for each MMCU, we computed a correlation

matrix between the cross-subject fluctuation courses of the

12 member SCMs in CoRR-SWU. We then used the intra-

class correlation coefficient (ICC) to measure the consis-

tency between the inter-metric co-variance matrices

obtained in the CoRR-SWU and FCP-Cambridge datasets

(step 4 in Fig. 1). The rationale for using ICC here is to

consider both the intra-MMCU variability and the inter-

MMCU variability. In this step, the elements of the co-

variance matrices were first converted into Fisher’s Z

scores, and the co-variance matrices obtained in both

datasets were deemed as two observations of the same

variable. The resultant ICC, therefore, indicates the con-

sistency between the inter-metric co-variance matrices

obtained in FCP-Cambridge and CoRR-SWU, relative to

the variability/similarity between the inter-metric co-vari-

ance matrices from different MMCUs.

We conducted a permutation test to examine the sig-

nificance of the ICC values. Specifically, the SCMs from

different metrics were randomly grouped into fake

MMCUs, and inter-metric co-variance matrices were

computed by correlating the SCMs’ subject courses in

FCP-Cambridge. Meanwhile, the subject courses corre-

sponding to these SCMs were obtained in CoRR-SWU and
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were correlated to yield inter-metric co-variance matrices

in CoRR-SWU. An ICC was then computed between every

pair of fake inter-metric co-variance matrices (from FCP-

Cambridge and CoRR-SWU, respectively). This procedure

was repeated 5000 times to generate a null distribution of

ICCs. Percentiles corresponding to the original ICCs were

calculated in this null distribution, yielding empirical sig-

nificance levels. This permutation test was only applied to

MMCUs with ICC values above 0.4, since 0.4 was com-

monly deemed as a threshold for fair reproducibility.
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Examine relevance to demographical variables

The MMCUs with significant reproducibility were further

examined for their relevance to demographical variables

including age (18–30), sex (117 females), and handedness

(25 left handed). Specifically, for each MMCU, the subject

courses (obtained from ICA in the discover stage) corre-

sponding to the member SCMs were collected and input

into a principle component analysis. The first principle

component represented the most common variance across

all the subject courses and thus can be considered as a

representative subject course for the given MMCU. A

regression model was then constructed to explain this

representative subject course by variability in age, sex, and

handedness.

Results

Discover MMCUs from FCP-Cambridge data

In FCP-Cambridge, we decomposed cross-subject vari-

ability for each metric into a number of components. The

numbers of components were automatically estimated

using the Laplacian approach implemented in MELODIC.

As a result, different metrics were decomposed into a

different number of components. The numbers of compo-

nents for the 12 metrics estimated in the FCP-Cambridge

dataset are summarized in Supplementary Table S1. Each

metric component carries two pieces of information: a

surface map (i.e., SCM) reflecting the spatial distribution of

a given metric, and a subject course indicating the variable

contributions from different subjects to the current

component.

The SCMs decomposed from different metrics in the

FCP-Cambridge dataset were clustered into MMCUs

according to the similarity of their associated subject cour-

ses. gRAICAR revealed 88 MMCUs that reflect co-variance

of at least two SCMs (see Fig. 3 for an example of an

MMCU). A typical MMCU collects 12 SCMs that exhibit

similar subject courses, each from a different metric. To

characterize the co-variance relationships among the 12

metrics, each MMCU is associated with an inter-metric co-

variance matrix that shows correlation coefficients between

every pair of SCMs. Notably, because the cross-subject

variability of different metrics was decomposed into dif-

ferent numbers of SCMs, it is not guaranteed that each

MMCU includes SCMs from all 12 metrics.

Validate reliable MMCUs using CoRR-SWU data

The MMCUs obtained in FCP-Cambridge represent com-

mon cross-subject variability among metrics. Before

interpreting the neurobiological meaning of these MMCUs,

the reliability of these MMCUs should be rigorously

examined. In other words, the MMCUs obtained in FCP-

Cambridge might represent impact from odd subjects or

image artifacts. To exclude this possibility, we used CoRR-

SWU to identify reliable MMCUs across datasets. Relia-

bility was measured based on the ICC between the inter-

metric co-variance matrices obtained in FCP-Cambridge

and CoRR-SWU. Among the 88 MMCUs detected in FCP-

Cambridge, we identified 42 MMCUs with ICC values

greater than 0.40. This threshold is typically considered as

a cutoff for fair reproducibility (Rosner 1995). These 42

MMCUs likely reflected reliable (not caused by odd sub-

jects or image artifacts) co-variance between different

metrics. Among these, 15 MMCUs had ICC values greater

than the 95.5th percentile of the null distribution of ICCs

(ICC[0.81), they were considered as significantly reliable

at p\ 0.005. These MMCUs are presented in Supple-

mentary Figures S2–S16.

We made a database with an interactive graphic user

interface to present all the 42 MMCUs (https://yangzhi.

shinyapps.io/showCovGraph_R). Figures 3 and 4 below

are screen captures of the user interface. Users can click on

any location of the 12 metric maps, and the interface will

render the co-variance relationships between all surface

maps to show the MMCU maximally affected by the cur-

rent location. As users’ mouse hover over the surface maps,

the texts in the upper right corner will simultaneously

display the index and ICC value of the most dominate

MMCU at the location under the mouse. This database

provides an efficient way to explore the co-varying maps

across all metrics.

bFig. 1 Flowchart of the discover-confirm scheme. For an animated

demonstration, see http://www.ddl.escience.cn/f/qMsE. In the dis-

cover stage, the six structural metrics (vol, area, thick, curv, lgi, sulc)

and six functional metrics (alff, falff, dc, ec, reho, reho2) were

derived from each subject in FCP-Cambridge (N = 184). Each of the

12 metrics was decomposed into spatial components using indepen-

dent component analysis (step1). gRAICAR was used to pool the

subject courses of the resulting components from all 12 metrics and

align the components to form multi-metric co-variance units

(MMCUs, step2). Each MMCU unit associates the surface component

maps (SCMs) from different metrics according to the co-variance

across subjects (correlation between corresponding subject courses).

The levels of co-variance between pairs of SCMs are depicted in the

inter-metric co-variance matrix. In the confirm stage, spatial corre-

lations were computed between the SCMs identified in FCP-Cam-

bridge and the metric maps independently derived from CoRR-SWU

(N = 340), yielding a subject course for each SCM (step3). The

correlations between the subject courses were computed to generate a

new inter-metric co-variance matrix. For each MMCU, the similarity

of the two inter-metric co-variance matrices, derived from FCP-

Cambridge and CoRR-SWU, respectively, were quantified using

intra-class correlation coefficients (ICC) that indicate the consistency

of the matrices across the two datasets, relative to the similarity

between the matrices from different MMCUs
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General co-variance relationships across 12 metrics

To summarize the general co-variance relationships

across the 12 metrics, we averaged the inter-metric co-

variance matrices of all 42 MMCUs (first transformed

each element in the matrices to Fisher’s Z score), yielding

an overall inter-metric co-variance matrix (see Fig. 2a).

This matrix reflected the degree of cross-subject co-

variance between every pair of metrics, despite the

specific locations shown in the SCMs. Using this matrix,

we can infer whether two metrics carry common vari-

ability information. Overall, the co-variance among the

12 metrics was generally low (mean correlation coeffi-

cients 0.170, SD 0.118), but significantly larger than 0

[t(65) = 8.820, p\ 0.0001]. The general co-variance

between the functional and structural metrics was even

lower (mean correlation coefficients 0.112, SD 0.03), but

significantly larger than 0 [t(35) = 22.25, p\ 0.0001].

The correlation coefficients among the six structural

metrics were significantly larger than those between the

structural and functional metrics [t(14.13) = 2.88,

p = 0.012]. Similarly, the correlation coefficients among

the six functional metrics were also significantly larger

than those between the structural and functional metrics

[t(15.96) = 3.87, p = 0.0014].

Hierarchical clustering analysis on this matrix showed

that the six functional metrics carry different information

from the structural metrics. As Fig. 2a shows, the vol and

area metrics exhibited a high degree of co-variance,

whereas the other structural metrics showed some inde-

pendence from the vol and area metrics. The co-variance

between the six functional metrics was not as strong as the

structural metrics. Nonetheless, the reho2 metric showed

relatively strong co-variance with multiple metrics,

including alff, dc, and reho. The dc metric showed rela-

tively strong co-variance with ec. The falff metric might

represent a special functional metric that shares little co-

variance with the other functional and structural metrics.

To take a closer look into the co-variance between

functional and structural metrics, a zoomed-in view of the

structural–functional co-variance is shown in Fig. 2b,

located in the upper right quadrant of the matrix shown in

Fig. 2a. Figure 2b suggests that the functional metric ec

has the highest co-variance with the structural metrics area

and vol (r = 0.309). The functional metric reho co-varied

with multiple structural metrics, including area, sulc, curv,

and thick (r = 0.159, 0.154, 0.138, and 0.135, respec-

tively). Among these structural metrics, curv and thick

showed specificity in co-variance with reho. Interestingly,

reho2 exhibited a different co-variance pattern with

Fig. 2 Overall co-variance among the 12 structural and functional

metrics. a General similarity matrix obtained after averaging the

inter-metric co-variance matrices from the 42 MMCUs (transformed

to Fisher’s Z scores before averaging). The colors indicate the mean

Fisher’s Z scores. A higher Z score indicates higher general co-

variance between the two corresponding metrics. The dashed lines

over the matrix separate structural and functional metrics. The

hierarchical clustering dendrogram shows that the structural and

functional metrics belong to two clusters, except for the falff metric.

b A zoomed-in view of the general structural–functional co-variance

matrix. The color scales are adjusted to enhance the contrast. The ec

metric (functional) shows the maximal general co-variance with the

area and vol metrics (structural)
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structural metrics than reho, but more similar to that of ec.

The difference between the within-structural and within-

functional correlations was not significant

[t(15.88) = -1.79, p = 0.093].

Structural–functional MMCUs

Among the 15 significantly reliable MMCUs, 5 MMCUs

(Figs. S9, S10, S11, and S15) showed significant co-vari-

ance between structural and functional metrics (r[ 0.23,

p\ 0.0005). Figure 3 presents the structural–functional

MMCU with the highest ICC (ICC = 0.83, p = 0.0025).

This figure shows significant co-variance between the ec

and lgi SCMs and between the alff, area, and vol SCMs. A

remarkable commonality across the lgi, area, vol, and ec

SCMs is the cross-subject variability around the right

superior frontal gyrus (SFG). The alff SCM shows

noticeable cross-subject variability on the precuneus, pos-

terior cingulate, left dorsal prefrontal cortex, and lateral

and inferior temporal lobe. The strong co-variance in this

MMCU suggests that the structural variability in the right

SFG predicts ec of this region as well as alff of remote

regions such as the precuneus and posterior cingulate

cortex.

Relevance to demographical variables

We examined the linear relationships between the

MMCUs’ representative subject courses and the demo-

graphical variables including age, sex, and handedness.

Among the 15 MMCUs, four showed significant sex effect

after Bonferroni’s correction (Figs. S6, S8, S13, and S14,

p\ 0.0005), and one of them (Fig. S13) showed significant

handedness effect (p = 0.002). No MMCU exhibited sig-

nificant age effect after Bonferroni’s correction. Figure 4

presents the MMCU showing both significant sex

(p = 7.5 9 10-7) and handedness effects (p = 0.002). In

this MMCU, the vol and area of the middle frontal gyrus

co-varied with the lgi of the right superior temporal gyrus

(STG) and the sulc of the inferior frontal gyrus. Addi-

tionally, alff of the bilateral STG and the right post-central

gyrus co-varied with reho2 of the STG.

Fig. 3 The structural–

functional co-variance unit with

the highest ICC value

(ICC = 0.78, p = 0.0022). The

SCMs are arranged on a circle.

Abbreviations of the metrics are

labeled at the center of each

SCM. The weights of the

vertices (Z scores) on the SCMs

are indicated using colors (see

color bar at the bottom-right

corner). The SCMs are linked

using curves whose width

indicates the correlation

coefficients between the subject

courses of the SCMs. Only the

statistically significant links are

rendered using colors other than

gray (r[ 0.23, p\ 0.0005,

multiple comparison error

corrected using the Bonferroni

approach). This multi-metric

co-variance unit shows

significant structure–function

co-variance between the ec and

lgi SCMs and between the alff,

area, and vol SCMs
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Relevance to clinical research: a sub-study

To demonstrate the potential contributions of the MMCUs

to clinical research, we conducted a sub-study focusing on

the gray matter volume of the STG (see Fig. 5). Abnor-

mality in this structure has been robustly detected in

schizophrenia patients (Shenton et al. 2001). We first

identified the vol SCM with the highest spatial consis-

tency with the anatomical parcellation labeled

‘G_temp_sup-Lateral’ in FreeSurfer. The identified vol

SCM was a member of MMCU6 (Fig. S7). This MMCU

indicated that the area, dc, and ec SCMs significantly co-

varied with the vol SCM (Fig. 5). The correlation coef-

ficients for these three SCMs were: area, r = 0.70

(p\ 0.001), dc, r = 0.18 (p = 0.008), and ec, r = 0.16

(p = 0.014), suggesting that deficits of the area metric in

bilateral inferior frontal gyri and the precuneus could be

observable in schizophrenia patients and that deficits of dc

and ec metrics in the STG may also occur in

schizophrenia patients. Such an approach could be applied

in studies of various mental disorders to detect potential

deficits in the brain.

Discussion

Although many structural and functional metrics of the

brain have been developed and applied to a wide range of

studies, the relationships across them have not been

explicitly and systematically investigated. In this study, we

filled this gap by mining two independent, large samples of

healthy subjects. Applying gRAICAR to the first dataset

(N = 184), we first proposed a set of hypotheses regarding

the cross-subject co-variance among the 12 brain metrics,

as represented by the MMCUs. We then found 42 of these

MMCUs were reproducible in a second dataset (N = 340),

and summarized them using an interactive database, where

users could select any location on any metric to review the

co-variance between the 12 metric maps. Using this data-

base, we characterized the six functional metrics according

to their general dependency to the six structural metrics.

Further, we found relevance between some MMCUs and

sex and handedness, suggesting that the MMCUs are

meaningful in the neuroscience context and that the

MMCUs are capable to link existing findings using dif-

ferent metrics. Moreover, based on a priori knowledge of

Fig. 4 The structural–

functional co-variance unit

showing significant sex and

handedness effects. For a

complete description of this

demonstration, see the legend of

Fig. 3. This MMCU indicates

co-variance among the vol and

area of the middle frontal gyrus,

the lgi of the right STG, the sulc

of the inferior frontal gyrus, the

alff of the bilateral STG and the

right post-central gyrus, and the

reho2 of the STG
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abnormality in gray matter volume, the database predicted

abnormalities in multiple functional metrics in

schizophrenia. The implications and potential contributions

of these findings are discussed below.

A systematic view of structural–functional co-

variance

This study provides a systematic view of the associations

between multiple structural and functional metrics in

healthy human brain, and advances our knowledge in three

folds. First, the full picture of the relationships between six

functional and six structural metrics brings in a novel

avenue to characterize the functional metrics. A funda-

mental question for the neuroimaging field is what the

functional metrics really tell us or what is their generative

mechanism from the brain structure (Betzel et al. 2016).

Many researchers have attempted to associate functional

metrics to various phenotypes (Medaglia et al. 2015), but

have not achieved a fully clear understanding of the bio-

logical meaning of these functional metrics. Our study

offers a novel perspective that characterizes functional

metrics based on their shared information with the

structural metrics across individuals. Specifically, our

results as in Fig. 2 suggest that alff weakly reflect vari-

ability in vol and area, dc has specific associations with vol,

and ec has strong and specific associations with vol and

area. The falff seems to carry unique information because it

does not associate with any structural metrics. Surface-

based reho reflects a combination of multiple structural

metrics including area, sulc, curv, and thick. Reho2 is

different from reho in that it has much weaker associations

to structural metrics, echoing the nature of this local con-

nectivity measure as a multi-modal, multi-scale neu-

roimaging marker of the human connectome (Jiang and

Zuo 2015). Interestingly, since the reho metric reflects

local coherence of the intrinsic neural activities (Zang et al.

2004), an insight from our finding is that only the coher-

ence of activity within a close neighborhood (reho) reflects

a synthesized variation of structural metrics, but not the

coherence in a larger neighborhood (reho2). Another

implication from Fig. 2 is that ec is the most structure-

related functional metric, while falff is the most structure-

irrelevant functional metric. Our systematic, unbiased

investigation on large samples makes it possible to uncover

these novel insights about the functional metrics.

Second, the present study extends the scope of struc-

tural–functional association investigations. Most studies

linked structural and functional metrics based on their

spatial correspondence (Liao et al. 2013; Seeley et al. 2009;

Segall 2012; Zhang et al. 2011b; Vidal-Pineiro et al. 2014).

The MMCUs found in our study suggest that the most

reliably associated metric maps do not necessarily overlap

in space. For instance, Fig. 3 indicates that multiple

structural metrics (lgi, area, and vol) around the right SFG

co-vary with the functional metrics (ec and alff). However,

the SCMs of ec and alff showed different spatial distribu-

tions: while the ec SCM was consistent with the structural

metrics, the alff SCM showed widespread contributions

across the brain. This argument is supported by studies on

mental disorders. For instance, gray matter abnormality in

parietal and frontal regions in schizophrenia patients has

been associated to the abnormal functional activations in

bilateral temporal regions under an oddball task (Calhoun

et al. 2006); abnormal correlation between the mean cor-

tical thickness and the mean fractional anisotropy of the

white matter has also been reported in schizophrenia

patients (Sasamoto et al. 2014). Our study thus suggests a

wider scope in searching for multi-modal imaging features,

and provides evidence that the co-variance between struc-

tural and functional metrics may serve as an important

factor for generative models of the human brain

connectomes.

Third, our results provide the most detailed reference for

selecting effective features for multi-modal neuroimaging

applications. Nearly all of previous multi-modal imaging

Fig. 5 A sub-study focusing on the cortical volume of STG. Based

on the commonly reported volume abnormality of STG in schizophre-

nia, we identified the vol SCM with the highest spatial consistency to

the anatomical parcellation labeled ‘G_temp_sup-Lateral’ in Free-

Surfer. The identified vol SCM (a member of MMCU6) predicts that

accompanying deficits in the vol of STG, schizophrenia patients may

have deficits in the area of bilateral inferior frontal gyri and the

precuneus (r = 0.70) and deficits in the dc (r = 0.18) and ec

(r = 0.16) of the STG
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studies included no more than 3 imaging metrics (for a

comprehensive review, see Sui et al. 2014). Our study

suggests that each of the 12 frequently used metrics,

especially the six functional metrics, carries some unique

information (Fig. 2). Given the general principle that

combining more unique information helps to improve the

predictive power, our result that the functional metrics

carry different information from the structural metrics

suggests that combining more functional metrics may

improve the performance of a machine-learning applica-

tion. On the other hand, including more features in

machine-learning models can lead to very high dimen-

sionality and over-fitting issues. The reliable MMCUs in

our study provide highly detailed reference for selecting

effective features, and thus help to avoid the over-fitting

problem. As an example, Fig. 4 indicates that the vol and

area metrics in the middle frontal gyrus strongly co-vary

with the lgi of the right posterior insula and the sulc of the

inferior frontal gyrus, suggesting these four features are

mutually dependent and three of them could be excluded in

a machine-learning study. In other words, these MMCUs

could constrain the search space for effective brain imaging

features in machine-learning applications.

Integrating/predicting findings from different

metrics

The co-variance of structural metrics has previously been

investigated in a number of studies (for a comprehensive

review, see Alexander-Bloch et al. 2013a), in which the co-

variance between the morphology of remote brain regions

was examined across subjects. Based on these studies,

structural co-variance has been associated with white

matter tracts (Colibazzi et al. 2008; Gong et al. 2012; Lerch

2006), rates of cortical development (Alexander-Bloch

et al. 2013b; Raz et al. 2005; Raznahan et al. 2011), genetic

factors (Rimol et al. 2010; Schmitt et al. 2008; Thompson

et al. 2001; Wright et al. 2002), functional networks

(Alexander-Bloch et al. 2013b), and behaviors, such as

intelligence (Lerch 2006) and musical ability (Bermudez

et al. 2009; Jancke et al. 2012; Lv 2008). These findings

indicate that the structural co-variance is a promising way

for understanding the human brain organization.

Our results extend the existing structural co-variance

studies towards multi-modal, multi-metric co-variance

studies: in addition to structural metrics, we considered a

variety of functional metrics to quantitatively and simul-

taneously examine the cross-subject co-variance of struc-

tural and functional properties. Given that functional

metrics co-varying (but not necessarily overlapping) with

structural metrics are more likely to be a trait marker that is

robust against the state at the time of scan (Kelly et al.

2012; Castellanos et al. 2013; Zuo and Xing 2014), an

important contribution of the current study is that we could

find a number of detailed functional metric maps as can-

didates for individual trait markers.

The connected 12 metrics in each MMCU could serve as

a reference to link existing findings using different metrics

and to predict features of unexamined metrics. In this

study, we showed an MMCU representing individual

variability in sex and handedness (Fig. 4). This MMCU

connects the vol, area, lgi, sulc, and reho2 metrics at dif-

ferent locations across the cortex. Most of these findings

are echoed by existing studies, which have reported sig-

nificant sex difference in the gray matter volume of the

middle frontal gyrus (Ruigrok et al. 2014) and in the local

gyrification index (Mutlu et al. 2013), the alff (Dong et al.

2010), and the reho of STG (Dai et al. 2012). This MMCU

also predicts the sex effect on the sulcal depth of the

inferior frontal gyrus. In fact, a study has linked the sulcal

morphology and volume of Broca’s area (in the inferior

frontal gyrus) to sex and handedness, indirectly supporting

our prediction (Powell et al. 2012).

In the same vein, the MMCUs are capable to generate a

number of hypotheses for multi-metric studies on mental

disorders, as demonstrated in our sub-study focusing on the

vol metric of the STG (Fig. 5). Schizophrenia literature has

consistently pointed to gray matter volume abnormality in

the STG (Shenton et al. 2001). Incorporating this knowl-

edge with our database, we identified an MMCU that

associates the vol metric of the STG to area, dc, and ec

metrics. These associations hypothesize that the deficits of

the area metric in bilateral inferior frontal gyri and the

precuneus, and deficits of the dc and ec metrics in the STG

may exist in schizophrenia patients. In fact, functional

connectivity deficits of the STG have been frequently

highlighted by schizophrenia studies (Leroux et al. 2014).

Comparing these multi-metric associations between

schizophrenia and the norm MMCU may provide addi-

tional insights to understand brain mechanisms for

schizophrenia. The above examples evident two advan-

tages of the proposed MMCUs: (1) provide a reference for

building relationships between results using different

metrics and (2) generate new hypotheses for specific met-

rics that have not been examined.

Potential biological interpretations of MMCUs

Potential biological interpretations for the inter-metric

MMCUs can be borrowed from those for the structural co-

variance. In general, these phenomena can be interpreted

using dependencies on the neurodevelopmental process

(Alexander-Bloch et al. 2013a). Alexander-Bloch et al.

speculated that the possible mechanisms underlying the co-

variance between two regions are: sharing a developmental

precursor (Riska 1986), inductive signaling from one
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developing tissue to another (Jackson 2010), simultaneous

exposure to signals from a third party (Klingenberg 2005,

2008; Mitteroecker et al. 2012), shared genetic influences

(Wright et al. 2002), correlational selection due to adaptive

fitness (Roff and Fairbairn 2012; Sinervo and Svensson

2002), associations with the same behaviors (Kingsolver

and Huey 2003), inherited ancestral relationships between

phenotypic traits (Kirschner and Gerhart 1998), and com-

mon influences through environmental factors (Cheverud

1988; Waitt and Levin 1998). Compared with structural co-

variance studies, the present study introduces an additional

dimension, different structural/functional metrics, for con-

sideration in the interpretation. Knowledge that bridges

genetic factors, neural activities, and neuroimaging prop-

erties (Richiardi et al. 2015) might help investigations of

the detailed mechanisms for these observations, serving as

important topics for future studies (e.g., genetic basis and

computational model of these MMCUs).

Methodological issues

As argued by several studies, preprocessing pipelines (e.g.,

how to correct for motion artifacts) influence the results of

functional MRI studies (Strother et al. 2004; Power et al.

2014; Aurich et al. 2015; Glatard et al. 2015). Conse-

quently, differences in preprocessing pipelines should be

taken into account when comparing other findings to our

results (i.e., using our results as a reference for common

structural–functional associations). To alleviate this issue,

we chose a preprocessing strategy that was shown to

generate graph-theoretical metrics with the maximal inter-

subject reliability and minimal dependency on subject head

motion among several commonly used preprocessing

pipelines (Aurich et al. 2015). We argue that while dif-

ferent preprocessing pipelines have different considerations

and advantages, they share an identical ultimate goal to

produce results that are robust against confounding factors

such as head motion, and that our choice of preprocessing

pipeline is a maximal effort to reduce the influence of

processing pipelines. As an additional effort to produce

reproducible and useful results (Pernet and Poline 2015),

we shared all datasets (FCP-Cambridge and CoRR-SWU),

preprocessing pipelines such as CCS, gRAICAR,3 and

other scripts4 to the public for researchers to tune the

processing parameters at will in examining pipeline-

specific/independent structural–functional associations.

Another important issue is that the dimensionality esti-

mations in the ICA decomposition may impact the resultant

MMCUs. To evaluate the impact, we repeated the dis-

covery analysis with a range of fixed numbers of

components in ICA, changing from 15 to 100 with an

interval of 5. We calculated the similarity (correlation

coefficients) between the resultant MMCUs and those

reported above. The results showed that the similarity of

MMCUs obtained with the changing dimensionality

parameters did not change dramatically (shown in Sup-

plementary Figure S17). Therefore, we believe the reported

results are robust against the dimensionality parameter.

In summary, using a completely data-driven approach,

we examined the association across six structural and six

functional metrics according to the co-variance observed

across subjects and presented an overview of the associa-

tions among multiple structural and functional metrics. The

results could serve as a normative reference for multi-

metric investigations, help to explain anatomical basis of

the functional metrics, and provide insights for integrating

multi-modal imaging markers for clinics.
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