Data in Brief 20 (2018) 371-374

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib



Data Article

# Data on the removal of turbidity from aqueous solutions using polyaluminum chloride



Sajad Mazloomi<sup>a</sup>, Soudabeh Ghodsei<sup>a</sup>, Paria Amraei<sup>a</sup>, Ziaeddin Bonyadi<sup>b,\*</sup>

<sup>a</sup> Department of Environmental Health Engineering, Ilam University of Medical Sciences, Ilam, Iran <sup>b</sup> Department of Environmental Health Engineering, Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

# ARTICLE INFO

Article history: Received 14 June 2018 Received in revised form 25 July 2018 Accepted 8 August 2018 Available online 15 August 2018

Keywords: Polyaluminum chloride Turbidity Coagulation Floculation

# ABSTRACT

Polyaluminum chloride (PAC) is claimed to be superior to conventional coagulants because of higher removal of particulate and/ or organic matters as well as inherent advantages of lower alkalinity consumption and lesser sludge production. 1000 mL of the reaction mixture was examined using parameters, including PAC dose (5–10 mg/L), pH (4–9), and turbidity (1.9 NTU). The content was stirred at 120 rpm for 1 min. Thereafter, the turbidity of water samples was measured using a P2100 turbidimeter. Data indicated that the maximum removal efficiency of turbidity (97.74%) obtained under the PAC doses of 4 and 10, and the pH of 8. There is not a significant relationship between the different dosages of PAC (P-value > 0.05), but the influence of pH on the removal of turbidity was significant (P-value < 0.05). Based on the dataset, the removal efficiency of turbidity was depended on PAC and pH.

© 2018 Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

\* Corresponding author. Fax: +98 5138522775.

E-mail address: bonyadiz@mums.ac.ir (Z. Bonyadi).

https://doi.org/10.1016/j.dib.2018.08.024

2352-3409/© 2018 Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

| Subject area<br>More specific subject area<br>Type of data<br>How data was acquired | Environment<br>Water treatment<br>Figure<br>Jar tests were carried out in a six-paddled tester (the model of HACH-<br>25632-02) with six 1-L beakers. The turbidity of water samples was<br>measured using a P2100 turbidimeter (HACH). |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data format                                                                         | Observations, analyzed                                                                                                                                                                                                                  |
| Experimental factors                                                                | 1000 mL of the reaction mixture was examined using parameters, including PAC dose (5–10 mg/L), pH (4-9), and turbidity (1.9 NTU).                                                                                                       |
| Experimental features                                                               | Turbidity removal carried out by PAC.                                                                                                                                                                                                   |
| Data source location                                                                | Department of Environmental Health, Faculty of Health, Ilam University of Medical Science, Ilam, Iran                                                                                                                                   |
| Data accessibility                                                                  | Data are with this article.                                                                                                                                                                                                             |

## **Specifications Table**

## Value of the data

- Data on the effect of different factors (PAC dose (5–10 mg/L) and pH (4–9)) for turbidity removal covered.
- Data shown here can be useful for other groups working or studying in the field of application of PAC in remediation processes.
- Our data showed that PAC remove turbidity from aqueous solutions.

# 1. Data

PAC, a pre-hydrolyzed Al-based polymer coagulant, has been found to be less sensitive to temperature and thus more suitable for application at lower temperatures (1, 2). It has been considered as a useful experimental method to remove turbidity from aqueous solutions. In this article, the effects of PAC dose and pH on the removal efficiency of turbidity were investigated. Fig. 1 displays the combined effect of PAC dose and pH on the removal efficiency of turbidity. The data indicated that the maximum removal efficiency of turbidity (97.74%) obtained under the PAC doses of 4 and 10, and the pH of 8. There is not a significant relationship between the different dosages of PAC (*P*-value > 0.05), but the effect of pH on the removal of turbidity was significant (*P*-value < 0.05). Fooladvand et al. [1] indicated that increasing of pH value yielded a greater THMFP concentration for Karoon River water (3). Ramavandi and Farjadfard [2]



Fig. 1. The combined effect of PAC dose and pH on the removal efficiency of turbidity.

determined that the wastewater could be effectively treated by using a coagulation/flocculation process (4). Ramavandi [3] reported that the FCE removed more than 95.6% of all initial turbidity concentrations (50–300 NTU) (5).

## 2. Experimental design, materials and method

#### 2.1. Materials

All chemicals used in the experiments were of reagent grade. All solutions were prepared using distilled water. PAC, HCl and NaOH were provided by Merck company.

### 2.2. Preparation of reaction mixtures

In this work, the use of PAC for the treatment of water entry into the water treatment plant of llam was evaluated. Raw water obtained from a reservoir was transferred into each beaker, which was maintained in the thermostat at the temperature of 3-8 °C and kept during the jar test. To determine the optimum dose of PAC, Jar tests were applied in a six-paddled tester (the model of HACH-25632-02) with six 1-L beakers. 1000 mL of the reaction mixture was tested using parameters, including PAC dose (5-10 mg/L), pH (4-9), and turbidity (1.9 NTU). The content was agitated at 120 rpm for 1 min. The mixing speed was then decreased to 30 rpm and was maintained for 20 min, followed by a sedimentation stage for 20 min. The initial pH in the reaction solution was adjusted to a desired value with 1 M NaOH or 1 M HCl.

#### 2.3. Analytical methods

After sedimentation, five mL of sample was picked up from approximately 2 cm below the water surface for analysis. The turbidity of water samples was determined using a P2100 turbidimeter (HACH).

Based on Eq. (1), the residual turbidity of sample was  $RT_s$ . The same coagulation test was performed with no coagulant as the blank. The residual turbidity in the blank was  $RT_B$ . Coagulation activity was measured as:

$$Coagulation(activity)) = \frac{RT_B - RT_S}{RT_B} \times 100$$
(1)

#### 2.4. Statistical analysis

The significance of means within the groups of experimental data was evaluated using one-way analysis of variance (one-way ANOVA).

## Acknowledgment

The authors acknowledge all non-financial supports provided by llam University of Medical Sciences.

## Transparency document. Supporting information

Transparency data associated with this article can be found in the online version at https://doi.org/ 10.1016/j.dib.2018.08.024.

## References

- M. Fooladvand, B. Ramavandi, K. Zandi, M. Ardestani, Investigation of trihalomethanes formation potential in Karoon River water, Iran, Environ. Monit. Assess. 178 (2011) 63–71.
- [2] B. Ramavandi, S. Farjadfard, Removal of chemical oxygen demand from textile wastewater using a natural coagulant, Korean J. Chem. Eng. 31 (2014) 81–87.
- [3] B. Ramavandi, Treatment of water turbidity and bacteria by using a coagulant extracted from Plantago ovata, Water Resour. Ind. 6 (2014) 36-50.