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Abstract: A comprehensive antioxidant evaluation was performed on enzymatic hydrolysates of
Stichopus japonicus (S. japonicus) using Vero cells and zebrafish models for in vitro and in vivo studies,
respectively. S. japonicus was hydrolyzed with food-grade enzymes (alcalase, α-chymotrypsin,
flavourzyme, kojizyme, neutrase, papain, pepsin, protamex, and trypsin), and the free radical
scavenging activities were screened via electron spin resonance (ESR) spectroscopy. According to
the results, the enzymatic hydrolysates contained high protein and relatively low polysaccharide
and sulfate contents. Among these hydrolysates, the α-chymotrypsin assisted hydrolysate from
S. japonicus (α-chy) showed high yield and protein content, and strong hydroxyl radical scavenging
activity. Therefore, α-chy was chosen for further purification. The α-chy was fractionated by
ultrafiltration into three ultrafiltration (UF) fractions based on their molecular weight: >10 kDa
(α-chy-I), 5–10 kDa (α-chy-II), and <5 kDa (α-chy-III), and we evaluated their antioxidant properties
in H2O2 exposed Vero cells. The α-chy and its UF fractions significantly decreased the intracellular
reactive oxygen species (ROS) generation and increased cell viability in H2O2 exposed Vero cells.
Among them, α-chy-III effectively declined the intracellular ROS levels and increased cell viability
and exhibited protection against H2O2 induced apoptotic damage. Furthermore, α-chy-III remarkably
attenuated the cell death, intracellular ROS and lipid peroxidation in H2O2 exposed zebrafish
embryos. Altogether, our findings demonstrated that α-chy and its α-chy-III from S. japonicus
possess strong antioxidant activities that could be utilized as a bioactive ingredient for functional
food industries.

Keywords: antioxidant; red sea cucumber; Stichopus japonicus; enzyme-assisted extract; oxida-
tive stress

1. Introduction

Oxidative stress is induced by excessive reactive oxygen species (ROS) generation [1].
In general, superoxide (O2

−), hydrogen peroxide (H2O2), singlet oxygen (1O2), hypochlor-
ous acid (HOCl), peroxyl radicals (ROO•), hydroperoxyl radicals (HOO•), and hydroxyl rad-
icals (HO•) are generated as byproducts of aerobic metabolism in living organisms [2].
However, excessive or uncontrolled ROS production may result in oxidative stress, which is
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detrimental and leads to irreversible chemical modifications resulting in cell death, apop-
tosis, and the oxidation of cellular components [3]. Moreover, prolonged oxidative stress
could be associated with the pathogenesis of human diseases such as cancer, inflammation,
diabetes, and hypertension. However, oxidative damage could be ameliorated by natural
or synthetic antioxidants used for medicinal purposes. However, synthetic antioxidants
such as butylated hydroxyanisole and butylated hydroxytoluene exhibit toxicity after
long-term use [4]. Consequently, many researchers have focused on natural antioxidant
doses that do not show toxicity on usage. Marine organisms are a rich source of bioactive
natural products, including polysaccharides, proteins, carotenoids, and polyphenolic com-
pounds, which may have vulnerable biological properties including antioxidant, anticancer,
anti-inflammatory, anti-diabetic, and anti-obesity activities [5]. Over the past few decades,
large-scale studies have been conducted on marine-derived natural products. Among these
products, protein hydrolysate is the most important functional material obtained from
marine organisms. It has enormous potential as a functional material in the future [6,7].
Many researchers have studied the antioxidant activities of protein hydrolysates [8–10].

Stichopus japonicus (S. japonicus) is a marine invertebrate native to coastal Korea, Japan,
and China, and is used in food and folk medicine in Asian countries [11,12]. The Food and
Agriculture Organization (FAO) of South Korea reported that S. japonicus is an industrially
important species for Southeast Asian fisheries [13]. In previous studies, the enzymatic
hydrolysate from S. japonicus possessed various biological properties, including antioxidant,
antitumor, and anticoagulant activities [14–17].

However, the antioxidant activities of enzymatic hydrolysates of S. japonicus (SJH)
have not been fully investigated. Therefore, in the present study, we investigated the
comprehensive antioxidant properties of enzymatic hydrolysates from S. japonicus using
Vero cells and zebrafish embryos for in vitro and in vivo studies, respectively.

2. Materials and Methods
2.1. Chemicals and Materials

Barium chloride dihydrate, ethanol, iron (II) sulfate heptahydrate, acetic acid, hy-
drochloric acid, nitric acid, ammonium sulfate, sodium hydroxide, phenol, and sulfuric acid
were purchased from Daejung (Seoul, Korea). From Sigma-Aldrich (St. Louis, MO, USA),
2,2-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, 2,2-azobis (2-
methylpropionamidine) dihydrochloride, 1,1-diphenyl-2-picrylhydrazyl (DPPH), gallic acid,
glucose, Folin and Ciocalteu’s phenol reagent, peroxidase, α-(4-pyridyl N-oxide)-N-tert-
butylnitrone, 5,5-dimethyl-1-pyrroline-N-oxide, 2′,7′-dichlorofluorescein diacetate (DCF-
DA), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), dimethyl sul-
foxide (DMSO), and gum arabic were purchased. RPMI-1640 medium, fetal bovine serum,
penicillin-streptomycin, and trypsin were purchased from Gibco (Mississauga, ON, Canada).
Sodium carbonate anhydrous (Yakuri, Japan), bicinchoninic acid protein assay kit (Th-
ermo Fisher Scientific, Pittsburgh, PA, USA), bovine serum albumin (Bovogen, East Keilor
VIC, Australia) and hydrogen peroxide (Junsei, Tokyo, Japan) were used. Commercial food-
grade enzymes (alcalase (Al), α-chymotrypsin (α-chy), flavourzyme (Fla), kojizyme (Koj),
neutrase (Neu), papain (Pap), pepsin (Pep), protamex (Pro), and trypsin (Try)) were pur-
chased from Novozyme (Bagsvaerd, Copenhagen, Denmark).

2.2. Preparation of the Enzymatic Hydrolysates from S. japonicus

Stichopus japonicus (S. japonicus) was kindly provided by the Korea Institute of Ocean
Science and Technology. The intestine-removed S. japonicus was washed with tap water
and dried. The dried S. japonicus was homogenized with a grinder and maintained at
−20 ◦C.

To examine the antioxidant effect of the enzymatic hydrolysates of S. japonicus (SJH),
enzyme-assisted extraction was adopted. Enzymatic hydrolysis was performed using
food-grade enzymes (Al, α-chy, Fla, Koji, Neu, Pap, Pep, Pro, and Try) under optimal
conditions as described by Byun and Kim (2001) [18]. Briefly, 1 g of S. japonicus and 10 mg
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of enzyme were mixed with 100 mL of deionized water. The mixtures were then incubated
in a shaking incubator for 24 h. After 24 h, the mixtures were clarified by centrifugation
(8000 rpm, 4 ◦C, 10 min). The mixtures were filtered through Whatman paper, their pH
was adjusted to 7.00, and they were freeze-dried for further experiments.

2.3. Measurement of Yield and Proximate Composition

The yield and proximate composition of each SJH were investigated. The yields were
calculated as the percentage of dry weight compared to the hydrolyzed sample weight.
The total polysaccharide, protein, polyphenol and sulfate contents were measured using the
phenol–sulfuric acid method [19], Lowry protein assay [20], Folin–Ciocalteu method [21],
and barium–gelatin method [22], respectively.

2.4. Ultrafiltration and Molecular Distribution of SJH

To separate the peptide fraction, ultrafiltration (UF) was carried out on SJH. Sep-
aration was performed using a decreased molecular mass order from 10 kDa to 5 kDa.
The SJH was fractionated using a UF device (Lab scale TFF system, Millipore, Burlington,
MA, USA) equipped with a molecular weight cut-off (MWCO) membrane. It was passed
through the largest 10 kDa MWCO UF membrane. The retentate (>10 kDa; α-chy-I) and
the permeate (below 10 kDa) were collected, and the permeate was applied to a 5 kDa
membrane to separate the retentate (5 to 10 kDa; α-chy-II) and the permeate (<5 kDa;
α-chy-III) UF fractions. The obtained UF fractions were lyophilized and stored at −70 ◦C.
Molecular distribution of UF fractions from the SJH was determined with sodium dodecyl
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), which was carried out using 15%
SDS separation gel and 4% stacking gel. The loading samples were heated at 100 ◦C for
3 min before electrophoresis. Electrophoresis was performed using a Mini-PROTEIN Tetra
System (Bio-Rad, Hercules, CA, USA) at 80 V for 1–2 h.

2.5. Amino Acid Profile

Amino acid compositions were analyzed using an amino acid auto analyzer (S433-H,
SYKAM, Eresing, Germany) as described by Asaduzzaman and Chun (2015) [23]. The sam-
ples were introduced to an LCA K06/Na cation separation column (4.6 × 150 mm) and
eluted with 5 mM of p-toluenesulfonic acid solution as the mobile phase at a flow rate
of 0.45 mL/min. The 5 mM of p-toluenesulfonic acid containing 100 mM ethylenedi-
aminetetraacetic acid (EDTA) and 20 mM bis-tris was used as a post-column reagent at a
0.25 mL/min flow rate. The amino acids were detected using a fluorescence spectropho-
tometer at 440 nm and 570 nm.

2.6. Free Radical Scavenging Activity

The free radical scavenging activities were screened using electron spin resonance
(ESR; JEOL, Akishima, Tokyo, Japan). The free radical scavenging activities were deter-
mined using modified methods involving DPPH, hydroxyl, and alkyl radicals [24,25].

2.7. Cell Line and Cell Culture

Monkey kidney fibroblasts (Vero cells) were purchased from the Korean Cell Line
Bank. Vero cells were cultured in RPMI-1640 medium, supplemented with 10% fetal bovine
serum, 1% streptomycin (100 µg/mL), and penicillin (100 unit/mL−1) and maintained at
37 ◦C in a 5% CO2 incubator [26].

2.8. Determination of Cell Viability and Intracellular ROS Generation in H2O2 Exposed Vero Cells

The potential antioxidant activities were evaluated under H2O2 induced oxidative condi-
tions. Briefly, Vero cells were plated in 96-well plates at a concentration of 1 × 105 cells/mL−1

and incubated for 24 h. After 24 h of incubation, the samples were treated before activating
them with H2O2 (1 mM) for 1 h. Subsequently, 2 mg/mL of MTT solution was added
and the cells were incubated for an additional 2–3 h. Cell viability was measured using
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the MTT assay [27]. The intracellular ROS scavenging activity was analyzed using the
DCF-DA assay [28]. The Vero cells were seeded as before, treated with H2O2 and different
concentrations of samples, and incubated for 24 h. After 24 h of incubation, 500 µg/mL
of DCF-DA was added to each well. Finally, DCF-DA fluorescence was measured using a
Synergy HT Multi-Detection microplate reader (BioTek Instruments, Winooski, VT, USA)
at an excitation and emission wavelength of 485 nm and 535 nm, respectively.

2.9. Detection of Apoptosis Using Propidium Iodide/Hoechst 33342 Double Fluorescent Staining

Propidium iodide (PI) and Hoechst 33342 double staining was conducted to confirm
the protective effect of α-chy-III against H2O2 induced apoptotic DNA damages. Propid-
ium iodide (PI) and Hoechst 33342 staining were performed using the fluorescent staining
method described by Agarwal et al. [29]. Briefly, Vero cells were seeded in a 24-well
plate and treated with the samples before exposure to H2O2 (1 mM). After 12 h of incu-
bation, the cells were stained with PI and Hoechst 33342, a DNA-specific fluorescent dye,
for 10 min. The fluorescent images were observed under a fluorescence microscope equipped
with a Cool SNAP-Pro color digital camera (Olympus, Tokyo, Japan).

2.10. Cell Cycle Analysis by Flow Cytometry

Flow cytometry was adopted to establish whether the protective effect of α-chy-III
on H2O2 induced cell cycle arrest [30]. Vero cells were seeded as previously described.
The cells were then treated with H2O2 (1 mM) before sample treatment and incubated for
24 h. After 24 h of incubation, the cells were harvested and fixed with 70% ethanol solution
for 30 min at 4 ◦C. Then, the cells were washed with PBS three times by centrifugation
(2000 rpm, 5 min). After washing, PI (10 µg/mL) staining was conducted for 30 min
in darkness. After PI staining, the apoptotic sub-G1 contents were measured using a
FACS-Calibur flow cytometer (Becton Dickinson, San Jose, CA, USA). The cell cycles were
analyzed using the Quest and Mod-Fit (Verify Software, Topsham, ME, USA).

2.11. Origin and Maintenance of Parental Zebrafish

Adult zebrafish were purchased from a commercial dealer (Seoul Aquarium, Seoul,
Korea), and 15 fish were housed in an acrylic tank under the following environmental
conditions: 28.5 ◦C ± 1 ◦C, with a 14/10 h light/dark cycle. The zebrafish were fed twice
daily, 6 days a week. Embryos were obtained from natural spawning that was induced in
the morning by turning on the light. They were interbred using one female and two males.

2.12. Treatment of Zebrafish Embryos with α-chy-III

Approximately 7–9 h post-fertilization (hpf), the embryos (each group = 15 embryos)
were transferred to the individual wells of 12-well plates and maintained in embryo
medium. Then, different concentrations of α-chy-III (25, 50, 100, 200 µg/mL) were added
1 h before H2O2 (5 mM) treatment and incubated until 24 hpf.

2.13. Measurement of Heart Rate and Survival Rate

The heart rate was measured at 2 days post fertilization (dpf) and the survival rate
was determined at 3 dpf. The heart rate was recorded after treating the embryo with H2O2
for 30 s under the microscope. The result was calculated using the average heart rate per
30 s. The survival rate was calculated by counting the number of live zebrafish larva at
3 dpf.

2.14. Measurement of Cell Death, Intracellular ROS, and Lipid Peroxidation in H2O2 Exposed
Zebrafish Embryos

The effect of α-chy-III on cell death, intracellular ROS, and lipid peroxidation was
investigated in H2O2 exposed zebrafish embryos according to the method from Kang et al.
(2013) [31]. Here, 7–9 h post-fertilization (hpf) zebrafish embryos were transferred to
15 embryos as previously described. Then, they were co-treated with α-chy-III and H2O2
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and incubated until 3 dpf. At 3 dpf, the embryos were anesthetized for fluorescent staining
of cell death, intracellular ROS, and lipid peroxidation. The fluorescence was observed
under a fluorescent microscope, which was equipped with a Cool SNAP-Pro color digital
camera (Olympus, Japan), and individual fluorescence intensity was quantified using the
ImageJ program.

2.15. Statistical Analysis

All measurements were presented as the mean ± standard error, and a one-way
ANOVA test was performed. Significant differences between the means of parameters
were determined using the Tukey’s post hoc comparison and Duncan’s multiple range test.

3. Results
3.1. The Yield, Chemical Composition, and Free Radical Scavenging Activities of Enzymatic
Hydrolysates of S. japonicus

Stichopus japonicus (S. japonicus) was hydrolyzed with distilled water (DW) and nine
enzymes (Al, α-chy, Fla, Koj, Neu, Pap, Pep, Pro, and Try). The extraction yield and chemi-
cal composition of the extracts are summarized in Table 1. All the enzymatic hydrolysates
of S. japonicus (SJH) contained a high protein content and relatively low polysaccharide
and sulfate contents. Among them, α-chymotrypsin assisted hydrolysate from S. japonicus
(α-chy) showed a high extraction yield (96.50 ± 0.06%), containing the highest levels of
protein (34.05 ± 0.97%) compared with the aqueous extract. In addition, the α-chy showed
the highest hydroxyl radical scavenging activity compared to the other samples (Table 2).

3.2. Screening of the Potential Antioxidant Effect of SJH

To establish the free radical scavenging activity of SJH in vitro, intracellular ROS
production and cell viability were measured in Vero cells exposed to H2O2. As shown in
Figure 1, intracellular ROS and cell death were increased in H2O2 stimulated Vero cells.
However, SJH markedly reduced ROS production and increased cell viability. Among them,
α-chy showed a strong protective effect against H2O2 induced oxidative damage compared
with the other samples.

Table 1. Yields and chemical compositions of SJH.

Sample Yield (%)
Proximate Composition (%)

Polysaccharide Protein Sulfate

DW 43.00 ± 0.01 3.18 ± 0.23 15.60 ± 0.69 7.41 ± 0.03
Al 42.50 ± 0.01 9.35 ± 2.98 *** 26.19 ± 1.04 *** 6.06 ± 0.04

α-chy 96.50 ± 0.06 *** 11.95 ± 2.07 *** 34.05 ± 0.97 *** 5.64 ± 0.08
Fla 68.50 ± 0.04 *** 9.35 ± 0.69 *** 36.15 ± 1.59 *** 6.58 ± 0.00
Koj 55.00 ± 0.02 *** 13.08 ± 5.51 *** 27.51 ± 1.66 *** 5.99 ± 0.17
Neu 55.50 ± 0.01 *** 13.08 ± 0.46 *** 31.41 ± 1.38 *** 5.55 ± 0.13
Pap 77.50 ± 0.05 *** 11.46 ± 0.46 *** 32.05 ± 1.45 *** 5.64 ± 0.08
Pep 62.50 ± 0.07 *** 8.21 ± 1.38 35.27 ± 2.97 *** 4.69 ± 0.08
Pro 78.50 ± 0.02 *** 11.46 ± 0.92 *** 28.58 ± 1.24 *** 5.58 ± 0.17
Try 82.00 ± 0.01 *** 10.64 ± 3.44 *** 36.24 ± 2.55 *** 6.14 ± 0.04

Alcalase; Al, α-chymotrypsin; α-chy, Flavourzyme; Fla, Kojizyme; Koj, Neutrase; Neu, Papain; Pap, Pepsin; Pep,
Protamex; Pro, and Trypsin; Try; Significant difference identified at *** p < 0.001, as compared to the distilled
water (DW) extract.

Table 2. Free radical scavenging activities of SJH.

Sample Free Radical Scavenging Activity IC 50 Value, (mg/mL)

DPPH Alkyl Hydroxyl

DW 2.94 ± 0.06 0.39 ± 0.06 1.59 ± 0.02
Al 3.69 ± 0.04 0.38 ± 0.04 1.63 ± 0.18
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Table 2. Cont.

Sample Free Radical Scavenging Activity IC 50 Value, (mg/mL)

DPPH Alkyl Hydroxyl

α-chy 3.37 ± 0.19 0.39 ± 0.01 1.03 ± 0.26 *
Fla 4.40 ± 0.43 0.34 ± 0.02 1.40 ± 0.04
Koji 2.97 ± 0.51 0.44 ± 0.02 1.27 ± 0.09
Neu 5.31 ± 0.30 0.40 ± 0.02 2.96 ± 0.07
Pap 4.99 ± 0.00 0.40 ± 0.01 1.47 ± 0.08
Pep 3.89 ± 0.75 0.48 ± 0.03 3.46 ± 0.34
Pro 3.21 ± 0.42 0.42 ± 0.04 1.12 ± 0.07 *
Try 3.83 ± 0.14 0.38 ± 0.06 1.59 ± 0.01

Alcalase; Al, α-chymotrypsin; α-chy, Flavourzyme; Fla, Kojizyme; Koj, Neutrase; Neu, Papain; Pap, Pepsin; Pep,
Protamex; Pro, and Trypsin; Try; Significant difference identified at * p < 0.05, as compared to the distilled water
(DW) extract.
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Figure 1. Protective effect of SJH against H2O2 induced oxidative stress. Intracellular reactive oxygen
species (ROS) scavenging activity (A) and cell viability (B) in H2O2 exposed Vero cells. Experi-
ments were performed in triplicate and data are expressed as mean ± SD; Significant differences
identified at * p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001 as compared to the H2O2 treated
group; #### p < 0.0001 as compared to the control group. Statistical analyses were conducted using
Tukey’s post hoc comparison and Duncan’s multiple range test.
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3.3. Separation and Molecular Weight Distribution of α-chy and Its UF Fractions

The α-chy was separated with different molecular weight fractions via ultrafiltration
(UF). As shown in Figure 2A, the molecular SDS-PAGE analysis indicated that the SJH
was separated with three ranges of UF fractions (>10 kDa (α-chy-I), 5–10 kDa (α-chy-II),
<5 kDa (α-chy-III)). We evaluated their antioxidant properties using hydrogen peroxide
scavenging analysis. According to the results, all the UF fractions showed significant
hydrogen peroxide scavenging activity, and the low molecular weight α-chy-III showed
the highest hydrogen peroxide scavenging activity compared with the other UF fractions.
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3.4. Amino Acid Profiles of α-chy and Its UF Fractions

The amino acid compositions of α-chy and its UF fractions are summarized in Table 3.
The α-chy and its UF fractions were composed of seven essential amino acids (threonine,
valine, methionine, leucine, tyrosine, phenylalanine, and histidine) and non-essential
amino acids (aspartic acid, serine, glutamic acid, proline, glycine, alanine, isoleucine, lysine,
and arginine). Commonly, the α-chy and its UF fractions consisted of high aspartic acid,
glutamic acid, glycine, and arginine. In particular, α-chy-III contained high ratios of proline,
glycine, methionine, tyrosine, phenylalanine, lysine, and arginine contents.

Table 3. Amino acid distribution in α-chy and its UF fractions.

Amino Acid α-chy α-chy-I α-chy-II α-chy-III

Aspartic acid 11.32 11.61 9.85 8.84
Threonine 5.40 5.29 4.92 4.55

Serine 5.35 4.96 4.93 4.81
Glutamic acid 16.91 15.91 15.96 14.54

Proline 1.79 8.53 9.75 9.79
Glycine 17.28 16.81 18.16 18.36
Alanine 8.01 6.93 7.46 7.03
Valine 3.97 4.04 3.04 2.87

Methionine 2.10 1.55 1.66 2.23
Isoleucine 3.30 3.42 2.62 2.50
Leucine 3.40 3.38 2.69 2.79
Tyrosine 3.06 2.15 2.89 3.60

Phenylalanine 3.39 2.46 2.83 3.60
Histidine 2.78 3.60 1.47 1.54

Lysine 3.60 2.78 3.48 4.10
Arginine 8.34 6.59 8.28 8.86

Total 100 100 100 100

3.5. Effect of α-chy and Its UF Fractions against H2O2 Induced Oxidative Stress in Vero Cells

To evaluate the potential antioxidant effect of α-chy and its UF fractions, the MTT
and DCF-DA assay were performed in H2O2 exposed Vero cells. As shown in Figure 3,
a significant ROS generation and cell death were observed in the H2O2 treated group.
However, the α-chy and its UF fractions markedly reduced the ROS and cell death levels.
Among them, α-chy-III, which had the lowest molecular weight, showed the highest
protection against H2O2 induced oxidative stress. α-chy-III (200 µg/mL) reduced ROS
generation to 70% and increased cell viability by 80%.

3.6. Effect of α-chy-III against H2O2 Induced Apoptosis in Vero Cells

Next, we studied whether α-chy-III reduces H2O2 induced apoptotic damage, such as
apoptosis, cell membrane destruction, cellular oxidation, and DNA fragmentation, us-
ing fluorescence staining. As shown in Figure 4, Hoechst 33342/PI staining results indi-
cated significant apoptotic cell death and DNA fragmentation in the H2O2 treated group.
Pretreatment with α-chy-III (200 µg/mL) significantly reduced apoptotic cell death and
DNA fragmentation. These results suggest that α-chy-III significantly protects against
H2O2 induced apoptotic damage in Vero cells. In addition to PI staining, flow cytometry
was conducted to evaluate the protective effect of α-chy-III on H2O2 induced apoptotic
cell cycle arrest. In the flow cytometry results, the apoptotic sub-G1 increased in the H2O2
treated group (29.18 ± 0.81%) compared to that in the control group (12.27 ± 0.02%). How-
ever, the sub-G1 population was significantly lowered following α-chy-III administration.
These results suggest that α-chy-III protects against H2O2 induced apoptotic cell cycle
arrest in Vero cells.
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Figure 3. α-chy and its UF fractions suppress H2O2 induced oxidative damage in vitro Vero cells. Intracellular ROS
scavenging activity (A) and cell viability (B) in H2O2 exposed Vero cells. Experiments were performed in triplicate and data
are expressed as mean ± SD; Significant differences identified at * p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001 as
compared to the H2O2 treated group; #### p < 0.0001 as compared to the control group.
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Figure 4. Effects of α-chy-III against H2O2 induced apoptotic cell death, DNA fragmentation and cell cycle regulation in
Vero cells. Protective effect of α-chy-III in H2O2 induced apoptotic cell death (A) DNA fragmentation (B) and cell cycle
regulation (C). The apoptotic cell death, DNA fragmentation and cell cycle regulation were analyzed via fluorescence
microscopy before propidium iodide (PI) and hoechst 33342 staining. Experiments were performed in triplicate and data
are expressed as mean ± SD; Significant differences identified at **** p < 0.0001 as compared to the H2O2 treated group;
#### p < 0.0001 as compared to the control group. Statistical analyses were conducted using Tukey’s post hoc comparison
and Duncan’s multiple range test.

3.7. Effect of α-chy-III against H2O2 Induced Cell Death, ROS Generation, and Lipid Peroxidation
in Zebrafish Enbryos

To establish the potential antioxidant activities of α-chy-III in an in vivo animal model,
we measured the heart and survival rate, cell death, intracellular ROS production, and lipid
peroxidation in H2O2 exposed zebrafish embryos. Figure 5A,B demonstrate that H2O2
significantly decreased both the heart rate (72.13± 0.11%) and survival rate (63.33± 4.71%).
However, α-chy-III significantly improved both the heart rate and survival rate. As shown
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in Figure 5C–E, significant cell death (164.89 ± 7.62%), intracellular ROS (119.22 ± 11.89%),
and lipid peroxidation (133.95± 3.28%) were observed in the H2O2 treated group compared
with those in the control group. However, 200 µg/mL of α-chy-III significantly lowered
cell death (105.01 ± 6.15%), intracellular ROS (97.17 ± 1.03%), and lipid peroxidation
(112.84 ± 4.66%), respectively. These results indicated that α-chy-III has a protective effect
against H2O2 induced cell death, intracellular ROS generation, and lipid peroxidation
in vivo in zebrafish embryos.
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Figure 5. Effect of α-chy-III on H2O2 induced oxidative stress in survival rate (A), heart rate (B),
cell death (C), ROS generation (D), and lipid peroxidation (E) in zebrafish embryos. Levels of
fluorescence intensity were calculated using ImageJ software. Experiments were performed in
triplicate and data are expressed as mean ± SD; Significant differences identified at * p < 0.05,
** p < 0.01, *** p < 0.001 and **** p < 0.0001 as compared to the H2O2 treated group; ## p < 0.01 and
#### p < 0.0001 as compared to the control group. Statistical analyses were conducted using Tukey’s
post hoc comparison and Duncan’s multiple range.
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4. Discussion

Stichopus japonicus (S. japonicus) contains various bioactive components, including pro-
teins, polysaccharides, saponins, vitamins (A, C, B1, B2, and B3), and minerals (iron,
zinc, calcium, and magnesium) [12]. Furthermore, S. japonicus is considered a healthy
food in Asian countries [32,33]. In the present study, we aimed to separate the peptide
fraction from S. japonicus and evaluate its in vivo antioxidant effects using a zebrafish
animal model. In previous studies, the antioxidant activity of the low molecular weight
hydrolysate fraction from S. japonicas was investigated at the in vitro levels [17,34,35].
However, the protective effect of the hydrolysate fraction of S. japonicas with low molecu-
lar weight has not been fully investigated in vitro and in vivo. Therefore, in the present
study, we examined the protective effect of α-chy-III, which has a low molecular weight,
against H2O2 induced oxidative stress in Vero cells and zebrafish embryos.

Recently, advanced techniques in zebrafish studies have developed the utility of
zebrafish models in many research fields. Therefore, many researchers have used the ze-
brafish model as a predictive in vivo model for drug screening [36,37]. Zebrafish are used in
the biotechnological field as a screening test because they possess many advantages, such as
low cost, short generation time, genetic similarity, large number of eggs, and transparent
embryos, to evaluate biological activity. Furthermore, the initial entry step of the in vivo
study can easily measure heart rate and survival rate in zebrafish as a toxicity indicator of
tested samples [38]. Furthermore, the heart rate and survival rate of zebrafish treated with
tested samples can be used as indicators of toxicity [39]. Therefore, the zebrafish model is a
popular animal model for drug screening or cytotoxic evaluation [40].

Marine animals are abundant sources of proteins or peptides that possess various
biological activities, including antihypertensive, antioxidant, anticoagulant, and antimi-
crobial activities [41]. The bioactive peptide was obtained from the enzymatic hydrolysis
of S. japonicus. In this study, enzyme-assisted hydrolysis was adopted considering the
efficiency of the extraction techniques and the advantages of enzyme-assisted hydrolysis,
which has been applied in the food and pharmaceutical industries [42]. Antioxidant activity
was screened using ESR spectroscopy, which is a conventional analysis of the evaluation of
free radical scavenging activity. Therefore, in many antioxidant studies, ESR spectroscopy
was employed to assess potential antioxidative properties [43,44]. In the present study,
we focused on the antioxidant effects of the SJH. The free radical scavenging activities of
the SJH were screened, and their chemical compositions were analyzed. Among them,
α-chymotrypsin assisted hydrolysate from S. japonicus (α-chy) showed the highest yield
and significant hydroxyl radical scavenging activity (IC50 value, 1.03 ± 0.26). In addition,
α-chy showed significant protection against H2O2 (1 mM) treatment. Therefore, it was
selected as a candidate for further purification. In this study, we successfully separated the
three different molecular weight fractions (>10 kDa; α-chy-I, 5–10 kDa; α-chy-II, < 5 kDa;
α-chy-III) from α-chy through ultrafiltration (UF) and investigated their antioxidant prop-
erties. Among the UF fractions, the low molecular α-chy-III was found to have significant
intracellular ROS inhibitory activity in H2O2 exposed Vero cells and strong protection
against cell death, intracellular ROS generation, and lipid peroxidation in H2O2 exposed
zebrafish embryos. These results corresponded with previous publications which reported
potential antioxidant properties of enzymatic hydrolysates from silver carp muscle [45].

Excessive ROS generation by free radicals causes irreversible cell injuries such as cell
membrane destruction, cell component oxidation, and DNA fragmentation, which may
result in cell death and apoptosis [46]. We investigated whether α-chy-III has protective
effects against apoptotic damage, including cell death, DNA fragmentation, and cell cycle
arrest, in Vero cells under H2O2 induced oxidative stress. The fluorescent staining results
indicated that α-chy-III administration markedly attenuated the H2O2 induced apoptotic
cell death and DNA fragmentation. Furthermore, it could regulate apoptotic cell cycle
arrest under oxidative stress conditions. These results were consistent with previous results
from Thilina et al. (2020) [47].
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The analysis of the amino acid composition demonstrated that α-chy-III is composed
of 16 amino acids (aspartic acid, threonine, serine, glutamic acid, proline, glycine, ala-
nine, valine, methionine, isoleucine, leucine, tyrosine, phenylalanine, histidine, lysine,
and arginine). In particular, α-chy-III contained high levels of proline, glycine, methio-
nine, tyrosine, phenylalanine, lysine, and arginine. According to previous publications,
high levels of exogenous proline greatly reduce the diffusion of H2O2 and increase the
activity of antioxidant enzymes [48]. The dietary sulfur-conjugated methionine showed
excellent antioxidant capacity, and the supplementation of methionine increased antioxi-
dant ability by stimulating antioxidant enzyme reaction [49]. Tyrosine residue performed
important antioxidant functions by increasing the lipid density of cell membranes [50].
Lysine and glycine exhibited strong free radical scavenging activities against DPPH, hy-
droxyl, and alkyl radicals. Therefore, these results suggest that α-chy-III composed of the
aforementioned active amino acids exhibits potential antioxidant capacities [51–53].

In summary, the α-chy significantly protected against H2O2 induced oxidative damage
by suppressing intracellular ROS generation. In addition, its low molecular α-chy-III
exerts potent antioxidant and anti-apoptotic effects under oxidative stress conditions
via regulation of intracellular ROS generation and apoptotic DNA damage. Therefore,
our findings suggest that α-chy and α-chy-III may be successfully utilized as a potent
antioxidant ingredient in food and functional food industries.
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