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Abstract
COVID-19-associated-mucormycosis, commonly referred to as the "Black Fungus," is a rare secondary fungal infection 
in COVID-19 patients prompted by a group of mucor molds. Association of this rare fungal infection with SARS-CoV-2 
infection has been declared as an endemic in India, with minor cases in several other countries around the globe. Although 
the fungal infection is not contagious like the viral infection, the causative fungal agent is omnipresent. Infection displays 
an overall mortality rate of around 50%, with many other secondary side effects posing a potential threat in exacerbating 
COVID-19 mortality rates. In this review, we have accessed the role of free iron availability in COVID-19 patients that might 
correlate to the pathogenesis of the causative fungal agent. Besides, we have analyzed the negative consequences of using 
immunosuppressive drugs in encouraging this opportunistic fungal infection.

Keywords  Mucormycosis · COVID-19 · Rhizopus oryzae · Free iron · Hyperferritinemia · Pathogenesis

Introduction

The pandemic coronavirus disease (COVID-19), caused by 
the highly contagious severe acute respiratory syndrome 
(SARS-CoV-2) virus, has had a catastrophic effect on the 

world demographics, resulting in more than 4.8 million 
deaths worldwide [1]. Even though substantial clinical 
advancements have been ascertained, the second wave of 
the virus has recently wreaked havoc on several countries, 
emerging as the most consistent and consequential global 
health crisis. Recently, some countries, prominently India, 
have reported overwhelming numbers of deadly secondary 
fungal infections in COVID-19 patients. As of May 25, India 
had reported around 11,700 cases of COVID-19-associated-
mucormycosis and declared this disease as an endemic [2], 
while minor cases of this infection have also been reported 
in Pakistan Bangladesh, Nepal, Russia, Uruguay, Chile, and 
Iran [3–9]. The secondary fungal infection usually is rare in 
immunocompetent hosts. However, it can be deadly if the 
fungal agent invades immunocompromised hosts or patients 
with pre-occurring comorbid conditions that increase their 
susceptibility to such opportunistic infections [10].

Moreover, some COVID-19 patients are currently being 
treated with steroids or prescribed broad-spectrum antibi-
otics. Such medicaments are known further to weaken the 
immune defense mechanism of the patient, increasing sus-
ceptibility to other secondary infections [10, 11]. The exact 
pathogenesis of this fungal infection in COVID-19 patients 
is yet explored and needs to be accessed to undertake any 
potential crisis that the disease might inflict.
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Black fungus and its causative agent

Mucormycosis is a rare, aggressive, opportunistic infec-
tion caused by the group of mucor molds "mucoromy-
cetes" belonging to the order "Mucorales" [12]. The most 
common causative agents for the infection are the Rhizo-
pus, Lichtheimia, Apophysomyces, Mucor, and Rhizomu-
cor species, whereas occasionally is caused by Cunning-
hamella and Saksenaea species [13]. The deadly fungal 
infection can be categorized based on the involvement of 
the gastrointestinal system, cerebral, nervous system, uro-
genital system, or the skin. However, the fatal category is 
the rhino-orbital-cerebral (ROC) and pulmonary involve-
ments [10].

Currently, acute invasive cases of ROC mucormycosis 
have been reported in COVID-19 patients, and this asso-
ciation between two infections is referred to as the "black 
fungus." The typical clinical manifestations of this infec-
tion are necrosis of the palate or paranasal sinuses that 
approaches the intra-cranial structures generating symp-
toms like swelling of the face, nasal and sinus congestion, 
headache, facial pain, visual disturbances, and black lesion 
on the nasal bridge or upper part of the mouth that deci-
phers the name black fungus [14].

Among the family Mucoraceae, the Rhizopus oryzae 
is the most common agent responsible for nearly 90% 
of ROC mucormycosis in humans. This rapidly grow-
ing saprophytic filamentous fungus is ubiquitous in the 
environment and demonstrates an overall mortality rate 
of 50% [10, 15]. The fungi promptly release many spo-
rangiospores into the atmosphere and primarily enter the 
human body through the respiratory system [12]. Besides, 
it can be ingested through swallowing spores associated 
with rotten contaminated organic food or through open 
wounds. However, these routes of ingestion are rare. Nev-
ertheless, the inhalation of the sporangiospores does not 
cause disease within immunocompetent hosts, as the host 
neutrophils and phagocytes generate oxidative metabolites 
and cationic peptides to inhibit fungal spore proliferation 
[16–18]. In immunocompromised individuals, especially 
in cases of hyperglycemia and low pH, phagocytes are 
rendered dysfunctional in terms of intracellular killing and 
chemotaxis, enhancing susceptibility to this deadly fungal 
infection [19].

Pathogenesis of Rhizopus oryzae

Interactions between the R. oryzae and vascular endothe-
lial cells are prominent in fungal pathogenesis. Follow-
ing paranasal inhalation, R. oryzae spores germinate into 

coenocytic hyphae that initially proliferate in the sinuses 
and disseminate to the orbit and the brain, primarily 
through angioinvasion [20]. The fungal spores specifi-
cally adhere to the laminin and type IV collagen on the 
extracellular protein matrixes of the basement membranes 
separating endothelial cells from underlying stroma [21]. 
Recently, the glucose-regulated protein 78 (GRP78) recep-
tor was involved in the fungal penetration of endothelial 
cells [22]. This adherence with the endothelial cells lining 
the blood vessels mediates fungus endocytosis that facili-
tates angioinvasion, resulting in vessel thrombosis, hema-
togenous dissemination, and subsequent tissue necrosis 
[23]. Another recent transcriptome analysis shows activa-
tion of the platelet-derived growth factor (PDGF) pathway 
in R. oryzae pathology, suggesting that PDGF receptors 
might also facilitate the fungal endothelial invasion [24] 
and subsequent host cellular injury.

Role of iron in R. oryzae pathology

One of the virulence factors that enable Mucorales to cause 
disease is acquiring iron from the host [20]. Iron is a crucial 
micronutrient that is indispensable for fungal metabolic pro-
cesses, cell growth, and development. The fungus R. oryzae 
has demonstrated poor growth in normal serum unless an 
exogenous iron source is provided [25, 26]. Similarly, iron 
starvation strategies are reported to induce apoptosis in R. 
oryzae [27]. In mammalian hosts, iron sequestration within 
carrier proteins such as transferrin, ferritin, lactoferrin limits 
the availability of free iron as a natural strategic defense 
mechanism against R. oryzae [25, 26].

Regardless, the fungus has several unique iron-assimila-
tion mechanisms; one prominent mechanism is the release 
of high-affinity iron permeases (Fig. 1) [28]. These high-
affinity iron permeases are part of an integral reductive sys-
tem, constituting redundant surface reductases that reduce 
the ferric ion into a more soluble ferrous form. Part of this 
reductive system is a copper oxidase-ferrous permease com-
plex that captures those soluble ferrous ions, making those 
available for fungal acquisition (Fig. 1) [28–30]. Recent data 
shows the gene encoding high-affinity iron permease (FTR1) 
is overexpressed by R. oryzae during murine infection, 
implying the role of such permeases in enhancing fungal 
iron uptake [31]. Besides, the fungus may secrete sidero-
phores, low molecular weight iron chelators, such as rhizo-
ferrin, or utilize xenosiderophores such as Deferoxamine that 
enhances iron uptake (Fig. 1) [20, 32]. Genomic analysis of 
R. oryzae identified 13 siderophore permeases that might 
serve as siderophore receptors [33]. Rhizoferrin may supply 
iron to the R. oryzae through an energy-dependent receptor-
mediated pathway, but the exact mechanism of whether this 
siderophore releases iron extracellularly or is internalized 
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before releasing iron is not known yet [32, 34]. Two more 
recently introduced iron chelators are Deferiprone (act as 
bidentate chelator) and Deferasirox (act as tridentate chela-
tor). Although both of these chelators have displayed sig-
nificant depletion of iron levels in clinical practices [35–37], 
these have not been reported to increase susceptibility to 
mucormycosis [38, 39]. Besides, these two new chelators 
do not act as xenosiderophores as the fungal iron uptake 
system cannot detach iron from them. Their higher affinity 
for iron forms much stable chemical structure indifferent to 
fungal iron uptake systems. Another reason might be the 
lower molecular masses of these chelators limit their access 
to fungal iron uptake systems [39].

Moreover, the genomic analysis of R. oryzae revealed 
two homologs of heme oxygenase [33], enabling the fun-
gus to obtain iron from host hemoglobin and explain their 

angioinvasive nature. Genomic analysis of R. oryzae depicts 
a reduced efficiency of utilizing heme as an iron source when 
the copy number of the FTR1 gene is reduced [31], suggest-
ing that FTR1 may serve as a membrane permease enabling 
uptake of extracellular heme and its subsequent intracellular 
degradation through heme oxygenases to generate free iron 
(Fig. 1).

Correlation with COVID pathology

Generation of free iron

Hyperferritinemia is a crucial diagnostic and prognos-
tic laboratory biomarker in COVID-19 infection [40–45]. 
Increased serum ferritin is a common manifestation in 

Fig. 1   Different mechanisms utilized by Mucorales to obtain iron 
from the host. High-affinity iron permeases on the cytoplasmic mem-
brane can convert the less soluble ferric ion into more soluble ferrous 
ions, followed by their internalization through the copper oxidase-
iron permease (FTR1) complex. The complex oxidizes the ferrous 
form into the ferric form required to properly utilize the ion in intra-
cellular processes. A xenosiderophore, Deferoxamine, may strip Fe3+ 
ion from host transferrin and produce ferrioxamine (Deferoxamine-
Fe3+ complex) that is reduced into ferrous ion and internalized by 
FTR1 complex. Other endogenous siderophores are synthesized by 
the fungus chelate iron extracellularly, and the whole complex may be 

internalized through a shuttle mechanism. Alternatively, the sidero-
phore-iron complexes may be reduced through membrane permeases 
to generate Fe2+ ions, followed by internalization by the FTR1 com-
plex. The angioinvasive nature of the infection also reveals that heme 
can be a potential  source of iron. The heme-Fe3+ complex may be 
entirely internalized and then acted on by the heme oxygenases intra-
cellularly or reduced on the surface to generate Fe2+ ions to be taken 
in by the FTR1 complex. Overexpression of the FTR1 gene during 
infection correlates to the requirement of this complex in internal-
izing all the extracellular ferrous ions and some iron chelator com-
plexes
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COVID-19 inflammatory reactions and can also contribute 
to the development of cytokine storms [46]. Hyperferritine-
mia and inflammation are the primary mediators of COVID-
19 associated dysregulation of iron homeostasis [47]. Apart 
from being an active secretion during inflammation, hyper-
ferritinemia induces hepatic cell death [48], and apopto-
sis releases the intracellularly stored free irons and serum 
ferritin to the cell exterior. The stored serum ferritin from 
hepatocytes on release loses part of the inner iron content, 
releasing extremely high levels of free iron (Fig. 2) [49].

Consequently, the high incidence of hyperferritinemia is 
consistent with the emergence of enhanced levels of free 
iron in COVID-19 patients [50] that R. oryzae might utilize 

for fungal proliferation and growth. Similarly, inflammation-
induced imbalance of iron regulatory hormone hepcidin 
may elevate free iron levels in COVID-19 patients (Fig. 2) 
[51]. Another key pathogenic strategy of SARS-CoV-2 that 
might ensure iron availability for R. oryzae pathogenesis is 
to attack the 1-beta chain of hemoglobin that initiates dis-
sociation of porphyrins from iron and rapid discharge of 
elevated amounts of iron into circulation (Fig. 2) [52].

Suppression of the immune system

Although the host immune system plays a crucial role in 
SARS-CoV-2 virus suppression, the excessive release of 

Fig. 2   Higher levels of free iron accumulation during COVID-19 
infection. The SARS-CoV-2 virus displays hyperferritinemic syn-
drome (hyperferritinemia and hyperinflammation). The viral infec-
tion activates macrophages, which stimulates the release of elevated 
cytokine content and serum ferritin. Serum ferritin is advantageous 
to block secondary fungal infection as it sequesters free iron, result-
ing in iron starvation for Mucorales. During iron overload, like hyper-
ferritinemia generated in COVID-19 infection, serum ferritin stored 
in hepatocyte undergoes denaturation in the lysosome, and the Fe2+ 

bound to ferritin is released. The labile Fe2+ reacts with hydrogen 
peroxide (H2O2) to generate highly toxic reactive oxygen species 
(ROS) or lipid peroxides to generate lipid radicals, which induces 
hepatic cell death and releases the stored labile iron and serum fer-
ritin extracellularly. Moreover, the SARS-CoV-2 virus may attack 
hemoglobin or induce hepcidin dysregulation, the host's major iron 
homeostasis regulation hormone. All of these marks free iron avail-
ability for fungal acquisition, facilitating mucormycosis in COVID-19 
patients
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inflammatory and pro-inflammatory mediators aggravates 
the cytokine storm. It exacerbates COVID-19 induced dam-
age to the host organs [53]. Consequently, several immuno-
suppressive drugs have become promising agents in treating 
severe COVID-19 cases, including steroids, anti-cytokine 
agents, mTOR (mammalian target of Rapamycin) inhibi-
tors, and antimetabolites [54]. These immunosuppressive 
agents may weaken the patients' immune system, enabling 
secondary opportunistic infections, including mucormyco-
sis. Besides, steroids are the main reason for drug-induced 
hyperglycemia [55], one of the significant risk factors for 
mucormycosis [56].

Moreover, the COVID-19 pathogenesis itself may trigger 
immune-deprived conditions by entering the immune cells 
for utilizing its metabolic machinery for viral replication and 
eliciting subsequent destruction of the immune cells [57]. 
The viral infection may generate complex immune dysregu-
lation and suppress the immune defense system [58, 59]. 
Such immune suppression mediated by the virus itself may 
increase the susceptibility to secondary opportunistic infec-
tions, including R. oryzae associated mucormycosis.

Conclusion

Rhino-orbital-cerebral mucormycosis is emerging as a 
deadly secondary infection in COVID-19 that can rapidly 
upsurge the mortality rates and develop into another signifi-
cant global concern. This aggressive, opportunistic fungal 
infection not only displays an overall mortality rate of 50% 
but also provokes other disabling side effects such as visual 
impairment or eye loss, which might significantly add to the 
crippling global debridement this pandemic has incurred on 
human lives.

Excessive free iron levels are accessible to be utilized by 
Mucorales and other potential pathogens with chances of 
creating secondary infection in COVID-19 patients and can 
lead to fibrosis through redox reaction [60]. Since free iron 
appears to play a significant role in encouraging fungal pro-
liferation and growth, it is hypothesized that iron depletion 
or chelation therapy in COVID-19 patients might positively 
impact controlling this fungal infection. Additionally, iron 
depletion therapy might also represent a promising thera-
peutic approach against SARS-CoV-2 replication itself, as 
studies have demonstrated a positive association between 
free iron availability and a worse prognosis of other viral 
infections [61].

The aggressive mycotic ROC mucormycosis infection has 
a high mortality rate; however, early diagnosis and treat-
ment might facilitate curtailing the mortality rate in COVID-
19 patients to some extent. Diagnosis of black fungus is 
most popularly reliant on the typical clinical presentations 
such as blackish nasal mucous emission, sinusitis, visual 

impairment, swelling and pain on only one side of the face 
with loss of sensation, the node of the orbit, black lesions 
around the nasal bridge, proptosis, abnormal blood clotting 
and thrombosis of tissues, and headache. On endoscopic 
visualization, there might be appearances of dead black tis-
sue mass around the nasal cavity that can be seen even on 
opening the mouth [11, 62, 63]. Based on clinical suspicion, 
more specified diagnosis tests such as MRI and CT scan of 
the nasal cavity, sinuses, or brain are performed to determine 
lesions' presence and extent [62]. Additionally, histopatho-
logical examination of biopsy samples and culturing of the 
fungal agent can be performed to detect the causative fungal 
agent [64].

One of the standard features in ROC mucormycosis is the 
accumulation of fungal debris in the oropharyngeal region 
that might initiate difficulty in breathing [65]. Besides, 
COVID-19 patients infected by the fungus may exhibit rapid 
respiratory function deterioration, including the build-up of 
excess fluid in the lungs [63]. Since COVID-19 infection 
also reveals similar patterns of respiratory difficulty, it might 
be challenging to distinguish the presence of the fungal 
infection within COVID-19 patients. Upon examining such 
symptoms, definitive tests must be performed to identify the 
pathogenic agent through sample culturing.

The group of COVID-19 patients who are more suscep-
tible to mucormycosis, such as patients with diabetes (espe-
cially diabetes ketoacidosis), cancer, organ transplant, stem 
cell transplant, neutropenia, long-term use of steroids, hemo-
chromatosis, skin injury [10, 11, 62, 66], and immunocom-
promised, must be taken under special consideration. Such 
comorbid conditions impair the immune defense function, 
making the patient more prone to getting affected by the fun-
gal agent [63]. Besides, COVID-19 patients who are already 
taking prescribed broad-spectrum antibiotics or antifungal 
drugs to combat infections must be brought under special 
consideration [63], as broad-spectrum antibiotics often dis-
rupt the beneficial microflora and increase the susceptibility 
of getting attacked by opportunistic infections.

COVID-19 patients with comorbid conditions that stimu-
late mechanisms to generate iron overload disorder, such 
as hemochromatosis and beta-thalassemia [67, 68], are at 
greater risk of getting attacked by the fungus-free iron accu-
mulates within their body. Such patients must be kept in 
special monitoring to reduce any chances of getting affected 
by the fungus. Moreover, immunosuppressive drugs, espe-
cially steroids, must be regulated appropriately, and proper 
maintenance and monitoring of blood sugar levels. Patients 
already taking prescribed steroid medicaments for pre-
occurring conditions must be taken special care of due to 
their weakened immune system and higher chances of get-
ting attacked by the fungus. The appropriate doses and dura-
tion of the steroid should be ensured during the treatment 
and after recovery [69]. Additional steps to enhance their 
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immune system against this opportunistic infection must also 
be ensured.

Healthcare practitioners can play a vital role in reducing 
cases of fungal infection by encouraging the patients to prac-
tice safe health and hygiene. Since the fungus is ubiquitously 
suspended throughout the environment, patients who dem-
onstrate COVID-19 symptoms, those who have recovered 
from covid-19, and those with compromised immune sys-
tems must be aware of the situation. Especially, COVID-19 
patients with comorbid conditions that enhance susceptibil-
ity to this fungal infection must be cautioned by the health-
care practitioners to practice safe hygiene. Patients with 
prescribed antibiotics and steroids must also be monitored 
thoroughly, and the exhibition of any symptoms associated 
with black fungus must be adequately examined. Healthcare 
practitioners must be cautious in prescribing antibiotics and 
steroids throughout the pandemic period while following 
proper guidelines. Moreover, the testing facilities for the 
COVID-19 patients must also ensure sterility protocols as 
experts have suggested that RT-PCR tests that rely on cotton 
swabs being inserted within the nasal passage of patients 
might be one of the sources of the fungal infection if the 
process is not conducted with ensured sterility [70]. How-
ever, the association between the two infections is not well-
studied, but extensive laboratory studies have to be initiated 
to unleash the disease pathogenesis and their correlations 
completely.
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