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The rapid development of multiple high-throughput sequencing technologies has made it
possible to explore the critical roles and mechanisms of functional enhancers and
enhancer RNAs (eRNAs). The inflammatory immune response, as a fundamental
pathological process in infectious diseases, cancers and immune disorders,
coordinates the balance between the internal and external environment of the
organism. It has been shown that both active enhancers and intranuclear eRNAs are
preferentially expressed over inflammation-related genes in response to inflammatory
stimuli, suggesting that enhancer transcription events and their products influence the
expression and function of inflammatory genes. Therefore, in this review, we summarize
and discuss the relevant inflammatory roles and regulatory mechanisms of eRNAs in
inflammatory immune cells, non-inflammatory immune cells, inflammatory immune
diseases and tumors, and explore the potential therapeutic effects of enhancer
inhibitors affecting eRNA production for diseases with inflammatory immune responses.
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HIGHLIGHTS

This review summarized the relevant roles of eRNAs in inflammatory immune functions,
mechanisms and therapies, and explored the research directions and target therapy prospects for
inflammatory immune-related eRNAs.
INTRODUCTION

The rapid development of high-throughput sequencing technologies has made it possible to identify
potential functional regulatory elements. To date, studies have identified numerous regulatory
elements, such as enhancers, promoters and silencers (1).

Enhancers, which are distal regulatory DNA sequences, are approximately 500–2000 bp in
length and function independently of orientation (2, 3). Since the discovery of the first enhancer
org April 2022 | Volume 13 | Article 8494511
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SV40 by Banerji J et al. in 1981 (4), the specific function and
mechanism of enhancers have been extensively explored.
Numerous studies have revealed that pioneer transcription
factors enhance nucleosome DNA to generate open chromatin
(5), which promotes the recruitment of lineage-determining
transcription factors (LDTFs) to maintain the activated state
of enhancers (6). Subsequently, collaborative transcription
factors (cTFs) and co-cofactors (CoFs), such as histone
methyltransferases, are recruited, which promote histone 3
lysine 4 monomethylation (H3K4me1) and dimethylation
(H3K4me2) (6–10). Following this, histone acetyltransferases
(HAT) [e.g. CBP/p300 to promote H3K27 acetylation (ac)]
(10, 11), general transcription factors (GTFs) (12) and RNA
polymerase II (RNAPII) (3, 13) are further recruited to initiate
enhancer-associated bidirectional transcription. Additionally,
DNA demethylase (DME) is recruited during the initial phase
of enhancer activation to regulate dynamic DNA methylation
and p300 binding (14, 15) (Figure 1A). Consistent with previous
studies, the above study suggests that enhancers positively
regulate spatiotemporal gene expression (4, 16, 17).
Frontiers in Immunology | www.frontiersin.org 2
Super enhancers (SEs) were first found in mouse embryonic
stem cells and tumour cell lines (18, 19). Compared to typical
enhancers, SEs consist of large enhancer clusters with longer
genomic regions, higher cell-specific transcription factor (TF)
levels (e.g. Oct4, Sox2, Nanog, Eseeb and Klf4) (18, 20–22), CoFs
(e.g. BRD4, Mediator and CDK9) (21), higher H3K4me1
expressions and H3K27ac modifications (23, 24). These
characteristics allow SEs to highly express super enhancer
derived super RNAs (seRNAs) (Figure 1B). Therefore, SEs
have been speculated to be the key determinants of cell
identity and fate (18, 23), and thereby lead to increased disease
susceptibility when mutated (20, 23).

eRNA, as the enhancers transcription product, belongs to the
class of non-coding RNA (ncRNA). Based on differences in
function and size, ncRNAs are classified as long non coding
RNA (lncRNA), promoter associated RNA (paRNA), enhancer
RNA (eRNA), small RNA (sRNA), PIWI interacting RNA
(piRNA), small nucleolar RNA (snoRNA), Small nuclear RNA
(snRNA), ribosomal RNA (rRNA), micro RNA (miRNA) etc
(25–28). Similarly, they are generated in different parts of the
FIGURE 1 | Activation mechanism of enhancers and super enhancer. (A) Enhancer activation. Multifactorial stimulation causes pTFs binding to nucleosomes leading
to ChR and further recruitment of LDTFs, cTFs and CoFs that assist enhancer activation and histone methylation. On this basis, HAT, GTFs and RNAPII are recruited
and ultimately contribute to enhancer transcription bi-directionally. In addition, DME are recruited to regulate DNA methylation and p300 status at the initial stage of
enhancer activation. (B) Super enhancers are large clusters of enhancers with high levels of cell-specific transcription factors and cofactors that can ultimately
express higher levels of eRNAs.
April 2022 | Volume 13 | Article 849451
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genome and can be obtained by unidirectional or bidirectional
transcription, with variable stability and longevity (26–28). The
section will briefly describe the differences and commonalities
between eRNA and lncRNA. eRNAs are similar in length to
lncRNAs, about 0.1-9 Kb, but are divided into two classes of
ncRNAs by their associated histone profiles (29). In the 2010
study, Orom UA et al. (30) found that lncRNAs can regulate the
expression of neighboring genes. Subsequently, this type of
lncRNA was revealed to be an enhancer of some protein-
coding genes, but its chromatin characteristics differ from
typical enhancers and it is usually polyadenylated and does not
have the characteristics of bidirectional transcription of eRNA.
Further studies suggest that such lncRNAs carry intermediary
complexes to neighboring genes via chromatin loops to influence
their expression (30, 31). However, most eRNA transcripts are 5’
cap-shaped, unspliced, unpolyadenylated and have a short half-
life, but are also dynamically regulated with signaling and
correlate with increased expression of neighboring genes (32).

To date, numerous reviews have summarized the mechanisms
and potential functions of enhancers, SEs and their transcription
products (eRNAs) in tumours (33–36). Moreover, the expansion
of the study dimension revealed that enhancers, SEs and their
eRNAs were immediately altered in response to inflammatory
stimuli, leading to abnormal inflammatory gene expression. This
observation strongly suggests their involvement in biological
processes, such as inflammation, immunity and neurodegeneration
(24, 37–39). Yoshiki et al. (21) have summarized the potential role of
SEs in inflammatory gene transcription.

However, to the best of our knowledge, the potential
mechanisms and roles of eRNAs in inflammatory immune
diseases are yet to be reviewed. This study aims to summarize
the potential roles of eRNAs in inflammatory immune cells, non-
inflammatory immune cells, inflammatory immune diseases and
tumour inflammatory alterations, and thereby elucidate the
relevance of eRNAs in inflammatory immunity (Figure 2).
Additionally, the potential role of eRNAs as novel therapeutic
targets and prognostic biomarkers for diseases with inflammatory
immune alterations are explored.
RESULTS

Mechanism of Enhancer Transcription
and eRNA in Regulating Target Genes
Effect of Enhancer Transcription on Their Products
and Target Genes
The mechanism of enhancer activation has been discussed in the
Introduction (Figure 1A); therefore, the regulation of
downstream target genes by enhancer transcription (including
initiation, elongation, termination and degradation) will be
discussed in this section.

GTFs (e.g. TBP) and the serine 5-phosphorylated form of
RNAPII (Ser5p was engaged in RNA capping mechanism) have
been detected in the enhancer region in the transcription of
lncRNAs or mRNAs (40). Moreover, global nuclear run-on
sequencing (GRO-seq) and cap analysis gene expression
Frontiers in Immunology | www.frontiersin.org 3
(CAGE) results further suggest that eRNAs are capped (5′ end
7-methylguanosine (m7G) cap facilitates cap-binding complex
(CBC) recruitment), with significant similarities in DNA
sequences, core promoter elements and nucleosome spacing at
enhancer and promoter transcription start sites (TSSs) (41–43),
and promote bidirectional transcription (29, 32, 42, 44), thus
indicating that the rules of transcription initiation apply to
enhancers and promoters. Similar to promoters, the direction
of enhancer transcription is also determined by the ratio of the
relative density of polyA cleavage sites (PASs) and the U1
splice motif downstream of the TSSs, which affects the
production of eRNAs initiated by RNAPII elongation (41, 42,
44–46) (Figure 3A).

The elongation, termination and RNA processing stages
highlight transcriptional differences between enhancers and
promoters. Ser2p, a form of RNAPII that is involved in
elongation, is characterized by low enrichment, which results
in low H3K36me3 levels and affects enhancer transcription
elongation (40, 47, 48). The enhancer transcription elongation
phase was found to be partially impacted by the overlapping
mechanisms of the coding genes, including positive transcription
elongation factor-b complex (pTEFb) and bromodomain-
containing protein 4 (BRD4, which is recruited by H3K27ac)
(10–12). Additionally, eRNAs undergoing transcription bind to
the mediator complex and affect transcription elongation (18, 31,
49) (Figure 3A).

Numerous studies have found that PAS-mediated early
termination regulates eRNA stability, and RNA exosomes
degrade eRNAs. A study by Lai et al. confirmed that the
integrator, which interacts with the RNAPII carboxy-terminal
domain (RNAPII CTD), is an important regulator of eRNA
termination (50) that functions after the nascent eRNAs have the
PAS (AAUAAA) (42, 44, 50, 51). Integrator subunit deletion
decreases eRNA levels and increases enhancer transcription
activity, indicating the disruption of eRNA termination (50).
Additionally, WD repeat-containing protein 82 (WDR82) acts as
an adaptor protein that targets SET1 H3K4 methyltransferase,
affecting enhancer transcription termination (52). Interestingly,
Tyrosine 1-phosphorylated form of RNAPII (Tyr1p) was
highly enriched in the active enhancer and PROMPT
(upstream transcripts of the promoter) regions, whereas it was
slightly enriched in the gene promoter region (53, 54). Moreover,
Yeast Tyr1p was shown to be associated with eRNA termination
(55, 56). In addition, under the mediation of the trimeric nuclear
exosome targeting (NEXT) complex, wherein RBM7 directly
binds to eRNAs, exosome component 10 (EXOSC10/RRP6)
and EXOSC3 (RP40) were reported to be responsible for the
final degradation of eRNAs (57). The recruitment of NEXT may
also be facilitated by the CBC (57, 58) (Figure 3A).

The chromatin loop, including enhancer-promoter loop or E-P
loop, as the optimal mediator of target gene expression, was found
to play an important role in enhancer transcription and eRNA
production via enhancer-promoter proximity facilitation (59–61)
(Figure 3B). Since b-globin loci discovery, enhancer-promoter-
mediated chromatin loops have been detected at multiple
enhancer locus control regions (LCRs) interacting with target
genes through chromosome conformation capture (3C) (62, 63).
April 2022 | Volume 13 | Article 849451
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LDTFs [e.g. NF-E2 (64)] were found to directly anchor E-P loop
regions to recruit cTFs, CoFs or histone-modifying enzymes,
which affects E-P loop formation and enhancer activation (64–
68). H3K4me1 improves interchromatin interactions between
enhancers and promoters by promoting chromatin recruitment
to the cohesin complex (69), whereas H3K27ac affects enhancer-
promoter activity by destabilising nucleosomes or recruiting
H3K27ac-binding proteins (70). CCCTC-binding factor (CTCF),
a highly conserved zinc finger protein, is co-localized with cohesin
and has an independent cohesion binding site (71, 72). The
cohesin-CTCF complex creates repressor regions (blocking
chromatin repressor region diffusions and blocking enhancer
activity) and active regions (promoting enhancer to promoter
proximity) to regulate chromatin homeostasis, which contributes
Frontiers in Immunology | www.frontiersin.org 4
to the formation and stabilization of long-term chromatin
interactions, thus, affecting E-P loop formation and transcription
progression (73–78). Using molecular dynamics models, Dusan
et al. (79) demonstrated that transcription-induced superhelix in
the interphase chromosome topologically associated domain
(TAD) formation is the driving force for chromatin loop
extrusion, which stimulated enhancer-promoter contacts and
activates mRNA transcription in a given TAD.

Effect of eRNA on Target Genes
eRNAs, a transcription product of enhancers, affect enhancer
activity, E-P loop formation and downstream target gene
transcription. Numerous studies have found that eRNA has
several mechanisms as follows (Figure 3C): 1) eRNA positively
FIGURE 2 | The inflammatory immune role of eRNAs in cells and diseases. eRNAs have a significant contribution in inflammatory immune cells, non-inflammatory
immune cells, inflammatory immune diseases and tumor inflammatory alterations.
April 2022 | Volume 13 | Article 849451
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regulates enhancer transcription and stabilizes gene expression
by binding to TFs (e.g. YY1) (12); 2) eRNA promotes active
enhancer acetylation by recruiting Cofactors (e.g. CBP/300) (80)
and interacts with various other Cofactors Complexes [e.g.
RAD21 and heterogeneous nuclear ribonucleoprotein U
(hnRNPU)] to stabilize the E-P loop and regulate target gene
expression (81–83); 3) eRNAs directly induce E-P loop
formation and histone modification by linking p300 (as
Cofactors) and RNAP II (whose RNAP II are present on the
enhancer and promoter, respectively) (84); 4) eRNA stabilizes
the E-P loop structure by absorbing cohesin and subsequently
regulating gene expression (85); 5) eRNA binds to the paused
RNAPII by competing with mRNA, which allows the negative
elongation factor (NELF) complex to separate from RNAPII and
Frontiers in Immunology | www.frontiersin.org 5
bind to eRNA, leading to RNAPII phosphorylation and the
positive transcription elongation factor b (P-TEFb) recruitment
and allowing RNAPII to enter the transcription elongation phase
and produce mRNAs (86); 6) Cai et al. proposed for the first time
that enhancers and promoters form a local molecular cloud
during transcription, which consists of eRNA and uaRNA
(eRNA promoter transcription analogues), bringing enhancers
and promoters closer to facilitate E-P loop formation (87); 7) The
recent studies have confirmed the prevalence of m6A
modification in nascent eRNA, which recruits the nuclear m6A
reader YTHDC1 to form a liquid-like condensate in a manner
dependent on its C terminus intrinsically disordered region and
arginine residues. Subsequently, the m6A-eRNA/YTHDC1
condensate co-mixes with and facilitates the formation of
FIGURE 3 | Mechanism of enhancer transcription and eRNAs to regulate target genes. (A) Following enhancer activation, GTFs and serine 5-phosphorylated form
of RNAPII (Ser5p) are recruited, which leads CBC to binding to eRNA via m7G, ultimately initiating enhancer transcription. During the enhancer elongation, Ser2p is
hypoenriched. pTEFb, BRD4 and the eRNAs being transcribed all affect transcription elongation. Subsequently, the nascent eRNAs interacts with RNAPII CTD to
terminate transcription. In addition, the integrator, WDR82 and Tyr1p assist in correct enhancer transcription termination. Finally, the NEXT complex mediates the
degradation of eRNAs. (B) Chromatin loops are generated under the influence of LDTFs, histone methylation or acetylation, cohesin-CTCF complex and interphase
chromosome topologically associated domain, and ultimately activate target gene transcription. (C) Specific mechanisms have been demonstrated for eRNAs to
affect enhancer activity, E-P loop formation, and transcription of downstream target genes.
April 2022 | Volume 13 | Article 849451
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BRD4 coactivator condensate, ultimately activating the gene
(88); 8) Aguilo et al. (89) demonstrated that NOP2/Sun RNA
methyltransferase (NSUN7) can deposit 5-cytosine methylation
on eRNA, which affects eRNA stability and regulates enhancer
transcription; 9) eRNA regulates gene expression by modulating
E-P interactions and higher chromatin structure topology (9).

Potential Regulatory Mechanisms of eRNA in
Inflammatory Immunity
Acute and chronic inflammation is the adaptive response to the
internal environment and external stimuli, and the underlying
pathological events leading to atherosclerosis, cancer, infectious
diseases and immune disorders. The production of active
enhancers and eRNA production in the nucleus precedes
inflammatory gene expression in response to lipopolysaccharide
(LPS) stimuli (90–92). Comprehensive studies of eRNA
inflammatory immune-related mechanisms have revealed that
the binding of LDTF (e.g. PU.1/T-bet/AP-1 and C/EBP) to the
enhancer regions under inflammatory mediator stimulation
promotes nucleosome remodeling to create nucleosome-free
regions and H3K4me1/2 modification and recruits RNAPII (13,
80, 93–96). Subsequently, inflammation-associated signal-
dependent TF NFkB-p65/p50 binds to the enhancer region and
leads to histone H3K27ac modification and eRNA transcriptional
production (10, 13, 93, 97–100). The generated eRNAs assist the
tight junctions of the mediator complexes (p300-BRD and pTEFb-
MLL) using enhancer-promoter interactions to stabilize the E-P
loop (13, 97, 99, 101, 102). Conversely, eRNAs coordinate cohesin-
CTCF loop formation to promote chromosome cyclisation (13, 79,
103, 104). Therefore, eRNA regulates enhancers and downstream
target gene transcription through the aforementioned methods,
and the mRNA produced is translocated outside the nucleus and
generates associated inflammatory factors (such as INF-b, IL-1b,
TNF and CXCL8), which affect inflammatory immune cell
response and related pathological responses.

In the following sections, we will summarize in detail the role
of eRNAs in inflammatory immune cells, non-inflammatory
immune cells, inflammatory immune diseases and tumors as
well as their related mechanisms (Figure 2).

eRNA in Inflammatory Immune Cells
LPS, a major component of the outer wall of the gram-negative
bacterial cell wall, activate mononuclear macrophages,
lymphocyte, endothelial cells and epithelial cells through
cellular signaling systems. Various cytokines and inflammatory
mediators are synthesized and released in this process, which
induces an inflammatory immune response (105–107). Nasun
et al. (91) were the first to use toll-like receptor 4 signaling in
macrophages as a model to clarify that SE-associated eRNA
transcription is dynamically induced in most key genes driving
innate immunity and inflammation using GRO-seq.
Subsequently, CAGE data further verified that enhancer
transcription preceded the target gene activation in monocytes
under LPS stimulation (41, 90). Recently, Ma et al. (92) used
simultaneous high-throughput ATAC and RNA expression with
sequencing (SHARE-seq) to identify domains of regulatory
chromatin (DORCs) that significantly overlap with SEs, which
Frontiers in Immunology | www.frontiersin.org 6
showed both chromatin accessibility and enhancer lineage-
priming precede gene expression. This suggests that altered
chromatin accessibility could be a pre-condition for cell lineage
formation. Therefore, current studies have shown that both
enhancer transcription and eRNA precede the transcriptional
induction of inflammatory genes in the LPS response (90–92)
and eRNA links enhancer activity to inflammatory gene
expression through CBP-mediated H3K27 acetylation (80).
Conversely, the plasticity of mature immune cells attracts us to
explore the potential function of eRNAs in inflammatory
immune cells (108, 109) (Table 1).

eRNA in Macrophages
Macrophages, the key cells that maintain the tissue’s internal
environment and regulate the inflammatory immune response,
perform tissue-specific functions and defend against infections
(91, 120). Numerous studies have suggested the presence of PU.1
TFs in the active enhancer region of macrophages, which identify
chromatin DNA recognition motifs and C/EBP, thereby creating
nucleosome-free regions and undergoing histone tail
H3K4me1/2 modifications (10, 13, 29, 54, 93, 95, 110–113,
121). Subsequently, similar signal-dependent TFs, p65 and
NFkB, bind to the enhancer region under LPS stimulation,
resulting in histone H3K27ac modifications and eRNA
transcriptional generation (10, 93).

After activation of the RXR signaling pathway, the RXR-
induced eRNAs were detected on Vegfa and Tgm2 enhancers,
with studies showing that the eRNAs maintained macrophage
angiogenic activity via enhancer interactions (104). In 2018, a
study by Bence et al. revealed that macrophages under multiple
IL-4 stimulations showed increased IL-4-sensitive (Arg1 and
Hbegf) and RSG/IL-4-sensitive (Tgm2) eRNA expressions,
leading to active STAT6 recruitment, which induced
macrophage phenotypic changes by affecting the nuclear
receptor PPAR (122). Meanwhile, Zsolt et al. (111) revealed
that eRNA expression levels in IL4-STAT6-mediated responses
correlated with the enrichment of RNAPII-Ser5p and RNAPII-
Ser2p and levels of the inhibitory and activating factor STAT6
locus H3K27ac, which reduced macrophage responsiveness
to LPS and suppressed inflammatory responses, including
inflammatory vesicle activation, IL-1b production and
pyroptosis. Further studies have clarified that Kdm6a, a
demethylase, not only promotes macrophage IL-6 expression
through promoter H3K27me3 demethylation but also interacts
with MLL4 to increase IFN-b-specific eRNA S-IRE1, thereby
promoting IFN-b transcription in macrophages (114). Ha et al.
(115) suggested that the PU.1-mediated E2 eRNA (E2 is a
potential regulatory element of approximately 10 kbp that is
located upstream of the TSS) in macrophages is essential for IL-
1bmRNA transcription, which might influence the macrophage-
assisted regulation of disease states, such as endotoxic shock,
sepsis and infection. Additionally, Oishi et al. (116) found that
RevErb expression regulated by Bmal1 was repressed in Arntl-/-

macrophages, with further studies revealing that RevErbs
repressed eRNA transcription by recruiting the NCoR- histone
deacetylase3 (HDAC) repressor complex and increasing
enhancer H3K27 acetylation, thereby regulating enhancer
April 2022 | Volume 13 | Article 849451
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epigenetic state to control macrophage inflammatory response
(43, 116). Huang et al. (123) used inflammatory macrophage
activation models to demonstrate that the inflammation
activation-associated corepressor (GPS2 and SMRT)-eRNA-
CCL2 regulatory axis, in addition to finding that LNA-targeted
Ccl2 enhancer E-transcribed eRNA in white adipose tissue
macrophages of obese (ob/ob) mice, can partially reverse meta
inflammation and insulin resistance.

Therefore, macrophages activate intranuclear enhancer
transcription and eRNA production in response to inflammatory
stimuli, which regulates inflammatory factors and chemokine
release and affects macrophage polarisation. However, the specific
mechanisms of inflammatory genotypic and phenotypic changes by
eRNA remain unclear and require further experimental exploration.
eRNA in Monocytes
Circulating monocytes, innate immune response cells, prevent
infection by rapidly removing invading pathogens. Heward (117)
and IIott (118) reported in the same year that monocytes are
differentially expressed with large amounts of eRNAs in response
to LPS stimulation. Heward James et al. (117) identified the
expression of six eRNAs induced by human monocyte THP1
cells after the LPS activation of the intrinsic immune response,
including MARCKS-eRNA, ACSL1-eRNA, AZIN1-eRNA,
TNFSF8-eRNA. SLC30A4-eRNA and SOCS3-eRNA. Moreover,
the intracellular signaling pathways, such as NFkB and mitogen-
activated protein kinase (MAPK), were demonstrated to regulate
extracellular kinase 1/2 and p38, which could promote
inflammation-associated eRNA expression (117). IIott Nicholas
et al. (118) identified 76 differentially expressed eRNAs in
primary human monocytes stimulated by LPS and found that
the knockdown of the pro-inflammatory TFs, NFkB-mediated
IL1b eRNA and IL1b-RBT46 eRNA, attenuated LPS-induced
mRNA transcription and pro-inflammatory mediator release,
including IL1b and CXCL8. Using reduced representation
bisulfite sequencing (RRBS) technology, smoking-associated
differentially methylated regions (SM-DMR) was found to up-
regulate AHRR mRNA by activating the AHRR enhancer that
expressed AHRR eRNA (124). Additionally, smoking-altered
methylation and intragenic AHRR enhancer-produced eRNA
were found to be necessary prerequisites for monocyte type-
specific AHRR transcription (124). Moreover in THP-1
monocytes, hHS-8 was shown to target dCas9-KRAB at the
IRF1 binding site to impair IFN-gamma expression on LPS-
induced TNF genes and eRNA, thereby affecting monocyte
inflammatory immune action (125). Current studies suggest
that eRNAs regulate the direction of monocyte function;
however, their functional mechanism remains unknown.

eRNA in Lymphocyte
As important cellular components of inflammatory immune
response, lymphocytes are the main performers of the
lymphatic system immune function. They are mainly
responsible for fighting external infections and monitoring
cellular mutations in the body, and are categorized into B
lymphocytes, T lymphocytes and natural killer cells.
T
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eRNA in B Lymphocytes
Studies have reported that eRNA transcription during B
lymphocyte growth and development is closely associated with
large-scale changes in DNA cytosine modifications (126).
Moreover, Brazao et al. (127) identified 73 PAX5-dependent
eRNAs near protein-coding genes in B-ALL cells, such as
LNCGme00432, LNCGme0034 and LNCGme00345, that were
the downstream genes of B-cell lymphoma 11a (Bcl11a), whose
dysfunction may lead to the malignant development of B cells.
Furthermore, Saintamand et al. (128) reported that LPS-induced
stimulation in vitro, whereas 3RR eRNA deletion reduced
transcription and disrupted downstream CH basal transcription,
which affected the resting and active states of B cells.

Many eRNA studies have been conducted in the classical B
lymphocyte line (GM12878); however, only a few studies have
explored the direct effects of enhancer transcription and eRNAs
on B lymphocytes. Kim et al. (119) confirmed that enhancers
dynamically modulate the transcriptional activities of eRNAs
and pre-mRNAs in B-lymphoblasts. Furthermore, the
knockdown of TNFSF10-related eRNAs leads to selective
regulation in interferon-induced apoptosis, indicating that
eRNAs are necessary for target gene induction and can be
potential target genes via transcriptional reprogramming (119).
Katla et al. (129) identified quantitative trait loci associated with
eRNA expression and direction-dependent enrichment at
enhancer regions in human lymphoblastoid cell lines using
capped-nascent-RNA sequencing. These loci were correlated
with gene expression, defined central TF binding regions and
flanking eRNA initiation cores, which are important indicators
of non-coding regulatory variants. Therefore, B lymphocytes
have important functionality in enhancer transcription and
eRNAs, which affect the growth, differentiation and malignant
progression of B lymphocytes; however, further extensive studies
are required.

eRNA in T Lymphocytes
The exploration of acute T lymphocytic leukaemia leads to
unrevealing the relationship between eRNAs and T lymphocytes,
confirming the presence of a large number of eRNAs in T-ALL cells
(130, 131). Ets1 is a sequence-specific transcription factor that plays
an important role during hematopoiesis, and is essential for the
transition of CD4−/CD8− double negative (DN) to CD4+/CD8+
double positive (DP) thymocytes. During early T cell differentiation,
eRNA shows a DN to DP transition pattern and the Ets1 pattern in
DP transition, similar to the RNAPII pattern, suggesting that
eRNAs act as active regulatory elements that regulate Ets1 on
nucleosome occupancy and enhancer activity to influence T cell
differentiation (132). Trimarch et al. (133) identified the first
functional eRNA (LUNAR1) in T-ALL cells in 2014, which
enhances IGF1R mRNA expression and maintains the IGF1
signaling pathway via Notch signaling, thereby maintaining T-
Acute lymphoblastic leukaemia (ALL) malignant progression.
Subsequently, Tan et al. (102) identified the second functional
eRNA (XLOC_005968) in T-ALL cells, namely ARIEL, which
recruits intermediary proteins to the ARID5B enhancer, promotes
enhancer-promoter interaction and activates ARID5B expression,
and thereby positively regulating TAL1-induced transcription
Frontiers in Immunology | www.frontiersin.org 8
and MYC oncogene expression, to accelerate T cells
malignant progression.

Recently, some studies have explored the effect of eRNAs on
the generation and differentiation of T cells. Hertweck et al. (96)
revealed that eRNAs transcribed by T-bet SE were mostly Th1-
specific in T cells. In Th1 cells, eRNAs of IFNG upstream SEs
were transcribed, while the downstream enhancer exhibited
lower levels of P-TEFb occupancy and eRNA production,
which affects Th cell differentiation. Luke et al. (125) found
that activated CD4+ T cell increased hHS-8, TNF and LTA
promoter H3K27 acetylation and nuclease sensitivity while
synergistically inducing TNF, LTA and hHS-8 eRNA
transcription to regulate TNF mRNA and LTA mRNA,
affecting T cell pathology.

eRNA in Natural Killer Cells
To date, no studies have explored the effects of eRNAs on natural
killer (NK) cells generation, development and differentiation.
Only one study has shown that the H3K27me3 histone
demethylase UTX controls specific gene expression programs
during development of natural killer T cells through demethylase
activity-dependent manner (134). We believe that enhancer
transcription events and eRNAs have a potentially important
role in NK cells as potential therapeutic targets and prognostic
biomarkers in inflammatory immune diseases and tumors.

Inflammatory Function of eRNA in
Non-Inflammatory Immune Cells
The inflammatory immune functions of eRNAs are not limited
to inflammatory immune cells. The recent studies showed that
non-immune inflammatory cells have inflammatory changes and
altered cellular states under eRNA regulation (135–138). Isidore
et al. (136) found that VEGFA-eRNA5 and VEGFC-eRNA3 in
endothelial cells affect angiogenesis and lymphangiogenesis by
regulating endogenous transcription and VEGFA and VEGFC
expression. Additionally, eRNAs were found to be well correlated
with VEGF expression across cell types and in response to
hypoxic stimuli using GRO-Seq. Zhou et al. (138), in the same
year, revealed that lncRNA-MAP3K affects inflammatory factor
(e.g. ICAM-1, E-selectin and MCP-1) expression, reduces
monocyte-endothelial cell adhesion and decreases TNF-a, IL-
1b and COX2 expression in macrophages through the p38
MAPK signaling pathway and MAP3K4 cis-modulation, which
ultimately regulates vascular inflammation. Despite that the
overlapping features of lncRNA-MAP3K with 1D-eRNA,
strong evidence supporting lncRNA-MAP3K4 as an eRNA that
is transcribed from the MAP3K4 enhancer region is lacking
(138). Conversely, glucocorticoids have been shown to induce
KLF9 expression in lung epithelial cells, with the identification of
three common glucocorticoid receptor binding sites that
influenced KLF9 mRNA and protein expression levels by
generating eRNAs, which ultimately affected glucocorticoid-
induced anti-inflammatory effects (135). Additionally, Yukako
et al. (137) showed that Nrp2-eRNA, Dcstamp-eRNA and
Nfatc1-eRNAs could regulate the corresponding promoters to
control gene expression, thereby positively regulating osteoclast
differentiation to maintain bone resorption function.
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These studies, therefore, indicate the potential inflammatory role
of eRNAs in non-inflammatory immune cells. However, further
studies are required to explore their specific mechanisms
and functions.

eRNA in Inflammatory Immune Diseases
NFkB is an important gene regulator involved in innate and
adaptive immune responses as well as survival and proliferation
of certain cell types (139), and eRNAs have been shown to be
involved in the regulation of inflammatory transcriptional
networks (10, 118, 140). Studies have shown that NFkB
contributes to the synthesis of inflammatory gene-associated
enhanced eRNAs, which further enhances transcription by
looping enhancers and promoters or by recruiting RNA
polymerase II to the promoter, creating a transcription-
mediated multilevel cascade regulating transcription (10, 13,
81, 91). Therefore, this paper further summarizes the potential
functions and mechanisms of eRNAs in various inflammatory
immune-related diseases (Table 2).

eRNA in Gastritis
The chronic inflammation and apoptosis resistance associated
with Helicobacter pylori infection contributes to gastric disease
development, including gastritis and gastric cancer (142). Chen
et al. (97) were the first to report that H. pylori stimulated the
recruitment of RelA and Brd4 to inflammatory gene-related
enhancers and promoters. Following this, IL1A and IL1B
eRNA expressions were up-regulated to affect NFkB-dependent
inflammatory gene expressions (e.g. IL1); however, JQ1
was found to attenuate the H. pylori-induced eRNA and
mRNA synthesis of NFkB-dependent inflammatory gene
subpopulations by inhibiting Brd4-related functions, which
suppresses inflammatory immune cell proliferation in H.
pylori-infected mice (97). Subsequently, Brd4 was shown to
de-activate cIAP2 expression by activating BIRC3 eRNA
synthesis in H. pylori infection, which in turn inhibited
caspase-3 activation, and ultimately inhibiting cell apoptosis.
Therefore, the novel role of BIRC3 eRNA in H. pylori-mediated
apoptosis resistance was speculated (99).

eRNA in Inflammatory Bowel Disease
Inflammatory bowel disease (IBD), a chronic inflammatory
intestinal immune disease, has an unknown molecular
pathology. Studies have reported significant differences in
eRNA expression levels among multiple chemokine gene-
related enhancer regions (including CXCL1-3, CXCL5-6 and
CXCL8), which are all up-regulated in IBD, Crohn’s disease
(CD), ulcerative colitis (UC) and controls using CAGE and
qPCR (143). Baillie et al. (90) used the human monocyte-
derived macrophage as a model to explore the genetic
aetiology of IBD. They found that transient eRNA transcripts
at multiple loci precede promoter-associated transcripts under
LPS induction, which affects the adaptation of monocytes to the
gastrointestinal mucosal environment, thus leading to IBD.
Additionally, Aune et al. (141) revealed a significant
association between eRNA genomic location and disease-
specific genetic polymorphisms in IBD. It also suggested that
Frontiers in Immunology | www.frontiersin.org 9
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the transcription site of the IFNG-R-49 eRNA was more than
100 kb away from the IL26 and IL22 genes, which are consistent
with the biological functions exhibited by the eRNA.

eRNA in Rheumatoid Arthritis
Rheumatoid arthritis (RA) is a systemic autoimmune disease
characterized by chronic synovial inflammation. Various studies
have identified the basic leucine zipper transcription factor 2
(BACH2) protein to be a key transcription factor of Treg cells for
immune homeostasis. It regulates the expression of various
cytokines, including INF-g and cytokine receptors, whose
mutations are associated with RA development and progression
(144). BACH2 proteins have been reported to negatively regulate
eRNA expression; however, eRNA types and potential mechanisms
remain unclear (144). Many disease-associated variants in non-
coding regions act by affecting gene transcription and are known as
eQTL (145). Studies found that eQTLs were involved in eRNA
transcriptional regulation and produced cell type-specific effects,
such as STAT6 eQTL up-regulation in patients with RA
upregulated inflammatory cytokine production (145–147).
Unfortunately, there are no studies that specifically identify which
eRNAs influence the occurrence and progression of RA by
which mechanisms.

eRNA in Other Inflammatory Immune Diseases
Many studies have shown that eRNAs plays a critical role in
various inflammatory diseases. The close correlation between
ADAMDEC1 and ADAM28 in systemic lupus erythematosus
(SLE) regulates the disease inflammatory process. Shi et al. (98)
found that monocyte ADAMDEC1 over-expression in patients
with SLE was induced by the stimulation of pro-inflammatory
cytokines, moreover, under LPS stimulation, the binding of the
p300-NFkB complex to enhancer 2 generates eRNA157 that
promotes p300 activation, leading to an increase in H3K27ac at
the enhancer and promoter region, thus, affecting the regulation
of ADAMDEC1 mRNA and SLE-related inflammatory gene
expression. Hertweck et al. (96) found that in a mouse model
of autoimmune uveitis, T-bet allows mediator and P-TEFb
recruitment in the form of SE by extending the SE-generating
Ifng eRNA. Therefore, Th1 expression is activated, which triggers
IFN-gamma-mediated CD4+ T cells to promote immunoretinol-
like binding proteins in the retina. Additionally, flavanols and JQ1
can inhibit SE and its products to down-regulate related gene
expression (such as Ifng, Tnf, Fasl, II18r1 and Ctla4), and
ultimately decrease the severity of the disease. Furthermore,
Huang et al. (100) first found that lnc-SLC4A1-1 was retained
in the nucleus as an eRNA and facilitated TF NF-kB binding to
CXCL8 promoter region, leading to an increase in H3K27ac in
the CXCL8 promoter and subsequently elevated CXCL8
expression. CXCL8 activation is exacerbated by the induction of
TNF-a and IL-1b inflammatory response in trophoblast cells,
resulting in unexplained recurrent pregnancy loss. It was also
found that hypoxia-inducible enhanced RNA 1 (HERNA1) is
produced by direct hypoxia-inducible factor 1a binding to the
hypoxia response element of histone h3-lysine27. Synaptotagmin
XVII, membrane transport proteins, Ca2+ sensing protein and
SMG1 are also encoded by phosphatidylinositol 3-kinase-related
Frontiers in Immunology | www.frontiersin.org 10
kinase, thereby regulating immune disease progression,
metabolism and contraction (148). Spurlock et al. (149) found
that whole blood eRNA expression data effectively classified and
differentiated patients with multiple sclerosis from those with
other inflammatory and non-inflammatory neurological diseases.

Inflammatory Function of eRNA
in Cancers
Cancer is currently a significant cause of death worldwide and it
is a heterogeneous disease controlled by genetic and epigenetic
alterations and transcriptional dysregulation (150). Numerous
studies have been conducted to show that the abnormal
expression levels of eRNAs, as an excellent marker of active
enhancers and genes, are associated with dysregulation of
enhancer transcription and gene expression in tumors (34,
151–153). Santanu Adhikary (33), Joo-Hyung Lee (34) and
Zhao Zhang et al. (154) have each summarized in detail the
potential functions, regulatory mechanisms and clinical
therapeutic implications of eRNAs in cancer. Nevertheless, this
study will focus on the potential functions and mechanisms of
eRNAs in tumorigenesis development on its immune
microenvironment and related inflammation (Table 3).

eRNA in Haematologic Malignancies
The relevant functions and mechanisms of eRNAs in
inflammatory immune cells have been previously summarized,
along with the exploration of the potential functions and
mechanisms of eRNAs in immune hematopoietic system-
related tumors. Almamun et al. (155) were the first to report
that the aberrant methylation of enhancer regions was associated
with the altered expression of neighboring genes involved in cell
cycle processes, lymphocyte activation and apoptosis in pre-B
ALL. Further studies have suggested an overall downregulation
of eRNA transcripts in patients with pre-B ALL, which may affect
the downregulation of target genes (such as ICOSLG, IRF4 and
MSA1) in B-cell migration, proliferation and apoptosis (156).
Further, Teppo et al. (157) used eRNA quantification to elucidate
the aberrant transcriptional activity downstream of fusion TFs
and demonstrated that the ETV6-RUNX1 axis regulates cell
adhesion and transmembrane signaling pathways, which
ultimately disrupts normal B lymphangiogenesis. Tan et al.
(102) were the first to demonstrate the involvement of lncRNA
in the regulation of TAL1-induced T-ALL oncogenic regulatory
program. They also showed that XLOC_005968, the ARIEL
eRNA, is oncogenic and positively regulated by ARID5B and
MYC oncogene expression in T-ALL cells by recruiting mediator
complexes and promoting ARID5B enhancer-promoter
interactions (102). Additionally, Kaposi’s sarcoma-associated
herpesvirus (KSHV), a human tumorigenic g-2 herpesvirus, is
the pathogen responsible for Kaposi’s sarcoma and primary
effusion lymphoma. It is proposed that KSHV reactivation
decreases MYC gene expression by downregulating MYC
eRNA expression and enhancer activity, and shRNA-mediated
and vIRF4-mediated cIRF4 suppression, which promotes lytic
replication (158).

In leukaemia, a novel Hmrhl eRNA was shown to be highly
upregulated in chronic granulocytic leukaemia (CML) cells and
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positively regulate its host gene phkb expression (159).
Additionally, Fang et al. (160) found that eRNAs such as
SEELA are widely activated in mixed-lineage leukaemia and
demonstrated that SEELA directly binds to amino acid K31 of
histone 4 and mediates the cis-activated transcription of the
neighboring oncogene serine incorporate 2, which regulates
oncogene transcription and tumour metabolism (sphingolipid
synthesis) to influence leukaemia progression. The demethylation
of vascular endothelial growth factor A (VEGFA) enhancer in
CML promotes the overexpression of cancer signature genes. A
study by Dahan showed that VEGFA+157 eRNA regulates its
selective splicing, which affects CML cell proliferation by
increasing RNAPII elongation via CCNT2 (161).

eRNA in Other Cancers
To date, eRNA inflammatory immune-related functions are only
marginally studied in solid tumors. H. pylori infection is a major
cause of gastric cancer, and its pathogenicity is associated
with chronic inflammation induction and apoptosis resistance.
The inflammatory immune role of eRNA in tumors was first
reported by Chen et al. (99), demonstrating that H. pylori
stimulate bromodomain-containing factor Brd4 recruitment to
the BIRC3 enhancer, which promotes BIRC3 eRNA synthesis
and cIAP2 expression, which inhibits caspase-3 activation
and enhances apoptosis resistance in gastric epithelial cells.
Additionally, some studies have suggested the presence of
oncogenic SEs in colorectal cancer and confirmed their
involvement in regulating oncogenic and immune pathways
in colorectal cancer by modulating IL-20RA expression,
affecting cell proliferation and immune evasion-related gene
ecpression (162). Pancreatitis accelerates Kras mutation-
driven tumorigenesis in mice, which is mostly found in
pancreatic ductal adenocarcinoma (163). Li et al. (163)
reported that under inflammatory stimulation, KrasG12D
mutation targets a transient enhancer network driving proto-
oncogene transcription and provides a sustained Kras-dependent
oncogenic program to drive tumour tissue-specific progression.
However, they did not explore the specific mechanism and types
of enhancers and eRNAs.

The rapidly rising development of bioinformatic technologies
provides novel means and directions to study the role of eRNA in
inflammatory immunity in tumors. Various bioinformatics
analyses have initially suggested that eRNA expression levels are
significantly correlated with malignancy prognosis and can affect
the tumour immune microenvironment (164–170). Furthermore,
Xiao et al. (164) found that LINC02257 eRNA was significantly
associated with cancer survival and immunotherapy-related
indicators (e.g. tumour microenvironment, tumour mutational
load and microsatellite instability). A study by Wang et al. (165)
identified WAKMAR2 eRNA as a key candidate biomarker in
invasive breast cancer, which may influence the tumour
microenvironment by regulating the relevant immune-related
genes, such as RAC2, IL27RA, IGLV1-51, IGHD, IGHA1 and
FABP7. AC003092.1 eRNA and glioblastoma multiforme (GBM)
overall survival were significantly correlated, and AC003092.1
eRNA was shown to be associated with the immunosuppressive
microenvironment of GBM using single gene set enrichment
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analysis and CIBERSORTx system analysis (166). Using similar
bioinformatic techniques, several studies have suggested that
functional FOXO6-eRNA can regulate FOXO6 expression to
influence EGFR and SOX2 expression and function in lung
cancer progression (167); furthermore, the aberrant expression
of LINC00987/A2M axis was closely associated with immune cell
infiltration in lung adenocarcinoma (168). AC007255.1 in
esophageal cancer was reported to be closely associated with
tumour immune response and neutrophil activation (169).
Additionally, AP001056.1 was shown to be enriched in the
biological function analysis of head and neck squamous cell
carcinoma, mainly in immune system processes (170). However,
bioinformatic analyses can only tentatively suggest the potential
role of relevant eRNAs in tumors. Therefore, further basic research
and clinical trials are required to validate these results.

Clinical Perspectives of Enhancer
Inhibitors Affecting eRNA Production
Many eRNAs are significantly differentially expressed in tumour
tissues compared with paracancerous tissues (151, 154), which is
consistent with the results of enhancer overactivation in cancer
(171–174). Therefore, eRNAs can be considered as potential
targets to overcome enhancer activation in cancer therapy.
eRNAs have high specificity across tissues and tumours (41,
151, 154), with the antisense oligomer-based targeting of specific
eRNAs effectively inhibiting target genes and tumour growth
without theoretically affecting other unrelated tissues (49, 82,
102, 154, 175, 176). Therefore, eRNAs can be used as effective
and highly precise therapeutic targets in cancer therapy.
Regrettably, no relevant eRNA-targeted drugs are currently on
Frontiers in Immunology | www.frontiersin.org 12
the market or in clinical trials. In this section, we will therefore
concentrate mainly on enhancer inhibitors affecting eRNA
production to elucidate their potential therapeutic effects on
inflammatory immune diseases and even cancer. The eRNA-
related agents in cancer have been previously reviewed, including
bromodomain and extra-terminal (BET) inhibitors, cyclin-
dependent kinases (CDKs), HAT inhibitors and HDAC
inhibitors (33, 34, 177). Since inhibitors that fully target
eRNAs in inflammatory immune-related diseases have been
rarely studied, the combined inhibitors of eRNAs and active
enhancers, which produce eRNAs, have been summarized along
with their therapeutic potential in inflammatory immune
diseases in Figure 4.

ET Inhibitors in eRNA
Estradiol cypionate (ET) inhibitors, such as JQ1 and I-BET762,
can recognize acetylated histones by interfering with
the BET family proteins BRD2, BRD3, BRD4 and BRDT
(178). Thus, targeting this protein class can promote
LPS-induced inflammatory gene expression in macrophages
and significantly improve survival, as observed in an in vivo
sepsis model (178, 179). JQ1 primarily targets BRD4 to inhibit
TNF-a or IL-1b-induced inflammatory cytokines expression
and reduces enhancer-mediated inflammatory responses and
diseases (180–183) (Figure 4). H. pylori stimulates NFkB-
dependent BRD4 to enhance inflammatory gene-related eRNA
synthesis, similarly, JQ1 inhibits BRD4 to reduce eRNA synthesis
and inhibits RNAPII recruitment that is induced by BRD4
interaction with RelA. Additionally, JQ1 has been reported to
inhibit inflammatory gene expression and inflammatory
FIGURE 4 | Schematic representation of putative therapeutic targets to enhancer transcription events and eRNA landscapes. CDKI, cyclin-dependent kinase
inhibitors; HATI, histone acetyltransferase inhibitors; HDACI, histone deacetylase inhibitors; LSD1, lysine-specific demethylase 1; JAKI, janus kinase inhibitors; TFM,
transcription factors inhibitors; CI, co-repressors inhibitors.
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immune cell proliferation in H. pylori-infected mice (97). Arnulf
et al. (96) demonstrated that the treatment of Th1 cells with JQ1
and xanthinol resulted in the inhibition of P-TEFb, which
produced a significant reduction in eRNA levels, including Ifng
eRNA. This also promoted reduction in SE-related Th1 gene
expression (e.g. Ifng, Tnf, Fasl, IL18 and Ctla4), which caused
disease remission in autoimmune uveitis mice. Angela et al. (158)
reported that the associated MYC eRNAs (including e486, e507
and e530) was significantly decreased after the JQ1 treatment of
KSHV-infected primary effusion lymphomas, which inhibited
MYC expression and KSHV cleavage gene expression induction.
Additionally, a decrease in MYC mRNA was found on the
knockdown of the corresponding eRNA (158). JQ1 was
demonstrated to decrease the transcriptionally activated eRNAs
of SEs, causing the down-regulation of IL-20RA expression and
inhibition of growth, metastasis and immune escape in colorectal
cancer (162). Therefore, JQ1 regulates enhancer transcription
and eRNA synthesis by affecting the mediator complex, which
regulates the downstream target genes to modulate the
disease process.

CDK Inhibitors in eRNA
CDK7 is a component of the transcription initiation factor IIH
(TFIIH) in the GTF complex that regulates enhancer and target
gene transcription by phosphorylating Ser5 and Ser7 on RNAPII
(184). Additionally, CDK7 activates and phosphorylates the P-
TEFb catalytic subunit of CDK9, which phosphorylates Ser2 in
the RNAPII CTD to control transcriptional elongation and
termination (184) (Figure 4). Currently, transcriptional CDKs
are considered potent targets for cancer therapy (185–189), and
recently, some studies have also evaluated the role of CDK
inhibitors in inflammatory-immune diseases (190–192). The
therapeutic role of CDK7 in haematologic malignancies has
been widely reported that demonstrate the deletion of
oncogenic transcription factors, such as RUNX1, by small-
molecule CDK inhibitors in acute T-lymphoblastic leukaemia
(189). Moreover, SY-1365, a highly selective CDK7 inhibitor, is
currently used in clinical trials in patients with ovarian and
breast cancer (187). These studies have confirmed that CDK7
inhibitors reduce enhancer-associated oncogene expression by
modulating eRNA expression levels. CDK inhibitors such as
THZ1, NVP-2 and THZ531 that inhibit CDK7, CDK9, CDK12
and CDK13, respectively, have been shown to downregulate SE-
related oncogene expression and promote DNA damage
response gene loss in chordoma and acute T-lymphoblastic
leukaemia cells, respectively (185, 186, 188). Furthermore, the
blocking of CDK7 has been reported to regulate the onset and
intensity of immune-inflammatory responses by activating the
tumour immune response and regulating granulocyte apoptosis
and cytokine secretion (193, 194). Recently, transcriptional
CDKs have been speculated to play an important role in pro-
inflammatory gene expression (190), withWei et al. to be the first
to demonstrate in the cytokine release syndrome (CRS) that the
CDK7 covalent inhibitor THZ1 downregulates inflammatory
gene transcription in macrophages after preferential target
inhibition associated with SEs, such as STAT1 and IL1,
Frontiers in Immunology | www.frontiersin.org 13
decreases cytokine release, alleviates the hyperinflammatory
state and rescues lethal CRS mice (191).

Other Inhibitors in eRNA
Furthermore, enhancer transcription analyses and eRNA
generation processes revealed that TF modulators, HAT
inhibitors and HDAC inhibitors influence eRNA and mRNA
production by modulating enhancer epigenetic characteristics
(177) (Figure 4). HATs, such as p300-CBP, enable histone tail
acetylation modifications (195), whereas polycomb repressive
complex (PRC) mediates histone methylation. The drugs
targeting PRC inhibit leukaemia-associated enhancer
transcription, control pro-apoptotic B cell lymphoma-2 like 11
and mediate apoptosis in breast cancer cells (196, 197). HDACs
mediate histone deacetylation, with numerous studies
demonstrating the effect of HDAC inhibitors on enhancer
landscape in various cancer types (197–199). Lysine-specific
demethylase 1 (LSD1) was identified as a selective mediator of
H3K4 demethylation, with LSD1 inhibitors affecting the
progression of acute myeloid leukaemia by disrupting the
enhancer with the SNAG structural domain transcriptional
repressor GFI1 (200). Additionally, LSD1 inhibitors have been
shown to affect enhancer activity in various tumors, such as
androgen receptor function in prostate cancer (201, 202) and
ERa activity in breast cancer (203). However, relevant studies
exploring the potential therapeutic efficacy of HAT inhibitors
and HDAC inhibitors in inflammatory immunity as along with
their mechanisms and function on eRNA are lacking.

Notably, a study by Huang et al. demonstrated that corepressor
recruitment (GPS2 and SMRT) is a genome-wide signature of
inflammatory immune enhancers, which antagonizes eRNA
transcription and CBP-mediated H3K27 acetylation. This
reverses subinflammation and insulin resistance by providing
targeted eRNA therapeutics for immunometabolic diseases
(123). A Janus kinase inhibitor (tofacitinib) has been shown to
block cytokine signaling in T cells, thereby affecting RA risk gene
expressions and SE structure, which ultimately targets
autoimmune diseases (144). Therefore, targeted small molecule
drugs that affect enhancer transcription and eRNAs can be
considered as potential therapeutic targets for inflammatory
immune-related diseases and tumors. Although enhancer
inhibitors have great potential in diseases with inflammation
immune alterations, further clinical trials are needed to validate.
In addition, small molecule inhibitors specifically targeting eRNA
still have great potential for exploration and development.
DISCUSSION

Rapid advances in sequencing and microscope technologies
suggest the potential contribution of enhancer transcription
and eRNAs in inflammatory immune-altered diseases. eRNAs
have been considered to have induced a breakthrough in the field
of targeted therapy, spurring various studies centered on
transcriptional precision and complexity. The activation modes
of enhancers and SEs and regulatory mechanisms of enhancer
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transcription and eRNAs on target genes have been extensively
analysed in this review. However, owing to the limited
understanding of enhancer transcription and eRNA biology,
multiple questions remain to be addressed: 1) What are the
basic features of enhancer-promoter communication,
interdependence and base coexistence sequence? 2) How does
enhancer transcription regulate eRNA and mRNA expression?
3) How does eRNA activate paired-promoter gene transcription?
4) How do specific structures (e.g. molecular clouds and
condensates) formed by eRNA regulate the enhancer and
promoter gene and affect related diseases? 5) How does the
eRNA epigenetic modification affect the enhancer and promoter
gene transcription?

Although studies on enhancer transcription and eRNAs are
limited to the fields of cancer development and differentiation,
recent studies demonstrate that both enhancer transcription
activation and eRNA expression are preferentially expressed
over inflammatory immune-related genes under LPS induction.
This suggests a potential regulatory mechanism between eRNAs
and inflammatory immune genes, which alters inflammatory
immune responses in diseases. This review summarizes that
eRNA expression levels in inflammatory and non-inflammatory
immune cells are significantly correlated with inflammatory gene
expression in response to inflammatory stimuli, leading to a rapid
transition from a quiescent to an inflammatory transcriptional
program, thus affecting the development and differentiation of
associated immune and non-immune cells. Notably, the
inflammation-associated NFkB signaling pathway contributes to
inflammation-associated eRNA synthesis and positively regulates
enhancer transcription to form a multi-cascade regulatory
transcription that affects various inflammatory immune diseases,
such as gastritis, SLE and inflammatory bowel disease. Currently,
the inflammatory immunomodulatory role of eRNAs in tumors is
limited to hematopoietic malignancies, while studies in substantive
tumors are scarce. Consequently, the enhancer transcription
processes and eRNAs have been speculated to not only affect the
development and differentiation of inflammatory immune cells
(monocyte-macrophage and lymphocytes predominantly) but also
lead to the alteration in inflammatory-immune responses in
various diseases, including tumors. However, the specific
mechanisms or signaling pathways by which eRNAs affect cells
and diseases remain unclear. However, bioinformatic analyses
have made it possible to identify and screen functional eRNAs
associated with inflammatory immunity and utilize them as a basis
for extensive functional, mechanistic and therapeutic exploration.

Significant advances have been made in the treatment of
inflammatory immune diseases and tumors using small-
molecule drugs targeting enhancer transcription processes,
Frontiers in Immunology | www.frontiersin.org 14
which provide novel therapeutic directions and tools for
diseases with inflammatory immune alterations and their drug
resistance. However, further studies are required as the
regulation of downstream target genes by eRNAs and the
instability and dynamics of eRNA have been scarcely explored.
Currently, no relevant studies have explored briefly the efficacy of
small-molecule drugs that directly target eRNA on lesioned cells
or diseases. However, some RNA-based inhibitors such as locked
nucleic acid antisense oligonucleotides (LNA ASOs) have been to
identified to have significant efficacy in targeting lncRNAs for
silencing, which predicts that LNA ASO may be a potential
targeting inhibitor in the eRNA field. Nevertheless, eRNA-
associated protein chaperones can be identified using genomics
and proteomics, and structure analyses can help in designing
small-molecule regulators that specifically target eRNA protein
chaperones. Additionally, further studies considering altered
eRNA epigenetic modifications (e.g. 5-cytosine methylation,
n6-adenosine methylation) and eRNA interactions in higher-
order chromatin organization as potential eRNA targets are
required. Therefore, this review aims to highlight the
usefulness of eRNA as an effective potential therapeutic target
and prognostic biomarker for inflammatory immune diseases
and tumors with inflammatory immune alterations. However,
further studies are required to confirm the functions and
regulatory mechanisms of eRNAs in inflammatory-immune
alterations and explore the potential therapeutic effects of
relevant eRNA small molecule inhibitors in diseases with
inflammatory-immune alterations.
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