
International Journal of Pharmaceutics: X 2 (2020) 100064

Available online 8 December 2020
2590-1567/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Determination of the physical state of a drug in amorphous solid 
dispersions using artificial neural networks and ATR-FTIR spectroscopy 

Afroditi Kapourani a, Vasiliki Valkanioti a, Konstantinos N. Kontogiannopoulos a,b, 
Panagiotis Barmpalexis a,* 

a Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece 
b Ecoresources P.C., 15-17 Giannitson-Santaroza Str., Thessaloniki 54627, Greece   

A R T I C L E  I N F O   

Keywords: 
ATR-FTIR spectroscopy 
Amorphous solid dispersions 
Quantification method 
Artificial neural networks 
Partial least square regression 
Principle component analysis 

A B S T R A C T   

The objective of the present study was to evaluate the use of artificial neural networks (ANNs) in the develop-
ment of a new chemometric model that will be able to simultaneously distinguish and quantify the percentage of 
the crystalline and the neat amorphous drug located within the drug-rich amorphous zones formed in an 
amorphous solid dispersion (ASD) system. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR) 
spectroscopy was used, while Rivaroxaban (RIV, drug) and Soluplus® (SOL, matrix-carrier) were selected for the 
preparation of a suitable ASD model system. Adequate calibration and test sets were prepared by spiking 
different percentages of the crystalline and the amorphous drug in the ASDs (prepared by the melting - quench 
cooling approach), while a 24 full factorial experimental design was employed for the screening of ANN’s 
structure and training parameters as well as spectra region selection and data preprocessing. Results showed 
increased prediction performance, measured based on the root mean squared error of prediction (RMSEp) for the 
test sample, for both the crystalline (RMSEp (crystal) = 0.86) and the amorphous (RMSEp (amorphous) = 2.14) drug. 
Comparison with traditional regression techniques, such as partial least square and principle component re-
gressions, revealed the superiority of ANNs, indicating that in cases of high structural similarity between the 
investigated compounds (i.e., the crystalline and the amorphous forms of the same compound) the imple-
mentation of more powerful/sophisticated regression techniques, such as ANNs, is mandatory.   

1. Introduction 

The preparation of amorphous solid dispersions (ASDs) is a 
commonly used pharmaceutical formulation technique employed in 
order to increase active pharmaceutical ingredients’ (APIs) oral 
bioavailability (Huang and Williams 3rd, 2018; Kawakami, 2017; Lin 
et al., 2018; Pandi et al., 2020; Ricarte et al., 2019). ASDs consist of an 
amorphous API stabilized by one (or more) excipient(s), of organic or 
inorganic nature, acting as matrix/carrier. This carrier is able to improve 
the physical stability and to maintain API’s in vivo supersaturation when 
compared to the corresponding pure drug amorphous form (Kawakami, 
2017; Newman et al., 2015; Ricarte et al., 2019). In this type of drug 
formulations, the solubility advantage is gained mostly due to drug’s 
highly disordered amorphous state, and hence, its increased Gibbs free 
energy. However, the given advantage cannot be maintained indefi-
nitely, since the amorphous API is thermodynamically unstable and 
tends to recrystallize (either during storage or during in vivo 

solubilization) into its more thermodynamically stable crystalline 
counterparts (Kawakami, 2017; Lin et al., 2018). In this context, 
although suitable ASD matrix/carriers have been carefully selected over 
the past years (Rahman et al., 2014), there are still several cases of ASD- 
based drug products that are being recalled due to insufficient physical 
stability (Guo et al., 2013; Siddiqui et al., 2014). 

Looking to overcome these drawbacks, recent studies are paying 
more attention to the formation of a distinct, drug-rich, amorphous zone 
within the ASD systems (Dedroog et al., 2019; Meng et al., 2017; Wlo-
darski et al., 2018). Within this separate amorphous zone, API’s 
recrystallization process begins, leading to system’s physical instability. 
Therefore, the development of new standardized analytical measuring 
methods for the detection and quantification of the crystalline and 
amorphous portions of the API within the ASD system, is of crucial 
importance. 

Several analytical techniques are currently being utilized for the 
determination and quantification of API’s crystalline portion within any 
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ASD system. These include differential scanning calorimetry (DSC), near 
infrared (NIR), fourier-transform infrared (FTIR) and Raman spectros-
copy, powder X-ray diffractometry (pXRD), solid-state nuclear magnetic 
resonance (ssNMR), scanning electron microscopy (SEM), terahertz 
spectroscopy etc. (Lust et al., 2015; Paudel and Geppi, 2014; Purohit and 
Taylor, 2015; Rahman et al., 2014; Sarpal et al., 2019; Sibik et al., 2015; 
Siddiqui et al., 2014; Song et al., 2016). Among them, and keeping in 
mind that an appropriate analytical method should be fast, non- 
destructive and able to simultaneously distinguish and quantify both 
crystalline and amorphous API forms, techniques based on vibrational 
spectroscopic seem to be more promising as compared to others (Zidan 
et al., 2012). However, although spectroscopic methods are attractive in 
terms of speed and simplicity their implementation might be problem-
atic due to the difficulties arising from spectra peak overlapping (Bugay, 
2001). This problem is significantly magnified in the case of ASDs since 
the two physical forms of the API (amorphous and crystalline) show, in 
most cases, almost similar spectra. 

Nowadays, these peak overlapping problems are being handled via 
the utilization of data pretreatment techniques (including spectral sub-
traction, pattern matching processing etc.) along with several chemo-
metric tools (such as partial least square, PLS; regression and principle 
component analysis, PCA, or regression PCR) (Rahman et al., 2010). 
Specifically, regarding ASDs, the, rather limited, attempts to develop a 
proper analytical method focus only on the quantification of the crys-
talline portion of the drug within the ASD system, via PCA and/or PLS 
regression analysis (Edinger et al., 2018; Lust et al., 2015; Netchacovitch 
et al., 2017; Rahman et al., 2014; Rahman et al., 2010; Rumondor and 
Taylor, 2010; Saerens et al., 2011; Siddiqui et al., 2014; Wabuyele et al., 
2017; Zidan et al., 2012). To the best of our knowledge, until now there 
are no published attempts accounting for the simultaneous quantifica-
tion of both the crystalline and the amorphous API within the ASD 
system, while, the utilization of modern and more efficient chemometric 
tools, based on machine learning algorithms (such as artificial neural 
networks, ANNs), has been neglected until now. 

Therefore, the aim of the present study is to build for the first time a 
new chemometric model that will be able to distinguish and simulta-
neously quantify the percentage of the crystalline and the amorphous 
API located within the drug-rich amorphous zones of an ASD system. For 
this reason, attenuated total reflectance FTIR (ATR-FTIR) spectroscopy 
was evaluated as a suitable analytical method, while Rivaroxaban (RIV, 
an oxazolidinone derivative which binds directly and reversibly to 
Factor Xa (Perzborn et al., 2010; Samama, 2011)) and Soluplus® (SOL, 
polyvinylcaprolactam–polyvinyl acetate–polyethylene glycol graft 
copolymer) were utilized as suitable ASD model compounds (i.e., drug- 
matrix/carrier system). Finally, the present study attempts for the first 
time to evaluate the use of ANNs (i.e., biologically inspired computer 
algorithms working as universal function approximators) in similar drug 
quantification problems (Baskin et al., 2016; Xu et al., 2018; Yang et al., 
2019) (Arabzadeh et al., 2019; Barmpalexis et al., 2018; Costa et al., 
2019; Nagy et al., 2019; Toziou et al., 2018)), and to compare their 
efficacy with other, traditionally used, methods (i.e., PCR and PLS 
regression). 

2. Material and methods 

2.1. Materials 

RIV form I crystals with d90% of 52.7 μm (i.e., the portion of particles 
with diameters below 52.7 μm is 90%) measured via Malvern’s Mas-
tersizer 2000; Malvern, Malvern, UK) were kindly donated from Gene-
pharm S.A. (Athens, Greece). The graft copolymer SOL (lot no. 
84414368E0) containing 13% w/w PEG 6000, 57% w/w vinyl capro-
lactam and 30% w/w vinyl acetate, was obtained from BASF (Ludwig-
shafen, Germany). All other reagents used in the current study were of 
analytical or pharmaceutical grade and used as received. 

2.2. Preparation of amorphous RIV, ASDs and physical mixtures (PMs) 

According to Rumondor et al., when building such quantification 
models, as the one attempted in the present study, it is important to 
prepare meaningful calibration and test samples which encompass all 
features of the investigated compounds (Rumondor and Taylor, 2010). 
Keeping in mind that ASDs cannot be described by a linear combination 
of the vibration spectra of the pure amorphous components (due to the 
presence of molecular interactions formed between the ASD components 
which alter significantly the corresponding spectra) the calibration and 
test samples must contain, instead of the pure amorphous copolymer 
(SOL), the actual ASD system mixed with both the crystalline and the 
amorphous forms of the API. Therefore, in the present study for the 
preparation of the respective calibration and test samples, ASDs of RIV 
and SOL were prepared via the melting (or co-melting) quench cooling 
approach. Briefly, appropriate amounts of RIV-SOL mixtures (corre-
sponding to 20/80%wt API to copolymer) were sieved through 150 μm 
and mixed thoroughly with a mortar and pestle until a homogeneous 
blend was formed. The selection of the RIV to SOL weight ratio (i.e., 20/ 
80% wt.) for the preparation of ASDs, was made in order to ensure that 
the API will be completely miscible within the matrix-carrier and that no 
amorphous phase separation phenomena will be observed within the 
time framework needed for the execution of the experiments and anal-
ysis. Subsequently, the prepared blends were heated in suitable 
aluminum pan at 245 ◦C for 3 min until a homogeneous miscible melt 
dispersion was obtained (verified visually via hot-stage polarized light 
microscopy, using a Linkam THMS600 heating stage (Linkam Scientific 
Instruments Ltd., Surrey, UK), mounted on Olympus BX41 polarized 
light microscope (Tokyo, Japan), and controlled through a Linkam TP94 
temperature controller). The melt dispersion was then rapidly cooled in 
an ice bath and subsequently pulverized at room temperature with 

Table 1 
Composition of samples used for the development and validation of the new 
analytical method.  

Code RIV (% wt.) ASDa (% wt.) 

Crystalline Amorphous 

F1b 0.25 0.75 99.00 
F2 c 0.50 0.50 99.00 
F3 c 2.25 0.75 97.00 
F4 c 1.50 1.50 97.00 
F5 c 1.25 3.75 95.00 
F6 c 2.50 2.50 95.00 
F7b 5.25 1.75 93.00 
F8c 3.50 3.50 93.00 
F9c 2.00 6.00 92.00 
F10b 4.00 4.00 92.00 
F11c 7.50 2.50 90.00 
F12b 5.00 5.00 90.00 
F13c 3.75 11.25 85.00 
F14c 7.50 7.50 85.00 
F15c 15.00 5.00 80.00 
F16 c 10.00 10.00 80.00 
F17c 7.50 22.50 70.00 
F18c 15.00 15.00 70.00 
F19b 30.00 10.00 60.00 
F20c 20.00 20.00 60.00 
F21b 12.50 37.50 50.00 
F22c 25.00 25.00 50.00 
F23c 45.00 15.00 40.00 
F24b 30.00 30.00 40.00 
F25c 17.50 52.50 30.00 
F26c 35.00 35.00 30.00 
F27c 60.00 20.00 20.00 
F28c 40.00 40.00 20.00 
F29b 22.50 67.50 10.00 
F30c 45.00 45.00 10.00  

a ASD contained 20/80% wt. RIV/SOL 
b Test subset 
c Training subset 
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mortar and pestle, before sieving through 300 μm sieve. A similar pro-
cedure (without the addition of SOL) was used for the preparation of the 
amorphous RIV. Thermogravimetric analysis (TGA, Shimadzu TGA-50 
thermogravimetric analyzer, Tokyo, Japan) confirmed the thermal sta-
bility of the API during both the amorphization and ASD preparation 
processes. Appropriate amounts (based on Table 1) of crystalline and 
amorphous RIV were then gently mixed with the prepared ASD system 
using a mortar and a pestle, and the resulting fine powder was passed 
through a 150 μm sieve. It is important to note that samples F23-F30 
were prepared only for the extension of the model, since they are 
highly prone to physical instability. The collected samples were placed 
in hermetically sealed amber glass vials and stored in desiccators at 
room temperature (25 ◦C) in order to prevent moisture absorption prior 
to analysis. 

2.3. Verification of RIV amorphization and crystallinity 

The verification of the API’s physical state for: i) the pure amorphous 
RIV, ii) the prepared ASDs, and iii) the pure amorphous and the crys-
talline API after mixing with the ASD system, was made via powder X- 
ray diffractometry (pXRD) using a Rigaku Mini Flex II diffractometer 
(Rigaku, Tokyo, Japan) with Bragg-Brentano geometry (θ-2θ) and CuKα 
radiation (λ =0.154 nm) in the angle (2θ) range of 5o to 40o. 

2.4. ATR-FTIR spectroscopy 

ATR-FTIR spectra in the region of 750–4000 cm− 1 were obtained 
using an IR-Prestige-21 FTIR spectrometer (Shimadzu, Japan) coupled 
with a Golden-Gate MKII ATR system (Specac, UK) equipped with a ZnSe 
lens after appropriate background subtraction. The resolution was two 
cm− 1, while sixty-four scans over the selected wavenumber range were 
averaged for each sample. 

2.5. Multivariate analysis 

2.5.1. Selection of spectral region and spectra data preprocessing 
In ATR-FTIR measurements there are characteristic noisy regions 

(for example the region around 2360 cm− 1, corresponding to the at-
mospheric CO2 absorption) that could result in significant source of 
variation and hence, poor correlation performance. For this reason, in 
the present study, the less noisy spectra regions, containing all the 
characteristic spectra peaks, were selected for performing the quanti-
tative analysis (namely 800–1800 cm− 1 and 2800–3500 cm− 1). 

Data preprocessing on the mean spectrum (three replicate mea-
surements were conducted) of each sample was performed in order to 
remove artifacts and undesirable information. Linear baseline correction 
and baseline offset were employed, in addition to mean centering, 
Savitzky-Golay smoothing (eleven smoothing points and third poly-
nomial order filtering), standard normal variate (SNV) transformation 
and direct orthogonal signal correction (DOSC). The second derivative 
(which eliminates baseline drifts and enhances spectral differences) was 
also calculated via Savitzky -Golay filter with a window size of three 
points and a second order polynomial. All spectra preprocessing was 
performed using Matlab 2019b v. 9.7 (The Mathworks, Natick, MA, 
USA). 

2.5.2. ANN regression 
When developing machine learning models (such as ANNs), at a 

certain point, more features or dimensions can decrease model’s accu-
racy (a phenomenon called ‘the curse of dimensionality’) (Han et al., 
2020). In this case, a dimensionality reduction strategy (such as the 
utilization of PCA) may be employed in order to accelerate the training 
time of the model, reduce its complexity and avoid overfitting (Becker 
et al., 2020). In general, PCA projects the original data onto a new set of 
few variables called principal components (PCs). The first PC contains 
the greatest source of information, while each subsequent PC contains 
less information than the previous one (Ouiyangkul et al., 2020). PCA 
produces a matrix of the same dimensions of the original matrix, but the 
first few principal components contain a high percentage of the variance 
of the original data. Based on the above, in the present study the 
dimensionality reduction of the ANN’s input space was performed 
through the utilization of PCA (i.e., instead of the whole spectrum a few 
major PCs were used as inputs). Each wavelength of ATR-FTIR spectra 
was treated as a variable during PCA and the singular value decompo-
sition algorithm was employed to obtain the PCs, while a full model 
cross-validation was conducted via Matlab 2019b v. 9.7 (The Math-
works, Natick, MA). PCA score plots were used in order to evaluate 
whether the obtained data reduction (i.e. the use of PCs instead of the 
actual spectra) is able to differentiate among the two physical states of 
the API (i.e., amorphous and crystalline) and the ASDs (including the 
pure matrix carrier, SOL, itself). 

In a further step, after dimensionality reduction, standard feed- 
forward (FF) back-propagation (BP) ANNs with multilayer perceptron 
architecture were tested. Initially, the data were divided into two sub-
sets, a training set (consisting of twenty-two spectra) and a test set 
(containing of eight spectra), based on Kennard-Stone algorithm 

Table 2 
Experimental domain and RMSEp for the two-level full factorial design employed during ANN factor screening process.  

Hidden units (X1) Iteration cycles (X2) Spectra region [1/cm] (X3) Transformation (X4) RMSEp 

Crystalline Amorphous 

2 1000 800–1800 Untreated 1.22 ± 0.29 2.14 ± 0.57 
2 5000 800–1800 Untreated 1.03 ± 0.01 2.81 ± 0.06 
2 1000 2800–3500 Untreated 6.03 ± 0.45 3.32 ± 0.18 
2 5000 2800–3500 Untreated 6.00 ± 0.02 3.74 ± 0.01 
2 1000 800–1800 2nd derivative 0.98 ± 0.04 2.80 ± 0.03 
2 5000 800–1800 2nd derivative 1.03 ± 0.01 2.74 ± 0.06 
2 1000 2800–3500 2nd derivative 7.09 ± 0.71 5.38 ± 0.28 
2 5000 2800–3500 2nd derivative 7.50 ± 0.10 5.44 ± 0.10 
5 3000 800–1800 Untreated 6.74 ± 1.45 12.91 ± 1.52 
5 3000 2800–3500 Untreated 5.63 ± 0.93 3.58 ± 0.27 
5 3000 800–1800 2nd derivative 0.86 ± 0.15 2.69 ± 0.07 
5 3000 2800–3500 2nd derivative 6.61 ± 0.87 6.94 ± 2.13 
8 1000 800–1800 Untreated 3.00 ± 0.61 3.86 ± 0.07 
8 5000 800–1800 Untreated 6.38 ± 0.14 11.41 ± 0.09 
8 1000 2800–3500 Untreated 6.64 ± 0.73 3.93 ± 0.26 
8 5000 2800–3500 Untreated 6.28 ± 1.72 4.05 ± 0.48 
8 1000 800–1800 2nd derivative 1.01 ± 0.06 2.80 ± 0.02 
8 5000 800–1800 2nd derivative 2.19 ± 0.72 4.28 ± 1.00 
8 1000 2800–3500 2nd derivative 7.00 ± 0.68 4.51 ± 0.99 
8 5000 2800–3500 2nd derivative 6.11 ± 0.72 6.83 ± 0.50  
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Fig. 1. ATR − FTIR spectra of pure crystalline RIV (form I), amorphous RIV, SOL and RIV − SOL ASDs as received (a) and after 2nd derivative transformation (b).  
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Fig. 2. Score plots of the PCA of the un-transformed (a) and the second derivative transformed (b) ATR-FTIR spectra of the ASDs, the matrix/carrier (SOL) and the 
amorphous and crystalline form I RIV. 
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(Kennard and Stone, 1969) (Table 1). Cross-validation by the leave-one- 
out method was applied in order to check the robustness of the method 
against the test set selection, while, in order to identify the factors that 
improve ANNs’ prediction performance, design of experiments (DoE) 
methodology was employed. Specifically, a two-level full factorial 
design was selected with four (4) independent variables, namely: 1) the 
number of hidden units-neurons (X1), 2) the level of iterating cycles (X2), 
3) the spectra region (X3), and 4) the implementation of data trans-
formation (i.e., 2nd derivative transformation or not, X4). The root mean 
squared error of ANN’s predictions (RMSEp) was used as a response 
(Oishi et al., 2020). 

Table 2 shows the experimental domain along with the upper and 
lower levels examined for each factor. All experiments suggested by the 
employed DoE were conducted in a randomized order and in triplicate. 
Significant main factor and factors’ interactions were estimated by 
employing analysis of variance (ANOVA) at a 0.05 significance level. 

Based on the ANOVA results, linear regression models were con-
structed using multi-linear-regression (MLR): 

Yi = b0 + b1X1 + b2X2 + b3X3 + b4X4 + b12X1X2 + b13X1X3 + b14X1X4 +

b23X2X3 + b24X2Х4 + b34X3Х4
(1)  

where, Yi is the response (i.e., ANN’s RMSEp), b0 is an intercept term, bi 
to bij are regression coefficients for the main effects and two-way in-
teractions, respectively, and X1–4 are the coded levels of factors. 

For all DoE experiments a single hidden layer using the scaled con-
jugate gradient (scg) method as training algorithm was used. Three ANN 
input variables were selected, namely the first three PCA components 
(PC1, PC2 and PC3). Training was repeated three times for each network 
and the average RMSEp and the corresponding standard deviation 
values were used. For the input to hidden layer and the hidden to output 
layer connections the logistic sigmoid transfer and the linear transfer 
functions were selected, respectively. 

Netlab toolbox for Matlab was employed for the ANN modelling and 
training (Nabney, 2002), while DesignExpert® v.6.0.4 (Stat-Ease Inc., 
Minneapolis, MN) software package was used for the implementation of 
the DoE. 

2.5.3. PCR and PLS regression 
PCR and PLS regressions were selected as two standard widely 

applied regression methods for comparison with ANNs. The ChemoAC 
toolbox (Vandeginste and Smeyers-Verbeke, 2007) for Matlab was used 
and the optimum number of PCR and PLS components was automati-
cally determined by a leave-one-out cross-validation procedure. RMSEp 
was used in order to evaluate the prediction performance of ANNs, while 
the validation and test sets were selected based on the Kennard-Stone 
algorithm. 

3. Results and discussion 

3.1. Verification of RIV’s physical state 

Before proceeding with the determination/quantification of the 
several physical states of RIV within the studied ASD system, the 
amorphization and the crystallinity of the drug was verified via pXRD. 
Fig. S1 (supplementary material) shows the diffractograms for the pure 
amorphous RIV, the prepared ASDs, as well as the mixture of the 
amorphous and the crystalline API with the prepared ASD systems. 
Results showed that the melting-quench cooling approach, followed for 
the preparation of the neat amorphous RIV and the ASDs, resulted in the 
full API amorphization since no pXRD peaks were recorded in the ob-
tained diffractograms (only an amorphous halo was recorded). Addi-
tionally, the process followed for the mixing of the two API forms (i.e., 
the amorphous and crystalline RIV) did not alter their initial physical 
state, since no re-crystallization of the amorphous API or polymorphic 
transition for the crystalline API were observed. 

3.2. ATR-FTIR characterization of neat starting materials and ASDs 

Fig. 1 shows the ATR-FTIR spectra of the crystalline and the amor-
phous RIV, as well as the used matrix/carrier (SOL) and the ASDs. In 
respect to the crystalline API, results showed several characteristic peaks 
located at 3350 cm− 1, corresponding to secondary amide (N–H) 
stretching vibration; 1733 cm− 1, corresponding to C––O stretching from 
the ester group; 1670–1640 cm− 1, corresponding to the amide group 
stretching; 1575 - 1500 cm− 1, corresponding to Ar–Cl stretching and 
N–H scissoring; 1340–1000 cm− 1, corresponding to the C-O-C move-
ment present in both ethers and esters, and 850–550 cm− 1, corre-
sponding to C–Cl stretching, respectively. The obtained spectrum is in 
perfect agreement with a previously reported RIV form I spectrum (Xu 
et al., 2017). Compared to the crystalline RIV, the ATR-FTIR spectrum 
obtained for the neat amorphous API showed several significant differ-
ences. Concerning the amorphous API, the peak corresponding to the 
NH stretching of the amide group is significantly broaden and shifted in 
lower wavenumbers (from 3350 to 3313 cm− 1, respectively), while the 
peak corresponding to the -C=O stretching from the ester group of the 
API shows a shift from 1733 to 1745 cm− 1. In addition, there is a sig-
nificant change at 1670–1640 cm− 1 where one of the two characteristic 
peaks corresponding to the amide group stretching (the one at 1666 
cm− 1) is now shown as a small shoulder shifted at 1658 cm− 1; while 
significant differences are also shown in the region of 1340–1000 cm− 1, 
which correspond to the C-O-C movement of the ether and the ester 
groups of the API. In regard to neat SOL, Fig. 1 shows strong absorption 
bands in the region of 1800 cm− 1 and 1400 cm− 1 reflecting the carbonyl 
stretching vibrations of the caprolactam ring. More precisely, the ATR- 
FTIR spectrum of SOL shows two characteristic peaks at 1635 and 
1736 cm− 1, attributed to the -C=O stretching of the polyvinyl acetate 
group and the stretching of the -C(O)N or the tertiary amide of the 
polyvinyl caprolactam group, respectively. Finally, in the case of RIV- 
SOL ASDs the obtained spectrum showed that the peak corresponding 
to the secondary amide (-NH) stretching vibration of the API (located at 
3350 and 3313 cm− 1 for the crystalline and the amorphous API, 
respectively) is now completely missing, probably due to the formation 
of significant API-copolymer hydrogen bonds (HBs), while several dif-
ferences are also observed in the rest spectrum compared to the neat SOL 
and the neat crystalline and amorphous API. Hence, the above described 
differences indicate that the obtained spectra are able to differentiate 
among the crystalline drug, its amorphous part and the ASD system. In 
addition, the utilization of 2nd derivative transformation also showed 
significant differences among the tested samples (Fig. 1b). 

3.3. Quantification method results 

Fig. 3 shows the ATR-FTIR spectra of the prepared ternary samples 
(Table 1) containing the crystalline and amorphous RIV along with the 
ASDs at different weight ratios. In all cases, spectra analysis showed that 
the increasing amount of crystalline and amorphous RIV concentrations 
leads to the increase of their specific ATR-FTIR peak intensities, 
although it is important to note that regarding the 2nd derivative 
transformations, these spectral differences are hard to be identified in 
the region of 2800–3500 cm− 1. 

3.3.1. ANN regression 
In order to accelerate ANN’s training time, reduce its complexity and 

avoid overfitting, the input’s space dimensionality (i.e., the ATR-FTIR 
data) was reduced through the implementation of PCA. However, 
before proceeding with the development of the ANN model, it is crucial 
to verify whether this data reduction strategy (i.e. the use of the major 
PCs instead of the actual collected spectra) is able to differentiate among 
the two physical states of the API (i.e., the amorphous and crystalline 
RIV) and the ASDs system (including the pure matrix carrier, SOL). In 
order to do so, PCA score plots were constructed for both the un- 
transformed and the 2nd derivative transformed spectra (Fig. 2a and b 
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Fig. 3. Un-transformed (a) and 2nd derivate (b) ATR-FTIR spectra of samples containing the crystalline RIV, the amorphous RIV and the ASDs according to Table 1.  
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respectively). Results showed that in both cases separate individual 
clusters were recorded, indicating that PCA data reduction is able to 
differentiate among the several components. Additionally, results indi-
cate that the use of the first component (PC1) is able to separate the API 
(either crystalline or amorphous) from the copolymer (SOL) and the ASD 
system, while the use of the second component (PC2) is able to differ-
entiate between the two different API physical states. Hence, based on 
these obtained results, the utilization of PCA as an ANN dimensionality 
reduction strategy does not compromise the ability of the data to 
differentiate among the several API physical states and the ASD. 
Furthermore, in both cases (i.e., un-transformed and 2nd derivative 
transformed data) PCA showed that the three first PCs were able to 
explain almost the 97% variation of the data, meaning that these three 
components (i.e., PC1, PC2 and PC3) are adequate enough for ANN’s 
dimensionality reduction. 

In a further step, after ANN’s input dimensionality reduction, a two- 
level full factorial DoE was employed in order to determine ANN’s op-
timum number of hidden units and level of iteration cycles, as well as the 
optimum spectra region which leads to enhanced ANN predictions 
performance. Additionally, through the use of the selected DoE, the ef-
fect of 2nd derivative spectra transformation on the generalizing ability 

of the ANN model was also evaluated. Table 2 shows the ANN-derived 
RMSEp values for the crystalline and amorphous quantification of the 
test set based on the employed two-level full-factorial DoE, while the 
RSME of prediction for the training set was below 0.05. Concerning the 
crystalline API, results varied from 0.86 (using 5 hidden nodes, 3000 
iteration cycles, 800–1800 cm− 1 spectral region and 2nd derivative 
transformation) to 7.50 (using 2 hidden nodes, 5000 iteration cycles, 
2800–3500 cm− 1 spectral region and 2nd derivative transformation), 
while for amorphous RIV results varied from 2.14 (using 2 hidden nodes, 
1000 iteration cycles, 800–1800 cm− 1 spectral region and no data 
transformation) to 12.91 (using 5 hidden nodes, 3000 iteration cycles, 
800–1800 cm− 1 spectral region and no data transformation). These re-
sults indicate that the selection of the appropriate spectra region, ANN 
training/structure parameters and data transformation, is able to 
significantly improve ANN’s goodness of fit during the quantification of 
both the crystalline and the amorphous API parts present within the ASD 
system. 

ANOVA results for the employed full-factorial experimental design 
are summarized in Table 3. A significance level of 0.05 was used for all 
main and interaction effects, while the square root transformation (i.e., 
Y = (RMSEp)1/2) and the inverse square root transformation (i.e., Y = 1/ 

Fig. 4. Two-way interaction effect plots based on the full-factorial experimental design employed for the determination of crystalline RIV within the ASD system.  
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(RMSEp)1/2) were used for the crystalline and the amorphous API re-
sults, respectively, based on Box-Cox plot analysis in order to meet the 
assumptions that make the ANOVA analysis valid (interval data of the 
dependent variable, normality, homoscedasticity, and no multi-co- 
linearity). The adequate precision (depicts the value of signal to noise 
ratio; ratio greater than 4 is preferred), the coefficient of variation (CV) 
(measures the reproducibility of the model; a value less than 10% is 
desirable), and the p-value of the models (p < 0.05 is needed) were all in 
the desirable limits. ANOVA results indicated that, regarding crystalline 
API, all factors examined had a significant effect on ANN’s prediction 
performance, while in the case of amorphous RIV, data transformation 
(X4) was not crucial, although it was involved in several statistically 
significant interactions. In both cases (i.e., determination of crystalline 
and amorphous API within the ASD system), several two-way in-
teractions, such as X1X2, X1X3, X1X4, X2X3 and X3X4, were identified as 
having a statistically significant impact on the measured responses. 
Based on the ANOVA results, the following two MLR models were 
constructed, after the removal of insignificant terms by a backward 
elimination process (alpha out = 0.05): 

[
RMSEp(crystal)

]1/2
=− 1.96+0.15×1+0.064×2+0.60×3–0.084×4+

0.062X1X2–.0.17X1X3–0.13X1X4–0.087X2X3+0.15X3X4

(2)   

1
/[

RMSEp(amorphous)

]1/2
=0.51–0.041×1–0.034×2–0.037×3–9.9E− 003×4–.

0.018X1X2+0.034X1X3+0.027X1X4+0.017X2X3–0.034X3X4

(3) 

In the above fitting equations, all factors are given in coded forms 
(− 1 to 1), while the second model (i.e., the fitting equation corre-
sponding to the amorphous API) was hierarchically corrected in order to 
include the insignificant main ‘parental’ factor X4. Correlation coeffi-
cient (R2) values for the fitting equations corresponding to the crystal-
line and the amorphous API were 0.94 and 0.85, respectively, indicating 
a better fitting in the case of the crystalline API. 

Fig. 4 shows the two-way interaction plots for the MLR fitting 
equation corresponding to the crystalline RIV content within the ASD 
system. Results showed that in the spectral region of 800–1800 cm− 1 the 

Fig. 5. Two-way interaction effect plots based on the full-factorial experimental design employed for the determination of amorphous RIV within the ASD system.  
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increasing number of ANN’s hidden units results in a diminishing of 
network’s prediction ability (i.e., increase in RMSEp(crystal)), irre-
spectively of the iteration cycles used or the selection of spectral data 
transformation. Additionally, results depicted that decreasing iteration 
cycles (from 5000 to 1000) causes in a reduction of RMSEp(crystal), 
indicating that the increasing iterations may lead to network’s over-
fitting. In contrast to these findings, when the 2800–3500 cm− 1 spectral 
region was evaluated for the development of the ANN model, increasing 
iteration cycles lead to an improvement of network’s prediction ability 
at low number of hidden units (i.e., below five). In addition, increasing 
number of hidden units resulted in a reduction of RMSEp(crystal) values 
only in the case of 2nd derivative transformations. 

Regarding amorphous API, results from the two-way interaction 
plots presented in Fig. 5 showed that in the spectral region of 800–1800 
cm− 1, the increasing number of ANN’s hidden units provoke a reduction 
of ANN’s prediction performance, irrespectively of data transformation, 
only for high number of iteration cycles (i.e., 5000). Concerning, low 
iterations (i.e., 1000), increasing network’s hidden units had a limited 
effect in network’s performance (mostly when untreated spectral data 
were used). Similar results were observed for 2800–3500 cm− 1 spectral 
region with no data transformation, while when 2nd derivative trans-
formation was applied, network’s performance was improved only in 
the case of low iteration cycles. 

Based on the above analysis, the best fitting performance concerning 
the crystalline RIV was achieved using five hidden units, at 3000 iter-
ation cycles, when the 800–1800 cm− 1 spectral region was used and the 
spectra data were transformed using the 2nd derivative transformations. 
Similarly, regarding the amorphous API the best results were obtained 
when the fitting was performed using the 800–1800 cm− 1 spectral re-
gion, with no data transformation and the network consists of two 
hidden units trained at 1000 iterations. Both models are graphically 
depicted in Fig. 6. 

3.3.2. PCR and PLS regression 
In addition to neural networks, PCR and PLS regression models were 

also constructed and their fitting performance was evaluated for com-
parison reasons. Similarly, to the ANNs case, data transformation using 
the 2nd derivative, as well as the use of two separate spectra regions (i. 
e., 800–1800 and 2800–3500 cm− 1) were also evaluated. Since the 
quality of the fitting models depends highly upon the number of the 
latent variables (LV) chosen (i.e., too few factors may lead to under-
fitting, while too many factors may lead to overfitting) for the con-
struction of the PCR and PLS regression models, the optimum number of 
LVs was carefully selected based on the lowest RMSE value for cross- 
validation and the predicted residual error sum of squares. 

Table 4 shows the prediction performance (measured in terms of 
RMSEp) for the two regression models. In the case of PCR, the lowest 
RMSEp value for the determination of the crystalline API was obtained 
when the 2800–3500 cm− 1 part of the FTIR spectrum was evaluated 
with no data transformation (RMSEp(crystal) = 7.42). This is in agreement 
with the analysis of the obtained spectra, where the most significant 
difference between the crystalline API and the ASD system, or the neat 

Fig. 6. Optimal ANN architecture for the determination of the crystalline (a) 
and the amorphous (b) RIV content within the prepared RIV-SOL ASDs. 

Table 3 
ANOVA results for the employed full factorial design (0.05 significance proba-
bility level).  

Factors Crystalline Amorphous 

F-value p-value F-value p-value 

X1 28.30 < 0.0001a 46.34 < 0.0001a 

X2 4.77 0.0342a 31.36 < 0.0001a 

X3 429.41 < 0.0001a 37.39 < 0.0001a 

X4 8.40 0.0058a 2.66 0.1097b 

X1X2 4.53 0.0388a 9.11 0.0042a 

X1X3 34.34 < 0.0001a 30.49 < 0.0001a 

X1X4 20.91 < 0.0001a 19.87 < 0.0001a 

X2X3 8.91 0.0046a 8.16 0.0064a 

X2X4 0.26 0.6119 2.43 0.1260 
X3X4 27.40 < 0.0001a 30.91 < 0.0001a  

a significant factors 
b parental factors included into the MLR models 

Table 4 
RMSEp for PCR and PLS regression fitting.   

RMSEp 

No-transformation 2nd derivative 

800–1800 
cm− 1 

2800–3500 
cm− 1 

800–1800 
cm− 1 

2800–3500 
cm− 1 

PCR 
Crystalline 9.60 7.42 9.94 11.41 
Amorphous 10.12 15.83 13.45 17.96  

PLS 
Crystalline 9.48 9.50 11.89 14.30 
Amorphous 17.86 15.15 13.15 16.50  
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amorphous API, was observed in the NH stretching of the amide group, 
located at 3350 cm− 1. In contrast, for the determination of the neat 
amorphous API, the lowest RMSEp value (i.e., 10.12) was observed 
when the 800–1800 cm− 1 part of the FTIR spectrum was used (again 
with no data-transformation), which is in agreement with the previous 
ATR-FTIR analysis, showing that the neat amorphous API and the ASDs 
present only limited differences in the 2800–3500 cm− 1 part of the FTIR 
spectrum. Similarly, PLS regression fitting for the crystalline API showed 
the best prediction performance when the 800–1800 cm− 1 part of the 
FTIR spectrum was used with no-data transformation (RMSEp(crystal) =

7.89), while the respective best fitting for the amorphous API was ob-
tained when 2nd derivative transformations were employed. Finally, the 
comparison of the obtained results for the two different models, showed 
improved prediction performance in the case of PCR, compared to PLS 
regression, with lower RMSEp values obtained for both the crystalline 
and the amorphous API. 

3.3.3. Comparison of ANNs and PLS fitting 
The comparison of the fitting results for all developed models 

revealed a significant superiority for ANN-based regression. Specifically, 
for the determination of the crystalline API, the RMSEp(crystal) for the 
ANN fitting model was 0.86, compared to 7.42 and 9.48 obtained from 
the PCR and PLS, respectively; while concerning the neat amorphous 
API, ANNs showed a RMSEp(amorphous) value of 2.69, which is signifi-
cantly lower compared to the 10.12 and 13.15 values obtained from PCR 
and PLS regression models, respectively. This remarkable superiority of 
ANN’s prediction performance can be attributed to its inherent non- 
linear generalizing ability, as well as, its ability to be trained directly 
from the data used (Barmpalexis et al., 2018). Especially in cases where 
the simultaneous determination of the crystalline and the amorphous 
API is evaluated (such as in the present study) and hence, there is 
increased peak/signal overlapping due to enhanced structural similarity 
between the investigated compounds (i.e., the crystalline and the 
amorphous forms of the same compound), the need of more powerful/ 
sophisticated regression techniques, such as ANNs, seems to signifi-
cantly surpass the performance of traditionally used regression tools, 
such as PCR and PLS regression. 

4. Conclusion 

In this study, ANNs combined with ATR-FTIR spectroscopy were able 
to provide a new chemometric tool for simultaneous determination and 
quantification of the percentage of the crystalline and the amorphous 
API located within the drug-rich amorphous zones in ASDs. Imple-
mentation of a DoE screening revealed that the proper setting of several 
ANN parameters (i.e., number of hidden units and iteration cycles), 
along with the appropriate selection of the IR spectral region and data 
preprocessing may significantly improve model’s prediction perfor-
mance. Finally, comparison with traditionally used regression tech-
niques, such as PCR and PLS regression, revealed the increased 
superiority of ANNs, which can be attributed to their inherent ability to 
handle efficiently non-linear relationships, a feature extremely impor-
tant in samples where increased peak/signal overlapping is observed. 
This new ANN-based model can be potentially used to evaluate ASD’s 
physical stability profile during storage, or to achieve an improved on-
line control over manufacturing processes in the framework of the 
process analytical technology. 
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