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Abstract

The circadian clock is a central driver of many biological and behavioral pro-
cesses, regulating the levels of many genes and proteins, termed clock controlled
genes and proteins (CCGs/CCPs), to impart biological timing at the molecu-
lar level. While transcriptomic and proteomic data has been analyzed to find
potential CCGs and CCPs, multi-omic modeling of circadian data, which has the
potential to enhance the understanding of circadian control of biological timing,
remains relatively rare due to several methodological hurdles. To address this
gap, a Dual-approach Co-expression Analysis Framework (D-CAF) was created to
perform perturbation-robust co-expression analysis on time-series measurements
of both transcripts and proteins. Applying this D-CAF framework to previously
gathered transcriptomic and proteomic data from mouse macrophages gathered
over circadian time, we identified small, highly significant clusters of oscillating
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transcripts and proteins in the unweighted similarity matrices and larger, less
significant clusters of of oscillating transcripts and proteins using the weighted
similarity network. Functional enrichment analysis of these clusters identified
novel immunological response pathways that appear to be under circadian con-
trol. Overall, our findings suggest that D-CAF is a tool that can be used by
the circadian community to integrate multi-omic circadian data to improve our
understanding of the mechanisms of circadian regulation of molecular processes.

Keywords: co-expression, multi-omics, transcriptomics, proteomics, robustness

1 Introduction

Circadian rhythms are molecular rhythms that cycle once approximately every 24
hours in order to time organismal physiology to the day/night cycle of earth ([1]).
These rhythms occur broadly in organisms that live in the Photic Zone ([2]) and play a
crucial role in regulating physiological and behavioral processes, such as the sleep-wake
cycle, autophagy, immune system function, hormone production, and metabolism ([3],
[4], [5], [6], [7]). Given their wide-ranging regulation of human physiology, disruption
of circadian rhythms has the ability to enhance the rates of human diseases, such as
Alzheimer’s disease, diabetes, cancer, and cardiovascular disease ([8], [9], [10], [11]).

Because of the significant effect circadian rhythms have over physiology, much
research has been devoted to understanding the drivers of these rhythms. The molec-
ular mechanism that generates circadian rhythms is referred to as the molecular
circadian clock and is comprised of a transcription-translation negative feedback loop
that coordinates the rhythmic transcription/expression of a host of genes and pro-
teins (called clock controlled genes/proteins, CCGs/CCPs) ([12], [13]). It is these
CCGs/CCPs that are responsible for driving the 24-hour biological phenotypes that
are collectively referred to as circadian physiology. With CCG/CCPs numbering in
the hundreds to thousands depending on cell type, omics level data is often collected
to characterize the effect the molecular circadian clock has on the transcriptome and
proteome in an attempt to identify the mechanisms that link circadian disruption to
disease ([14], [15], [16], [17]).

While many investigations into circadian rhythms use single omics approaches,
like transcriptomics or proteomics, there is a growing recognition of the importance
of modeling cellular functions using multiple omics, or multi-omics, datasets ([18],
[19]). Multi-omic approaches are crucial in understanding the regulation of circadian
physiology as oscillations in one data set (e.g. transcription factors in the proteome)
can affect oscillations in another data set (e.g. rhythmic levels of expression in the
transcriptome), which multi-omics can help to explore. One analysis technique that
has been used independently in both multi-omics analysis and circadian biology is co-
expression analysis, which finds clusters of analytes with similar expression patterns to
define regulatory relationships within and between pathways ([20], [21]). Co-expression
network analysis represents large scale data as a collection of nodes and interactions
between nodes, which provides researchers with the ability to study the structure of

2

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 14, 2024. ; https://doi.org/10.1101/2024.10.10.617622doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.10.617622
http://creativecommons.org/licenses/by-nc-nd/4.0/


complex systems using omics level data, enabling the clustering and exploration of
modules of genes, transcripts, or proteins ([22])([23]).

While co-expression may be highly useful in defining the network of the circadian
clock, to the best of our knowledge, co-expression analyses that integrate multiple
omics datasets of circadian data simultaneously have only been used in a limited
fashion ([22]). This lack of multi-omic co-expression analyses of circadian data is likely
due to a plethora of hurdles to multi-omic analysis, many of which involve modeling
of the relationships between multi-omics data from time series data. In fact, while
there are several techniques that exist for the integration of multiple omics datasets,
few have been proven to be useful for longitudinal data ([24]). Those that can be
applied to longitudinal data either involve data transformation or necessitate modeling
step pre-integration ([25], [26], [27]). These limit the ability to perform co-expression
analysis, as transformation of the original expression patterns leads to a loss of direct
interpretability, making it challenging to assess the similarities of the original data
over time.

One way to mitigate these hurdles is to implement a strategy known as early inte-
gration. Early integration is the simplest multi-omic data integration method and
involves concatenating multiple omics datasets together. However, this method is not
frequently used as raw transcript and protein measurements can vary by orders of mag-
nitude ([28]). Our suite of software packages, the Pipeline for Amplitude Integration
of Circadian Exploration (PAICE) suite, including the Extended Circadian Harmonic
Oscillator (ECHO) program, allows us to overcome this as it fits relative expression
curves to longitudinal biological data that are comparable between data sets ([29]).
Given that ECHO allows for early integration, we hypothesize that we are able to
perform true multi-omics co-expression analysis on circadian multi-omics data.

Therefore, the aim of this study was to 1) develop a framework to perform
co-expression analysis of circadian multi-omic data and 2) use this framework to iden-
tify circadian rhythms and rhythm-regulated functions in mouse macrophages. To
do so, circadian transcriptomic and proteomic data previously collected from mouse
macrophages were first preprocessed to enable the comparison of transcript and pro-
tein time-series using our ECHO program. Subsequently, multiple network analysis
models were applied to 1) concurrently compute rhythms with the most similarities
to known circadian rhythms and 2) create clusters that are then utilized to construct
protein-protein interaction networks. The clusters we identified using this framework
showed that circadian rhythms drive aspects of the immune system and ribosomal
RNA processes in mouse macrophages. We found our co-expression framework to be
useful in identifying densely connected, perturbation-robust communities, and larger,
biologically relevant clusters. Moreover, we have designed a framework for others to
apply this approach to their own longitudinal multi-omic datasets. In total, our Dual-
approach Co-expression analysis Framework (D-CAF) builds a foundation that can
be used broadly to analyze circadian multi-omic data.
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2 Materials and Methods

A description of the application of the Dual-approach Co-expression analysis Frame-
work (D-CAF) to a multi-omic (transcriptomic and proteomic) circadian time-series
dataset is given below. A flowchart representing the overall steps in the framework can
be found in Figure 1. In short, the framework can be broken down into a data pre-
processing step, where early integration of the transcriptomic and proteomic datasets
are performed, a modeling step, where models are generated to group rhythms with
similar expression patterns over time, and a validation step, where the models are
validated using various methods.

2.1 Data Collection

Data from [30] were used as source data as model data for our framework develop-
ment. In this previously published data set, macrophages were collected from the bone
marrow of Per2::Luc or Per1/Per2 knockout mice aged 3-6 months old. Transcrip-
tomic measurements (RNA-sequencing data) were collected every two hours over a 48
hour window across three (independent) biological replicates. RNA-seq counts were
computed with HTseq, and the raw counts data were normalized to transcripts per
million. Proteomic measurements were also collected every two hours over a 48 hour
window across three biological replicates. Protein concentrations were measured via
multiplex tandem mass tag mass spectrometry. Further technical details on this data
set and data collection can be found in the source paper for the data ([30]).

2.2 Data Preprocessing

Early integration of the proteomic and transcriptomic datasets were performed to
merge both datasets into one multi-omic dataset. For early integration, both data
sets had to be transformed and normalized such that there was minimal heterogene-
ity between data sets. Since raw expression values of transcripts and proteins can
vary by factors of hundreds to thousands, our approach consisted of employing the
LIMBR and ECHO software packages to create comparable expression curves. LIMBR
first performed missing value imputation and batch effect removal of each individual
replicate for both the proteomic and the transcriptomic datasets individually. After
LIMBR, the data was processed through the ECHO software package in order to fit a
smoothed relative expression curve for all three biological replicates ([29],[31]).

2.2.1 Missing Value Imputation and Batch Normalization

To impute missing data and batch normalize the individual omics datasets, values in
the transcriptomic (transcripts per million) and proteomic (relative peptide concen-
tration) datasets were log2 normalized to reduce the skew and range of values at each
time point while still remaining representative of the proportional differences at each
time point. Next, unique peptides or reads from a given peptide or transcript respec-
tively were summed into one measurement, so each row in the dataset was a unique
peptide or transcript at a given time. Imputation was then performed using the K-
nearest neighbors algorithm with K = 10, with only rows with less than 30% values
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missing imputed to limit over-imputation. Next, batch effect removal was performed
to center the measurements around the same distribution to eliminate noise using sur-
rogate variable analysis. Once the data was batch effect normalized, measurements
from different peptides belonging to the same protein were averaged together. Further
information on this process can be found in the source paper ([31]).

2.2.2 Expression Curve Fitting

To create a smoothed relative expression curve for each protein or transcript, we
employed our ECHO program ([29]). ECHO analysis normalizes biological replicates
such that the transcript or protein mean is 0 and the row standard deviation is 1. This
normalized data is then fitted to a regression model, resulting in a relative expression
profile for each transcript and protein that is a weighted combination of the data from
the three replicates. ECHO also computes several parameters of the curve, such as the
initial amplitude, amplitude change coefficient, rhythm period, phase shift, and the
goodness of fit p-value, which were all useful properties to verify the similarity of two
rhythms. Further information on this process can be found in the source paper ([29]).

Using the combined LIMBR and ECHO approach, the rhythms of 36,000 tran-
scripts and 6,000 proteins were fitted. To ensure that the vast majority of rhythms
analyzed were representative of the original data, only transcripts or proteins with a
B-H adjusted p-value less than 0.01 were considered for further analysis ([32]). After
B-H score filtering, there were 10092 transcripts and 1986 proteins left for analysis.
Since relative expression curves of both the transcriptomic and proteomic data were
generated using the same LIMBR + ECHO workflow, this data was merged into one
multi-omic dataset consisting of 12,078 rhythms. This resulted in a final dataset of
12,078 rhythms (rows) and 24 columns (time points).

2.3 Network Analysis

Once we created our merged multi-omic dataset, we next sought to characterize sim-
ilarities between the expression profiles of transcripts and proteins in the multi-omic
dataset using network analysis. To build a network, first an N x N similarity matrix,
where N is the total number of analytes (12,078) in the dataset, was constructed
([33]). Each element of this matrix, s[i,j] corresponded to the similarity between ana-
lytes i and j, where i and j were between 1 and 12,078. The similarity metric used
in this study was the Pearson correlation between each pair of rhythms. As such, the
similarity between rhythm i and rhythm j, e.g., s[i,j], was always between 1 (perfectly
in-phase, overlapping) and -1 (perfectly antiphase). Networks were then defined by con-
verting the similarity matrices into adjacency matrices using a dual-approach network
analysis consisting of an unweighted network and a weighted network. Unweighted
networks were represented by discrete adjacency matrices where each value in the sim-
ilarity matrix was either converted to a 1, indicating two rhythms are ”connected”
in the network, or a 0, indicating no connection ([34]). These networks are computa-
tionally efficient and effective in modeling specific outcomes or circumstances due to
their binary nature. However, they may lack information about the resulting model.
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Fig. 1 A flowchart for the general D-CAF workflow. Data was first preprocessed to integrate the
individual omics datasets, after which both weighted and unweighted models were generated, and
finally validation was run on the optimal models.

Weighted analysis, conversely, uses a continuous adjacency matrix that involves trans-
forming the values in the similarity matrix such that larger correlation values have a
larger separation from smaller correlation values ([33]). In this way, weighted networks
are more accurately able to capture groups of highly correlated rhythms, but they are
computationally more expensive. Given their strengths and weaknesses, we used both
approaches to capture local similarities between rhythms through unweighted network
analysis and larger functional groups through weighted network analysis.

2.4 Unweighted Network Analysis

In our framework, unweighted network models were developed to find small commu-
nities of similar rhythms that show related patterns over time as compared to known
core clock genes and proteins. To create these unweighted networks, we computed
adjacency matrices using two methods: K-nearest neighbors (KNN) and correlation
thresholding (CT). These methods are defined further below. Groups of similar expres-
sion patterns were then computed via several graph partitioning algorithms. These
models were then validated with a robustness evaluation technique to determine if the
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computed communities are resilient to noise, e.g., if the similarity between two rhythms
is stable in the presence of noise. The optimal unweighted network model was then
selected and analyzed based on an assessment of all computed models’ robustness.

2.4.1 Correlation Thresholding

Correlation thresholding (CT) is a method to generate adjacency matrices that is often
used in biological co-expression analyses as the results are relatively easy to interpret
due to the use of a simple threshold of the similarity matrix (correlation matrix) ([35]).
Correlations above a threshold are marked as adjacent (1), while the rest are marked
as non-adjacent (0). In circadian studies, the absolute value of the correlation in CT
is typically used to group together in-phase and anti-phase rhythms. However, as the
goal of this study is to identify similar expression patterns among circadian rhythms,
adjacency matrices were built off a signed correlation matrix instead. In addition,
as there are relatively few time points, we necessitated a high correlation between
rhythms to consider two rhythms sufficiently similar to be considered related.

To determine a suitable correlation threshold, the percent of shared nearest neigh-
bors was plotted against the correlation between circadian rhythms. If there were very
few shared nearest neighbors at a correlation threshold, then this threshold would
likely be too low to consider two rhythms co-expressed. To set the parameters for this
procedure, we found the average number of overlapping nearest neighbors at several
correlation levels among transcripts and proteins with a circadian period (Figure 3).
In general, there were very few, if any pairs of analytes with overlapping neighbors
when the correlation between those analytes was less than 0.9. This demonstrated
that setting a CT above 0.9 was an appropriate threshold for network analysis and the
minimum CT used to create adjacency matrices was therefore set to 0.9. To garner a
better understanding of the correlation, three adjacency matrices were computed in
this work, using a CT of 0.9, 0.95, and 0.99.

2.4.2 K-Nearest Neighbors

K-Nearest Neighbors (KNN) is a widely used approach to identify similarities in bio-
logical data that, as opposed to CT, ranks each correlation to a given rhythm, sets
the highest K to 1, and sets all other relationships to 0 ([36], [37]). While this can
mean that some barely correlated rhythms are marked as related, KNN benefits from
being able to use directional relationships (e.g., i can be the nearest neighbor of j, but
j does not have to be the nearest neighbor of i).

To determine the parameters of the adjacency matrix using KNN, we found the
apt values of K by calculating the standard deviation of the period, phase shift, and
amplitude change coefficient among the K nearest neighbors, ranging from 10 to 150
nearest neighbors, in intervals of 10. Based on the low standard deviation of parame-
ters, K values of 20, 40, 80 and 100 were found to be appropriate and non-redundant
and were therefore used to construct the adjacency matrices (Figure 3B, C, and D).
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2.4.3 Model Generation

Using both a CT and KNN approach, we build our D-CAF framework to generate
models that identify groups of similarly expressed rhythms over time by partitioning
a co-expression network into communities. These models then needed to be validated
by evaluating their robustness to noise. To complete the partitioning step, graph par-
titioning (GP) algorithms, also known as community detection (CD) algorithms, were
applied to partition the network into densely connected communities (clusters) of
rhythms ([38]). In this framework, four CD algorithms were used: Leiden, RB Potts
(RBP), Asymptotic Surprise (AS), and Significance ([39], [40], [41], [42], [43]). Each
algorithm was applied to all 7 (3 CT, 4 KNN) computed unweighted networks (defined
by adjacency matrices). In total, 28 models were generated in this study by applying
each of the 4 community detection algorithms to each of the 7 adjacency matrices.
A graphical representation of this process is shown in Figure 2. These models parti-
tioned sets of rhythms into communities, resulting in a set of cluster labels for each
model that indicated, for each rhythm, which cluster that rhythm belongs to. From
these 28 models, the optimal model was then selected via robustness evaluation, e.g.
testing how a model’s cluster labels change when noise is introduced to the data.

As the purpose of this study was to specifically find circadian clusters, the clusters
produced by the models were further filtered by identifying clusters with an average
circadian period (20-28 hours) and small standard deviation in period. The overall goal
was to develop clusters with high within-cluster similarity and low between-cluster
similarity. To this end, standard deviation in the ECHO-derived oscillation parameters
(phase shift and period) were computed to determine the similarity of the rhythms
contained within a cluster. If the standard deviation of these parameters was low (e.g.
¡ 2 hours), then the rhythms within a cluster were considered to be highly similar.
Furthermore, the modularity of these clusters were computed to ensure the overall par-
titioned graph had many connections within each cluster and few connections between
clusters.

2.5 Weighted Network Analysis

While unweighted community detection finds small communities of rhythms, weighted
network analysis can identify large functional groups of co-expressed rhythms. To do
so, weighted networks were generated by weighting factor β of the similarity matrices
computed by the Weighted Gene Co-Expression Analysis package (WGCNA) based
on the truncated R2 value ([33]). The weighted similarity matrix was then generated
by raising each element of the original similarity matrix to a power β. By doing
this, high correlations remained high and low correlations converged towards zero.
Spectral clustering was applied to create clusters from this weighted similarity matrix,
primarily because it 1) was faster for continuous similarity matrices and 2) allowed for
the specification of the number of clusters to compute to avoid clusters that are too
small. 30 clusters were chosen from the WGCNA analysis as the standard deviation of
the within-cluster period plateaued for greater amounts of clusters, indicating larger
numbers of clusters did not create significantly more tight-knit clusters (Figure S1.1).
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Fig. 2 A graphical representation of the origin of the 28 unweighted models used in this study. 7
adjacency matrices were clustered using 4 community detection algorithms to create a total of 28
distinct models.
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The robustness of the resulting model was then computed using the same procedure
as the unweighted models to determine the reliability of the model.

2.6 Functional Enrichment Analysis

Circadian clusters were identified by selecting only clusters with average periods that
were approximately 24 hours (between 20-28 hours). Biological functions in clusters
were analyzed via protein-protein interaction (PPI) networks modeled by StringDB
([44]). Since the number of transcripts in this data outnumbered the amount of pro-
teins, there are many instances where each transcript does not have its corresponding
protein in the dataset. As such, analysis via methods that would analyze transcript-
protein pairs such as Reactome or PathviewDB analysis prove difficult with this
dataset. Therefore, PPI networks were chosen for biological analysis of clusters, as
it enables comparison of these transcripts with the proteins that were detected. By
inputting the members of each cluster, StringDB outputs a protein-protein interaction
network where nodes are analytes and edges indicated interactions. To analyze this
network, the PPI enrichment p-value was measured to determine if the number of con-
nections within the cluster was significantly greater than the number of connections
that would be expected in a random clustering of analytes. If there were significantly
more (p < 0.05) edges than expected in the PPI network, then the clusters identified
had some functional significance. Finally, gene ontology and reaction pathway analy-
sis was performed to determine potential pathways and functions that the molecules
in each cluster were related to.

2.7 Robustness Evaluation

After defining both the weighted and unweighted models, the models then had to be
validated to ensure quality. To do so, model robustness was evaluated by determining
how stable a model’s clustering output, referred to as C, was when noise was intro-
duced to the data. This was implemented as biological data can be inherently noisy,
and slightly different measurements in replicates could result in completely different
networks and clustering outputs. If a community detection model is robust to noise,
it means the relationship between the rhythms that were clustered are sufficiently
strong to ignore small amounts of noise. To do so, noise was simulated by adding or
subtracting a number randomly generated by a Gaussian distribution with mean = 0
and standard deviation = σ to each element in the original data matrix. The values
of σ used in this study were 0.05 to 0.5 in increments of 0.05, with greater values of
σ indicating greater severity of noise. This range was chosen to test how reliable a
community detection model was with only a small amount of noise (0.05) and severe
noise that would be expected to cause a decrease in robustness (0.5).

After applying Gaussian noise, the adjacency matrix was then re-created for each
network and community detection was reapplied to generate C*, the recomputed clus-
ter labels. The adjusted mutual information (AMI) score between C and C* was used
to measure the difference between these original cluster labels and the recomputed
cluster labels. When comparing two sets of cluster labels for a series of data points,
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Fig. 3 Parameter selection for adjacency matrices used in unweighted model construction. (A) shows
the average correlation among each rhythm’s 100 nearest neighbors. (B), (C), and (D) show the
average standard deviation in phase shift, period, and amplitude coefficient respectively among a
model’s K-nearest neighbors. Bars in green indicate values of K selected to create adjacency matrices
for unweighted model construction.
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we used an AMI score of 1 to represent total overlap, and an AMI score of 0 to rep-
resent total randomness ([45]). This was repeated 50 times for each model per σ. The
average AMI score among these 50 repetitions was recorded as the model’s robustness
to the severity of noise (σ). Models with greater AMI were deemed more robust to
noise, and therefore were a higher quality model.

3 Results

3.1 Unweighted Network Analysis of Macrophage Transcripts
and Proteins

Once we had a sound pipeline for D-CAF, we subjected our previously analyzed data
from Collins et al. to D-CAF unweighted analysis, with the goal of identifying densely
connected clusters of rhythmic elements that were also robust to perturbations ([30]).
We measured the robustness of the original 28 candidate models (Figure 2) and com-
puted the adjusted mutual information (AMI) score during repeated perturbation
analysis. Heatmaps containing the average AMI score of each model when perturbed
by small (σ=0.05) and severe (σ =0.5) noise are presented in Figure 4 (A and B). A
higher AMI (close to 1) indicates a more stable model, whereas a lower AMI indicates
that the model was not robust to noise, and is therefore not reliable ([46]).

At low noise severity (sigma = 0.05), we found the most robust models were those
that were generated using the Asymptotic Surprise (AS) and Significance community
detection algorithms. In general, the Leiden and RB Potts community detection algo-
rithms were less robust than the AS and Significance community detection algorithms,
likely because the AS and Significance algorithms are known to be able to be bet-
ter at forming small communities, which is the goal of unweighted network analysis.
In investigating the matrices, we found only the 0.99 CT Adjacency matrix was not
as robust as all the other matrices. This is likely due to the conservative correlation
threshold, where even slight perturbations would cause a rhythm to fall below the cor-
relation threshold of 0.99. At severe noise (sigma = 0.5), we found the maximum AMI
was achieved when the 80 and 100-NN matrices were paired with the AS community
detection algorithm (Figure 4B). Interestingly, all CT-based clustering models gener-
ated low AMI scores when challenged with severe noise, indicating that these cluster
models were not very reliable. This data reinforces the idea that candidate models
should be evaluated at multiple severities of noise to ensure cluster model robustness
when performing co-expression analysis.

Given all of the above, the 80-NN + AS model was selected and used for the
unweighted co-expression analysis of the data from Collins et al. ([30]). The 80-NN +
AS model partitioned the data into 84 clusters of rhythms. Of these, 18 were found
to have a circadian period (i.e. the average period +/- standard deviation for these
clusters was between 20-28 hours). Within each circadian cluster, the average stan-
dard deviation in period was 1.49 hours, indicating that the rhythms in each cluster
oscillated at approximately the same frequency. Furthermore, the average standard
deviation in phase shift within each cluster was 1.86 hours, indicating that rhythms
in the each cluster shared the same circadian phase. A cluster-by-cluster breakdown
of the cluster periods and phase shifts is presented in Table S1.1. The low standard
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Fig. 4 AMI scores identify optimal models to be used for Unweighted Network Analysis. Heatmaps
displaying the adjusted mutual information (AMI) of clusters predicted by unweighted analysis when
data was perturbed by Gaussian distributed noise with a standard deviation of 0.05 (A) and 0.5 (B).
Values closer to 1 indicate higher similarity between the perturbed and original clusters and implies
greater robustness.

deviation of rhythm parameters within each cluster demonstrated that the 80-NN +
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Fig. 5 Expression profiles of circadian clusters identified by Unweighted Network Analysis demon-
strate successful clustering. Each displayed cluster was found to have a circadian period, with the
average expression profile for the cluster bolded in black. As a comparison, the average expression
profile for the whole dataset is displayed bolded in red. The clusters contained 173 genes/proteins
(A), 189 genes/proteins (B), and 137 genes/proteins (C).

AS model successfully grouped similar rhythms without requiring explicit information
about the rhythm parameters (e.g., phase shift and period).

We next computed the modularity score of the clusters generated by the 80-NN +
AS model. The modularity of a cluster model score can fall between -1 and 1, and a
score closer to 1 means there are many connections within a cluster and few connections
between clusters (i.e., clusters are dense and distinct), which is optimal for a clustering
model ([47]). Previous research has indicated that a modularity above 0.3 indicates
that the structure of the network is not random ([48]). The computed modularity of
the 80-NN + AS model used in this study was 0.640, demonstrating that the clusters
found were both densely connected within each cluster and sparsely connected between
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Fig. 6 AMI scores for Weighted Network Analysis are similar to scores for the Unweighted Network
Analysis. Higher AMI indicates higher overlap between the perturbed clustering and the original
clustering. The severity of noise is represented by the standard deviation of the noise distribution.
AMI for each severity of noise is averaged over 50 repetitions.

clusters, further supporting that the 80-NN + AS model successfully clustered our
data.

When analyzing what transcripts and proteins were identified within the clusters,
we noted that transcripts/proteins that are a part of the core circadian transcription-
translation negative feedback loop were found within clusters identified by the 80-NN
+ AS model that oscillated with a circadian period (Figure 5). For example, Per1 and
Cry2, two genes that encode for components that regulate the core clock mechanism,
were found in the cluster represented in Figure 5A, while Cry1 and Npas2 were found
individually in other clusters (Figure 5B and C) ([12]). Notably, the cluster with
Per1 and Cry2 also contained the immune proteins Tm9sf1, Ptcra, and NTAL, all
genes/proteins not previously shown to have a relationship with the circadian clock
or circadian output ([49], [50], [51]). These genes/proteins have a correlation score of
0.884, 0.995, and 0.676 with respect to Per1, indicating that the unweighted analysis
was able to identify and cluster novel genes/proteins with known circadian clock genes.
As such, the clusters generated by our unweighted analysis present novel avenues of
investigation for circadian regulation.
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Fig. 7 PPI networks derived from A) the 80-NN + AS model and B) the SC + WN model. These
networks show a cluster containing several core clock components with only edges with a minimum
interaction score of 0.7 (high confidence) included for ease of visualization. Core clock components
are denoted in purple and IL-27 signaling components are denoted in red.

3.2 Weighted Network Analysis of Macrophage Transcripts
and Proteins

Although the small deviation in rhythm parameters from the unweighted network
clusters indicated high similarity between individual rhythms within the same cluster,
deriving global biological conclusions from these clusters was difficult as gene ontology
or pathway analysis requires a larger sample size to find enriched functions. For this
reason, we next employed the weighted network analysis function from D-CAF to ana-
lyze the data from Collins et al. ([30]) to develop clusters that could elucidate more
broad, large-scale network information within the multi-omics dataset. To this end,
fewer, larger clusters were generated by applying spectral clustering to the weighted
network (SC + WN) model as described above. Of the 30 clusters identified, 5 were
found to have a circadian period (i.e. the average period +/- standard deviation for
these clusters was between 20-28 hours). The average standard deviation in period
among these clusters was 2.28 hours, and the average standard deviation among the
phase shifts was 1.95 hours. Although these standard deviations were significantly
larger than the standard deviation of parameters among the circadian clusters gener-
ated by using an unweighted network approach, they were still close to the resolution
of the time series used to generate the data (2 hours).

The SC + WN model was validated by repeatedly perturbing the model by adding
Gaussian noise to the data, after which the AMI score was computed, with a larger σ
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indicating more perturbation to noise. As expected, the average AMI score of the SC
+ WN model decreased as noise decreased, but was similar to the AIM scores found
in the unweighted network analysis (Figure 6). Overall, this indicated similar, albeit
slightly less, robustness to noise in the weighted vs the unweighted analysis, and that
the models generated by the SC + WN model were properly clustering patterns within
the data.

StringDB was used to find biological functions regulated by analytes with similar
expression profiles to known clock transcripts and proteins. To this end, PPI enrich-
ment networks were constructed from each of the SC + WN circadian clusters and
we found that three of these networks had a PPI enrichment p-value less than 0.05,
indicating that the cluster contained more biologically related analytes than would be
expected in a random list of analytes. A list of p-values for each of the PPI networks
computed from the SC + WN circadian clusters is available in Table S1.2. One such
PPI network showed that rhythms from the IL-27 signaling pathway were contained
in the same cluster, and therefore had highly similar expression patterns to known
clock genes in mouse macrophages (Figure 7A). In addition to finding functionally
related clusters, weighted clusters uncover more connections than the unweighted clus-
ters (Figure 7B). When we created PPI enrichment networks from the unweighted and
weighted modeled data, we found that, though the same module of IL-27 analytes were
clustered with core clock genes, the weighted modeled data identified more auxiliary
connections (Figure 7A and Figure 7B), demonstrating while both the unweighted and
weighted models used in this study identify the same core information, the SC + WN
model creates a more comprehensive functional network.

4 Discussion

Analysis of multi-omics data has long been a hurdle in the circadian field. Our goal
in creating the D-CAF pipeline was to enable simultaneous co-expression analysis of
circadian, or any type, of transcript and protein time series measurements. To this
end, we utilized our LIMBR and ECHO software to successfully generate compara-
ble relative expression curves for raw transcriptomic and proteomic time series. The
successful integration is evidenced by the lack of clusters formed solely of isolated
transcript or protein data types after unweighted analysis (Figure S1.2). Following
this, co-expression analysis pathways for the multi-omic data were created using two
methods: unweighted and weighted network analysis, both of which partitioned the
data into densely connected clusters that were robust to Gaussian noise perturbation
(Figure 4). This robustness, combined with the small deviation in rhythm parameters
within each cluster, indicated this approach identified small and large groups that may
have regulatory relationships, with the unweighted networks identifying small cluster
groups that are highly related (Figures 5 and 7A) and the weighted networks grant-
ing insights into less related clusters that granted a more global view of the circadian
network (Figure 7B). In total, the combination of clustering approaches were useful
to find robust local and global relationships between known clock genes/proteins and
other genes/proteins not previously found to be related to the circadian clock. With
this, our D-CAF framework can be used by others to similarly analyze their own
multi-omic circadian data.
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As an example of these novel relationships, by unweighted analysis we found that
the transcripts Ptcra and Tm9sf1, and protein NTAL, were contained in the same clus-
ter as known clock genes Figure 5A. Ptcra regulates early T-cell development, Tm9sf1
has been shown to be involved in the inflammatory response to acute lung injury, and
NTAL is important for the signaling of mast cells that control the immune system,
suggesting further pathways by which circadian rhythms tune the immune system
([49], [52], [53]). Using weighted analysis, we highlighted components of the interferon
(IFN) signaling pathway (Ifit1, Ifit2, Ifit3, and Oas2), which are a major subclass of
IFN-stimulated genes (ISGs) known to coordinate innate immune signaling pathways
and directly inhibit viral protein synthesis. ([54]). These ISGs were significantly rep-
resented (P-value = 0.0142) in a cluster along with core circadian clock components
Cry2 and Per1, as well as accessory components Ciart, Nr1d1, Nr1d2, Tef, Dbp, and
Hdac5.

Circadian rhythms have been implicated in ISG responses across various tissues,
including the skin, lungs, and liver. In a study using pharmacological activation on
murine skin, ISG expression was found to vary depending on the treatment time
within the circadian cycle, primarily eliciting responses from epidermal immune cells,
particularly monocytes ([55]). Additionally, systemic Bmal1 knockout mice exhibited
an amplified ISG response in both skin and isolated epidermis, suggesting that mice
lacking circadian rhythms may experience heightened activation of the IFN pathway.
Transcriptomic data from primary human hepatocytes revealed that inflammatory
ISGs exhibit circadian-regulated expression patterns. However, when Bmal1 expression
is suppressed, a down-regulation of ISGs is observed ([56]). This suggests that the
induction of ISGs varies depending on the time of stimulation, potentially leading to
innate responses that fluctuate throughout the circadian day. SARS-CoV-2 has been
demonstrated to also induce IFNs and ISGs, both in in vivo and in vitro airway mucosa
([57]; [58]). ISGs, particularly members of the Ifit family, have been shown to exhibit
antiviral activity against SARS-CoV-2 ([59]). In Bmal1-silenced cells, the induction
of ISGs resulted in a decreased expression of the viral receptor angiotensin-converting
enzyme 2 (ACE2) and reduced viral entry into lung epithelial cells ([60]). This increase
in ISG transcripts could be regulated at various stages of the IFN sensing and signaling
pathways through direct or indirect mechanisms. These instances in skin, liver, and
lung, along with the relationships predicted by our networks, suggest that the ISG
antiviral response varies depending on the time of day.

There are limitations associated with this work. First, the network parameters were
chosen based on the properties of the data specifically used in this study (i.e., 24 time
points over 48 hrs), and networks for other datasets may not yield the same results.
Similarly, a very conservative BH adjusted p-value threshold was used to filter the
data, which may result in too many rhythms being filtered out for smaller datasets.
As such, the properties of datasets should be evaluated and used when tuning the
parameters used to apply the D-CAF framework.

In summary, we found D-CAF created a framework to successfully integrate multi-
omic data to find clusters of highly similar rhythms with biological relevance using a
validated and multifaceted analysis. The pairing of unweighted and weighted network
analysis facilitated the identification of relationships between clock genes/proteins and
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novel genes/proteins with a high correlation while simultaneously allowing for the
broad analysis of the circadian network. While any model generated must be vali-
dated, D-CAF presents a novel method to perform multi-omic co-expression analysis
of longitudinal omics data to determine previously unknown relationships.
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