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Preparation of microcrystalline 
cellulose from Rabdosia rubescens 
residue and study on its membrane 
properties
Meng Li1, Tong Wei1,2, Chaoyi Qian1 & Zhengyong Liang1*

Microcrystalline cellulose (MCC) was prepared easily from Rabdosia rubescens residue to realize the 
efficient utilization of waste resources. The yield was about 95.03% under the optimal conditions. 
Then, MCC membrane was prepared by phase transformation method and its structure and 
mechanical properties were studied systemically. The results showed the cellulose crystal structure 
changed from type I to type II in the process of forming membrane, and the thermal stability 
decreased simultaneously. The content of MCC in casting solution has great influence on the 
mechanical properties of membranes. The higher the content of MCC, the better the comprehensive 
mechanical properties of the membranes is. When MCC content is 9%, the tensile strength and 
elongation at break can reach 8.38 MPa and 26.72%, which is better than traditional cellulose 
membranes. Finally, the separation properties were studied by separation BSA from water. The results 
showed that the rejection rate and water flux changed positively and negatively with the change 
of MCC content. When the content was 5%, the membrane demonstrated the best comprehensive 
performance, its rejection for BSA was 37.23 g/(m2 h), the corresponding rejection rate and water flux 
were 88.87% and 41.89 L/(m2 h) respectively.

Rabdosia rubescens, a perennial herb of Labiatae and Plectranthus, is an important traditional Chinese medicine. 
R. rubescens grows widely in Taihang Mountains, Funiu Mountains and Dabie Mountains. Among them, Jiyuan 
county in Henan Province has the best quality of R. rubescens, which is bred artificially in a large quantities1. 
In the past, R. rubescens were always consumed as a tea for its health benefits2. In 1972, the esophageal cancer 
research center found that R. rubescens had a unique anticancer effect, which then has been widely used in clini-
cal practice3. R. rubescens has the functions of clearing away heat and detoxification, anti-bacterial, promoting 
blood circulation, relieving pain, preventing and fighting cancer. Thus, it is well known as Penicillin in traditional 
Chinese medicine4,5. In recent years, there have been many studies on the application of the single drug and its 
chemical constituents in R. rubescens.

The medicinal part of R. rubescens are stem and leaf. In pharmaceutical factories, they mainly use ethanol 
aqueous solutions to extract pharmaceutical ingredients6. Statistically speaking, one kilogram of hay can obtain 
0.1 to 0.12 kg extract, above 80% of the total extraction residue becomes solid waste, causing a waste of resources. 
The results from our previous study showed stem residue of R. rubescens is rich in cellulose, and its fiber quality 
is also excellent. If the stem residue is properly used, it is highly possible to turn waste into valuable resource. 
So, how to use the residue valuably is a meaningful research project.

It is well known that cellulose membranes have the characteristics of wide sources, low cost, biodegradabil-
ity, diverse properties and easy chemical modification, which have become one of the important development 
directions of functional membrane materials in recent years. In the process of preparing membrane materials, 
the quality of cellulose raw materials has important effect on the performance of membrane materials.

Among the numerous celluloses raw materials, microcrystalline cellulose (MCC) is a naturally occurring 
substance obtained from purified and partially depolymerized cellulose. It is a white particle with an average 
grain size of 20–80 μm, low polymerization degree7, high crystallinity8, and large specific surface area9, so it is 
more suitable for preparing regenerated cellulose membranes. At present, the most commonly used method 
for preparing MCC is acid hydrolysis. In response to the problems of high acid concentration causing equip-
ment corrosion, difficult treatment of waste liquid, and large water consumption. Although researchers have 
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attempted to develop some new acid hydrolysis methods, such as ultra-low acid hydrolysis methods, there 
always had more or less disadvantages of expensive but low active catalyst, higher temperature and difficulty of 
product seperating10,11. Meanwhile, MCC also suffers some drawbacks in properties that are desired for some 
applications, such as, poor wettability, moisture absorption, incompatibility with most polymeric matrices and 
limitation in processing temperature12. Therefore, the selection of appropriate raw materials, good preparation 
process and effective additives are very important to the performance of the membrane. Although there are cur-
rently reports that microcrystalline cellulose prepared with corn cob13, banana tree waste14, tea residue15, jute16 
and oil palm fiber17 as fillers used in the preparation of cellulose membranes. However, jute and oil palm fiber 
are expensive, and the supply of tea residue and banana tree waste is difficult. Corncobs are mainly used as feed, 
and their promotion is subject to certain restrictions. The R. rubescens residue does not have the above problems 
and can be used as a rich and high-quality source of cellulose. At the same time, the research on the preparation 
and performance of R. rubescens MCC and its membrane materials has not been reported before. In this paper, 
the conventional cellulose was treated by acid-catalyzed hydrolysis to obtain MCC. Depending on the intrinsic 
properties of MCC to overcome the shortcomings of conventional cellulose membrane such as low strength and 
uneven membrane pores, a cellulose membrane with better comprehensive properties was successfully prepared.

Materials and methods
Extraction of R. rubescens cellulose.  Rabdosia rubescens cellulose was extracted and purified according 
to the literature18.

Preparation of R. rubescens MCC.  2.00 g R. rubescens cellulose was mixed with 40 mL hydrochloric acid 
of certain concentration thoroughly in a 250 mL three mouth flask with mechanical agitatora and condenser, 
and then was carried out at a certain temperature for a period of time. When the reaction was terminated and 
cooled to room temperature, the mixture was filtered in vacuum and washed with distilled water to neutrality. 
Then dried at 60 °C to constant weight in a vacuum drying oven and crushed to obtain white microcrystalline 
cellulose powder.

In order to obtain the optimized operational conditions, according to the references19, the orthogonal experi-
ment was designed and carried out on the basis of pre-experiment. The selected experimental factors were 
Hydrogen chloride concentration (A), reaction temperature (B) and hydrolysis time (C) respectively. And the 
levels of factor A, B and C were designed and shown in Table 1.

Preparation of R. rubescens MCC membrane.  Under vacuum condition, the marketed 50% N-meth-
ylmorpholine-N-oxide (NMMO) aqueous solution was concentrated at 55 °C until 86.5% concentration. Then 
0.5% propyl gallate was added to the solution, shaken to store in a cool and dark place for later use20.

The MCC was added to the NMMO concentrated aqueous solution in a certain proportion, swelled in the 
reactor for 3–4 h at 100 °C, and then mechanically stirred until the cellulose was completely dissolved, forming a 
translucent amber gelatinous liquid. Let stand for 4 h at 100 °C for deaeration, pour the solution on a thermostatic 
glass plate at 85 °C, and scrape the membrane at a constant speed with an I-shaped coater (Specification: 500 μm). 
After scraping the membrane, quickly put it in the deionized water as coagulation bath for 24 h and change 
water every 8 h. The solidified R. rubescens officinalis MCC membrane was put into a glycerin aqueous solution 
(C3H8O3:H2O = 30 mL:100 mL) for plasticization for 1 h, then taken out, the surface moisture was absorbed by 
filter paper, and then placed in an vacuum drying oven at 60 °C for drying to constant weight.

FTIR analysis.  The samples were vacuum-dried at 80 °C for 12 h, then were ground and compressed with 
KBr powder, and scanned and analyzed from 4000 to 400 cm−1.

XRD analysis.  X-ray diffraction equipped (D8, Bruker, Germany) with Cu Kα radiation in the 2θ range 
3–50° with step size of 0.02°, was used under the operational conditions of 40 kV and 40 mA, scanning speed 
10°/min. Crystallinity index can be calculated from the height ratio between intensity of crystalline peak and 
total intensity of non-crystalline peak using the formula below21.

where, the CrI is crystallinity index, I002 is maximum intensity of the peak, and Iam is intensity of diffraction of 
the non-crystalline material.

(1)CrI =
(I002 − Iam)

I002
× 100%

Table 1.   The designed levels of the reaction factors.

Level A (%) B (°C) C (min)

1 5 60 60

2 10 70 70

3 15 80 80
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Thermal analysis.  6 mg sample was put into an alumina crucible, which was heated from 25 °C to 500 °C 
under the condition of nitrogen flow rate of 20 mL/min, and the heating rate was 10 °C/min.

Mechanical performance test.  The membrane samples were cut into a rectangle of 2.0 × 6.0 cm, and the 
mechanical properties were tested on a universal tensile testing machine. The tensile speed was 50 mm/min and 
the clamp was 50 mm. The testing method was referred to GB/T1040.3-2006 of China.

Separation performance test.  The membrane was cut into a circle with diameter of 4 cm, and measured 
with a prepared 1.00 g/L bovine serum albumin (BSA) aqueous solution, pre-pressured at 0.2 MPa for 20 min, 
and then set the pressure to 0.1 MPa for 10 min, and the measurement was collected. The membrane’s permeat-
ing flux was calculated by formula (2)22, the interception rate was calculated by formula (3), and the interception 
flux was calculated by formula (4), the BSA concentration of the permeate was measured by a spectrophotom-
eter, and compare it with the original solution to obtain the rejection rate23.

J: water flux, L/(m2 h); S: the effective area of the membrane, m2; V: the volume of liquid passing through the 
membrane in a certain time, L; t: the test time, h.

R: rejection rate, %; C0 : concentration of BSA in the stock solution, g/L; C1: concentration of BSA in the 
permeation solution, g/L.

Q: interception, g/(m2 h).

Results and discussion
Optimization of MCC preparation process by response surface methodology.  According to the 
model designed by response surface as shown in Table 2, the main breaking zone of hydrolysis reaction is in the 
amorphous region of cellulose, the non-crystalline part was removed, which increases the crystallinity of cellu-
lose and obtains more purified MCC. Our pre-studies have shown that the hydrolysis of cellulose requires much 
energy because of its large activation energy15,24,25. But if the energy is too high, the glycosidic bond of cellulose 
will be broken and hydrolyzed to soluble glucose, which will cause MCC loss directly. Meanwhile, if reaction 
time is excessively extended, the crystalline area of cellulose will also suffer a certain degree of damage. So, there 
have appropriate values for hydrogen chloride concentration, reaction time and temperature.

According to the results in Table 2, the influence order of the three factors is R(A) > R(B) > R(C). It shows that 
the concentration of HCl has the largest effect on hydrolysis reaction and should be gained especially attention. 
In fact, Hydrogen chloride acts on catalyst as a result of its strong acidity, not just the solvent. The best factors 
combination is A2B1C2, the corresponding yield of MCC is 95.48%. According to this result, three parallel 
experiments are carried, and the average yield of MCC is about 95.03% that is closed to the theoretical yield.

FTIR analysis.  As shown in Fig. 1, it can be seen from the FTIR spectrum that they all have the absorp-
tion peaks at 3400–3360 cm−1, 2930–2900 cm−1, 1634–1590 cm−1, 1370–1330 cm−1, 1050–1030 cm−1, and 900–
890  cm−1 in common represent the –OH stretching vibration peak, the –CH stretching vibration peak, and 

(2)J =
V

St

(3)R =

(

1−
C1

C0

)

× 100%

(4)Q = JC0R

Table 2.   Results and analysis of designed orthogonal experiments.

No A B C Yield (%)

1 1 1 1 92.08

2 1 2 2 94.95

3 1 3 3 91.25

4 2 1 2 95.48

5 2 2 3 92.34

6 2 3 1 92.95

7 3 1 3 91.07

8 3 2 1 91.03

9 3 3 2 88.29

K1 278.28 278.63 276.06

K2 280.77 278.32 278.72

K3 270.39 272.49 274.66

R 10.38 6.14 4.06
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–C=O stretching vibration peak, –CH bending vibration peak, –C–O–C stretching vibration characteristic peak 
and alienation β-bond26. It can be seen that the position of the basic characteristic peak of cellulose has not 
changed, which indicates that the molecular structure of the MCC was basically unchanged during the process of 
hydrolysis and the quality is basically consistent with the commercial MCC standard sample. It can be seen from 
the figure that the –OH stretching vibration peak of the cellulose membrane at 3445 cm−1 shifts to 3389 cm−1, 
indicating that the hydroxyl groups are rearranged after the cellulose membrane is dissolved and regenerated, 
and the hydrogen bond binding force decreases to produce a red shift. The absorption peak at 1020 cm-1 becomes 
sharp, indicating that the C–O in the amorphous region becomes stronger after regeneration and the cellulose 
crystal form has changed from type I to type II. The absorption peak at 898 cm−1 is that the amorphous band of 
the cellulose film becomes stronger and the degree of amorphous becomes larger27.

XRD analysis.  It can be seen from Fig. 2 that the positions of the diffraction peaks of Rabdosia cellulose, 
the R. rubescens MCC and standard MCC sample are the same, and diffraction peaks appear at 15.4°, 22.5°, 
and 34.6°, and their crystal structure is type I according to the interrelated theory28, indicating the preparation 
of MCC is basically as same as the MCC standard sample. Calculated with Segal formula, it is found that the 
crystallization index of MCC is slightly lower than MCC standard sample. The MCC membrane has a diffrac-
tion peak at 20.8°, and its crystal structure is type II29, indicating that the crystalline structure of cellulose has 
changed during the course of dissolution and precipitation in NMMO/H2O. After the membrane was formed, 
the diffraction intensity decreases, and the crystallinity index drops to 39.37%, which is attributed to the strong 
polar oxygen atoms on the N–O in the NMMO attacking the hydrogen bond and breaking it during the dissolu-
tion process.
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Figure 1.   FTIR spectrum of A (cellulose standard sample), B (Rabdosia cellulose), C (R. rubescens MCC), D 
(MCC standard sample) and E (MCC membrane).
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Figure 2.   XRD spectrum of A (standard MCC sample), B (R. rubescens MCC), C (Rabdosia cellulose) and D 
(MCC membrane).
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Thermal analysis.  The thermal curve of standard MCC sample, Rubescens rubescens MCC and R. rube-
scens MCC membrane measured at a heating rate of 10 °C/min are shown in Fig. 3. The thermal decomposition 
behavior of the samples can be roughly divided into three intervals. The first stage is the slight weight loss stage, 
which is mainly manifested by the volatilization of intermolecular bound water and additives. The second stage 
is the thermal decomposition stage which can cause a significant weight loss. The third stage is the stability of 
carbon formation, the sample has been basically carbonized at this stage, and the increase in temperature has 
relatively small effect on the weight loss of the residue30.

From Fig. 3a, compared with the standard sample, the thermal weight loss of R. rubescens MCC has similar 
curve. In the first stage, the weight loss rate of R. rubescens MCC is slightly lower than the standard sample, 
indicating that it is more hydrophilic than the standard sample. The initial pyrolysis temperature is about 275 °C, 
which is basically as same as the standard sample. It can be seen from the Fig. 3b that its maximum weight loss 
rate temperature is 327 °C, which is 22 °C lower than the standard sample, and the remaining residue rate was 
8.9%. Overall, the thermal stability of R. rubescens MCC is not much different from that of standard MCC sam-
ple. In sharp contrast, the initial pyrolysis temperature of R. rubescens MCC membrane is about 151 °C, and the 
maximum pyrolysis rate temperature is 218 °C. The thermal stability after membrane formation is lower than 
before membrane formation, which may be attributed to the dissolution and regeneration process. The hydrogen 
bond between the cellulose is not completely rebuilt after it was opened in NMMO/H2O, and the decrease in 
crystallinity after dissolution also affects the thermal stability of the MCC membrane22.

Influence of MCC content in casting solution on the mechanical properties.  Figure 4 presents 
the influence of the content of MCC in casting solution on the mechanical properties of the MCC membrane. It 
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can be seen that with the increase of the content, the tensile strength and elongation at break of the MCC mem-
brane both show an increasing trend. When the content of MCC increases from 5 to 9%, the tensile strength 
of the membrane increases from 3.20 MPa to 8.38 MPa and the elongation at break increases from 13.79% to 
26.72% respectively. It may be due to the increase in cellulose content in the casting solution ultimately. Because 
of the increase as the molecule numbers in per unit volume, extrusion with each other can be occurred, which 
can increase the intermolecular microcrystalline entanglement. At last, the tighter intermolecular connection 
improves mechanical properties of the membrane. However, it should be noted that as a functional separation 
membrane, the content of casting solution should not be too high, otherwise the membrane body will be too 
dense, which will reduce the permeability significantly and even make it losing the separation function.

Influence of MCC content in casting solution on the membrane’s hydrophilicity.  The contact 
angle is one of the indexes to measure the hydrophilic or hydrophobic properties of the membrane. The hydro-
philicity or hydrophobicity of the membrane has a certain influence on application field of the membrane.

Therefore, it is of great significance to control the hydrophilic and hydrophobic properties of the membrane. 
From perspective of cellulose structure containing hydrophobic carbon ring and hydrophilic hydroxyl group, so 
cellulose molecule should have certain amphiphilic property. Therefore, hydrophilic and hydrophobic proper-
ties of the membrane should be controllable in some ways. Our research team has determined the membranes 
formed by different cellulose contents in casting solution, finding that the contact angles of water against mem-
brane are also different. The contact angles are shown in Fig. 5 and Table 3. The data in Table 3 show that when 
the content of cellulose in casting solution increases, the contact angle increases concomitantly, indicating that 
the hydrophobicity of the cellulose membrane increases simultaneously. This is because the higher the content 
of microcrystalline fibers in the casting solution, the denser the membrane is. Meanwhile, the shrinkage of the 
membrane pores causes a smaller specific surface area and less exposed hydroxyl groups, which can reduce the 
hydrophilicity of membrane to a certain extent.

Effect of MCC content in casting solution on the separation performance of membrane.  The 
water flux and rejection rate of membrane are both important indicators to characterize the performance of 
the membrane. Here, the flux and rejection rate of the membrane formed by the casting liquid with different 
MCC content to 1.0 g/L bovine serum albumin (BSA) aqueous solution were determined under the pressure of 
0.1 MPa. The results are presented in Fig. 6.

It can be seen from Fig. 6 that under the same pressure, with the increasing of the cellulose content in the cast-
ing solution, the water flux of the formed membrane shows a downward trend, but the rejection rate continues to 
increase. When it reaches 7%, the water flux still declines but the rejection rate hardly changes. This phenomenon 
is due to the increase in the force among cellulose molecules as a result of increase in cellulose content, which 
will be more tightly bonded to each other when forming a membrane. So, the membrane pore size will become 
smaller and reduce the water flux. Those results are almost consistent with the previous conclusion that the 
higher the cellulose content in the casting solution, the stronger the hydrophobicity of the cellulose membrane 
is, which is accompanied by a certain exclusion effect on water.

Therefore, selecting the appropriate cellulose content is of great significance to the separation effect of the 
regenerated cellulose membrane. Here, under a certain pressure, the solute rejection amount per unit time and 
unit area (Q) of the membrane represents the separation efficiency of the cellulose membrane.

It can be seen from Fig. 7 that the cellulose membrane formed by casting solution with 5% cellulose content 
has the highest rejection amount of BSA, and its value can reach 37.23 g/(m2 h).

The digital picture of the film.  The cellulose membranes prepared by casting solution with 5% and MCC 
content were photographed by a digital camera. The photos are demonstrated in Fig. 8.

Figure 5.   Contact angle photo of membranes prepared from casting solutions with different MCC content.

Table 3.   Contact angle of membranes with different MCC content in casting solution.

MCC content (%) 4 5 6 7 8

Contact angle (°) 18.6 24.7 29.4 31.0 36.8
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membrane.

4 5 6 7 8

20

24

28

32

36

40

in
te

rc
ep

tio
n 

(g
/(m

2 ●h
))

MCC  content (%)

Figure 7.   Effect of MCC content in casting solution on the Q value of the membrane.

Figure 8.   Digital photos of film with 5% (a) and 8% (b) MCC content in casting solution.
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Figure 8 shows that the film with 5% MCC content is flat, smooth and transparent, while the other is wrinkled 
and the transparency decreases. Theoretically, as the cellulose concentration increases, the viscosity of the casting 
solution gradually increases. When the cellulose concentration is too low, the number of cellulose molecules per 
unit volume is small, the interaction force is weak, and the fluidity is too large, so it is difficult to form a film. On 
the other hand, if the cellulose concentration is too large, the viscosity of the casting film is too high and the fluid-
ity becomes poor, resulting in uneven film formation. 5% content is appropriate for casting solution in practice.

SEM analysis of the membrane.  The cellulose membrane prepared by casting solution with 5% MCC 
content has the relative best separation performance, so it was taken as the test object, and its microstructure was 
analyzed using SEM analysis. The plane and section structure are shown in Fig. 9.

It can be seen from Fig. 9a that the surface of membrane is smooth, flat and uniform without obvious struc-
tural defects in general. As can be seen from Fig. 9b section, the section of the membrane shows a high density 
spongy shape, indicating the bondings among the cellulose molecules are combined tightly. So, the membrane 
can show a high mechanical strength and separation performance.

Conclusions
In this paper, MCC of R. rubescens residue was prepared via hydrolysis in dilute hydrochloric acid and the yield 
of MCC was about 95.03% under the optimized conditions. Then, the MCC membrane was prepared from MCC 
and characterized by FT-IR, SEM, XRD, TG and DSC. The results show that the crystalline form of cellulose 
changes from cellulose I to cellulose II in the preparation of cellulose membrane. At the same time, the thermal 
stability of cellulose decreases greatly. It was also found that the content of MCC in the casting solution has a 
great influence on the mechanical properties of the MCC membrane, and the tensile strength and elongation at 
break increase with the concentrating of MCC in casting solution. It is worth noting that the relationship between 
membrane separation performance and MCC content is more complicated. The rejection rate and water flux 
change with MCC content positively and negatively. When water flux increases from 21.66 L/(m2 h) to 43.31 L/
(m2 h), the rejection rate drops from 95.80% to 83.56% correspondingly. So, in practical application, it is neces-
sary to choose a suitable balance between rejection rate and water flux to meet the requirements of the specific 
process aiming to a satisfied result.
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References
	 1.	 Wang, X. M., Xie, C. X. & Chen, S. L. Study on the regionalization of the suitable producing areas of Rabdosia rubescens. J. Anhui 

Agric. Sci. 36, 13677–13680 (2008).
	 2.	 Zhao, J., Deng, J. W. & Chen, Y. W. Advanced phytochemical analysis of herbal tea in China. J. Chromatogr. A 1313, 2–23. https://​

doi.​org/​10.​1016/j.​chroma.​2013.​07.​039 (2013).
	 3.	 Peng, M., Liu, B. & Mao, M. Study on the application of Chinese patent drug and chinese formula of Rabdosia rubescens. IOP Conf. 

Ser. 301, 012060. https://​doi.​org/​10.​1088/​1757-​899X/​301/1/​012060 (2018).
	 4.	 Han, J., Ye, M. & Chen, H. Determination of diterpenoids and flavonoids in Isodon rubescens by LC-ESI-MS-MS. Chromatographia 

62, 203–207. https://​doi.​org/​10.​1365/​s10337-​005-​0590-z (2005).
	 5.	 Ikezoe, T. Oridonin induces growth inhibition and apoptosis of a variety of human cancer cells. Int. J. Oncol. 23, 1187–1193 (2003).
	 6.	 Yang, Y. C. & Wei, M. C. Kinetic and characterization studies for three bioactive compounds extracted from Rabdosia rubescens 

using ultrasound. Food. Bioprod. Process. 94, 101–113. https://​doi.​org/​10.​1016/j.​fbp.​2015.​02.​001 (2015).
	 7.	 Shlieout, G., Arnold, K. & Müller, G. Powder and mechanical properties of microcrystalline cellulose with different degrees of 

polymerization. AAPS. Pharm. Sci. Tech. 3, 45–54 (2002).
	 8.	 El-Sakhawy, M. & Hassan, M. L. Physical and mechanical properties of microcrystalline cellulose prepared from agricultural 

residues. Carbohydr. Polym. 67, 1–10. https://​doi.​org/​10.​1016/j.​carbp​ol.​2006.​04.​009 (2007).

Figure 9.   SEM images (floor plan (a) and cross section (b)) of the membrane prepared by casting solution with 
5% MCC content.

https://doi.org/10.1016/j.chroma.2013.07.039
https://doi.org/10.1016/j.chroma.2013.07.039
https://doi.org/10.1088/1757-899X/301/1/012060
https://doi.org/10.1365/s10337-005-0590-z
https://doi.org/10.1016/j.fbp.2015.02.001
https://doi.org/10.1016/j.carbpol.2006.04.009


9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:18956  | https://doi.org/10.1038/s41598-021-98645-x

www.nature.com/scientificreports/

	 9.	 Fechner, P. M., Wartewig, S. & Manfred, F. Properties of microcrystalline cellulose and powder cellulose after extrusion/spher-
onization as studied by fourier transform Raman spectroscopy and environmental scanning electron microscopy. AAPS. Pharm. 
Sci. Tech. 5, 77–89 (2003).

	10.	 Zhang, Y. Q., Xu, Y. J. & Yue, X. P. Isolation and characterization of microcrystalline cellulose from bamboo pulp through extremely 
low acid hydrolysis. J. Wood Chem. Technol. 39, 242–254 (2019).

	11.	 Hou, W. S., Chen, L., Shi, S. & Yan, Z. F. Preparation and characterization of microcrystalline cellulose from waste cotton fabrics 
by using phosphotungstic acid. Int. J. Biol. Macromol. 123, 363–368 (2019).

	12.	 Haafiz, M. K. M. A., Zakaria, Z. & Inuwa, I. M. Properties of polylactic acid composites reinforced with oil palm biomass micro-
crystalline cellulose. Carbohydr. Polym. 98, 139–145 (2013).

	13.	 Shao, X., Wang, J. & Liu, Z. Preparation and characterization of porous microcrystalline cellulose from corncob. Ind. Crops Prod. 
151, 112457. https://​doi.​org/​10.​1016/j.​indcr​op.​2020.​112457 (2020).

	14.	 Elanthikkal, S., Gopalakrishnapanicker, U. & Varghese, S. Cellulose microfibres produced from banana plant wastes: Isolation and 
characterization. Carbohydr. Polym. 80, 852–859. https://​doi.​org/​10.​1016/j.​carbp​ol.​2009.​12.​043 (2010).

	15.	 Zhao, T. & Zheng, Z. G. Preparation and characterization of microcrystalline cellulose (MCC) from tea waste. Carbohydr. Polym. 
184, 164–170. https://​doi.​org/​10.​1016/j.​carbp​ol.​2017.​12.​024 (2018).

	16.	 Jahan, M. S., Saeed, A. & He, Z. Jute as raw material for the preparation of microcrystalline cellulose. Cellulose 18, 451–459. https://​
doi.​org/​10.​1007/​s10570-​010-​9481-z (2011).

	17.	 Xiang, L. Y., Mohammed, M. A. & Samsubaharuddin, A. Characterisation of microcrystalline cellulose from oil palm fibres for 
food applications. Carbohydr. Polym. 148, 11–20. https://​doi.​org/​10.​1016/j.​carbp​ol.​2016.​04.​055 (2016).

	18.	 Maheswari, C. U., Reddy, K. O., Dhlamini, M. S., Mothudi, B. M. & Rajulu, A. V. Extraction and structural characterization of 
cellulose from milkweed floss. Sep. Sci. Technol. 52, 2677–2683 (2017).

	19.	 Kalita, R. D., Narth, Y. & Ochubiojo, M. E. Extraction and characterization of microcrystalline cellulose from fodder grass; setaria 
glauca (l) p. beauv, and its potential as a drug delivery vehicle for isoniazid, a first line antituberculosis drug. Colloids. Surf. B. 108, 
85–89. https://​doi.​org/​10.​1016/j.​colsu​rfb.​2013.​02.​016 (2013).

	20.	 Rosenau, T. et al. Cellulose solutions in N-methylmorpholine-N-oxide (NMMO)-degradation processes and stabilizers. Cellulose 
9, 283–291. https://​doi.​org/​10.​1023/A:​10211​27423​041 (2002).

	21.	 Segal, L., Creely, J. & Martin, A. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray 
diffractometer. Text. Res. J. 29, 786–794 (1959).

	22.	 Weng, R., Chen, L. & Xiao, H. Preparation and characterization of cellulose nanofiltration membrane through hydrolysis followed 
by carboxymethylation. Fibers. Polym. 18, 1235–1242. https://​doi.​org/​10.​1007/​s12221-​017-​7200-1 (2017).

	23.	 Wang, Z., Crandall, C. & Prautzsch, V. L. Electrospun regenerated cellulose nanofiber membranes surface-grafted with water-
insoluble Poly(HEMA) or water-soluble Poly(AAS) chains via the ATRP method for ultrafiltration of water. Acs. Appl. Mater. 
Interfaces. 9, 4272–4278. https://​doi.​org/​10.​1021/​acsami.​6b161​16 (2017).

	24.	 Ren, H. W., Shen, J. L. & Zhu, X. Q. Process optimization and structure characterization of microcrystalline cellulose from Jerusalem 
artichoke straw. Chin. J. Food. Sci. 18, 119–127. https://​doi.​org/​10.​16429/j.​1009-​7848.​2018.​01.​016 (2018).

	25.	 Han, Y., Li, F. P. & Fang, T. T. Study on preparation of microcrystalline cellulose from reed by acid method. China. Pap. 34, 71–74 
(2015).

	26.	 Mandala, A. & Chakrabartyd, J. C. P. Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. 
Chakrabartyd. Carbohydr. Polym. 86, 1291–1299. https://​doi.​org/​10.​1016/j.​carbp​ol.​2011.​06.​030 (2011).

	27.	 Xu, Y. J. & Jia, X. J. Characterization of aggregate structure of NMMO/cellulose solution and its regenerated cellulose. J. Shanxi. 
Univ. Sci. Technol. 34, 25–29 (2016).

	28.	 Wang, Z., Yao, Z. J. & Zhou, J. Reuse of waste cotton cloth for the extraction of cellulose nanocrystals. Carbohydr. Polym. 157, 
945–952. https://​doi.​org/​10.​1016/j.​carbp​ol.​2016.​10.​044 (2016).

	29.	 Han, J., Zhou, C. & French, A. D. Characterization of cellulose II nanoparticles regenerated from 1-butyl-3-methylimidazolium 
chloride. Carbohydr. Polym. 94, 773–781. https://​doi.​org/​10.​1016/j.​carbp​ol.​2013.​02.​003 (2013).

	30.	 Fahma, F., Iwamoto, S. & Hori, N. Isolation, preparation, and characterization of nanofibers from oil palm empty-fruit-bunch 
(OPEFB). Cellulose 17, 977–985. https://​doi.​org/​10.​1007/​s10570-​010-​9436 (2010).

Acknowledgements
This work was supported by Opening Foundation of Zhengzhou University-Jiyuan Research Institute 
(20180495A).

Author contributions
M.L. wrote the main manuscript text. Tong Wei prepared Tables 1–2. C.Q. did the formal analysis. Z.L. reviewed 
and edited the final manuscript text.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to Z.L.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

https://doi.org/10.1016/j.indcrop.2020.112457
https://doi.org/10.1016/j.carbpol.2009.12.043
https://doi.org/10.1016/j.carbpol.2017.12.024
https://doi.org/10.1007/s10570-010-9481-z
https://doi.org/10.1007/s10570-010-9481-z
https://doi.org/10.1016/j.carbpol.2016.04.055
https://doi.org/10.1016/j.colsurfb.2013.02.016
https://doi.org/10.1023/A:1021127423041
https://doi.org/10.1007/s12221-017-7200-1
https://doi.org/10.1021/acsami.6b16116
https://doi.org/10.16429/j.1009-7848.2018.01.016
https://doi.org/10.1016/j.carbpol.2011.06.030
https://doi.org/10.1016/j.carbpol.2016.10.044
https://doi.org/10.1016/j.carbpol.2013.02.003
https://doi.org/10.1007/s10570-010-9436
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Preparation of microcrystalline cellulose from Rabdosia rubescens residue and study on its membrane properties
	Materials and methods
	Extraction of R. rubescens cellulose. 
	Preparation of R. rubescens MCC. 
	Preparation of R. rubescens MCC membrane. 
	FTIR analysis. 
	XRD analysis. 
	Thermal analysis. 
	Mechanical performance test. 
	Separation performance test. 

	Results and discussion
	Optimization of MCC preparation process by response surface methodology. 
	FTIR analysis. 
	XRD analysis. 
	Thermal analysis. 
	Influence of MCC content in casting solution on the mechanical properties. 
	Influence of MCC content in casting solution on the membrane’s hydrophilicity. 
	Effect of MCC content in casting solution on the separation performance of membrane. 
	The digital picture of the film. 
	SEM analysis of the membrane. 

	Conclusions
	References
	Acknowledgements


