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Abstract
The	 digestive	 system	 cancers	 are	 aggressive	 cancers	 with	 the	 highest	 mortality	
worldwide.	In	this	study,	we	undertook	a	systematic	investigation	of	the	tumor	im‐
mune	microenvironment	to	identify	diagnostic	and	prognostic	biomarkers.	The	frac‐
tion	of	22	immune	cell	types	of	patients	were	estimated	using	CIBERSORT.	The	least	
absolute	shrinkage	and	selection	operator	(LASSO)	analysis	was	carried	out	to	iden‐
tify	 important	 immune	predictors.	By	comparing	 immune	cell	compositions	 in	801	
tumor	samples	and	46	normal	samples,	we	constructed	the	diagnostic	immune	score	
(DIS),	showing	high	specificity	and	sensitivity	in	the	training	(area	under	the	receiver	
operating	characteristic	curve	[AUC]	=	0.929),	validation	(AUC	=	0.935),	and	different	
cancer	type	cohorts	(AUC	>	0.70	for	all).	We	also	established	the	prognostic	immune	
score	(PIS),	which	was	an	effective	prognostic	factor	for	relapse‐free	survival	in	train‐
ing,	 validation,	 and	entire	 cohorts	 (P	<	 .05).	 In	 addition,	PIS	provided	a	higher	net	
benefit	than	TNM	stage.	A	composite	nomogram	was	built	based	on	PIS	and	patients'	
clinical	 information	with	well‐fitted	calibration	curves	 (c‐index	=	0.84).	We	further	
used	other	 cohorts	 from	Gene	Expression	Omnibus	databases	 and	obtained	 simi‐
lar	results,	confirming	the	reliability	and	validity	of	the	DIS	and	PIS.	In	addition,	the	
unsupervised	clustering	analysis	using	immune	cell	proportions	revealed	6	immune	
subtypes,	suggesting	that	the	immune	types	defined	as	having	relatively	high	levels	
of	M0	or/and	M1	macrophages	were	the	high‐risk	subtypes	of	relapse.	In	conclusion,	
this	study	comprehensively	analyzed	the	tumor	immune	microenvironment	and	iden‐
tified	DIS	and	PIS	for	digestive	system	cancers.
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1  | INTRODUC TION

The	 digestive	 system	 consists	 of	 digestive	 tract	 and	 digestive	 ac‐
cessory	organs.	The	DSCs,	a	worldwide	health	problem,	share	many	
characteristics,	 suggesting	common	etiological	pathways	or	mech‐
anisms.1	 The	 DSCs	 are	 the	 leading	 cause	 of	 cancer‐related	 death	
worldwide.	Among	all	the	cancer	types,	colon	cancer,	stomach	can‐
cer,	liver	cancer,	rectum	cancer,	and	esophageal	cancer	are	the	top	
10	most	 commonly	diagnosed	cancers	 and	 the	 top	10	most	 lethal	
types2	because	of	difficulty	of	early	stage	diagnosis	and	limitations	
of	current	therapeutic	methods.	Therefore,	it	is	critical	to	find	effec‐
tive	biomarkers	for	prompt	diagnosis	and	prognosis.

Increasing	studies	suggest	the	importance	of	the	immune	micro‐
environment	on	DSC	development,3‐6	which	could	provide	potential	
biomarkers	to	improve	the	reliability	and	precision	of	diagnosis	and	
prognosis.	 However,	 because	 of	 the	 complex	 and	 dynamic	 nature	
of	the	immune	microenvironment,	our	understanding	of	its	role	re‐
mains	incomplete.	Tumor‐infiltrating	immune	cells	are	a	part	of	the	
complex	 microenvironment.	 They	 play	 a	 key	 role	 in	 inhibiting	 or	
supporting	 the	 growth	 and	development	of	 tumors,	which	 can	be	
effectively	 targeted	 by	 drugs	 and	 are	 related	 to	 the	 survival	 time	
of	patients.7,8	Although	the	immune	microenvironment	has	been	re‐
cently	analyzed	in	pan‐cancer	or	specific	cancers,8,9	no	studies	have	
been	carried	out	to	provide	the	comprehensive	immune	profile	spe‐
cifically	for	DSCs.

A	 new	 algorithm	 for	 enumeration	 of	 immune	 cell	 subsets,10 
CIBERSORT,	provides	the	possibility	to	identify	immune	biomarkers	
for	diagnosis	and	prognosis.	CIBERSORT	contains	547	genes	and	is	
highly	 sensitive	 and	 specific	 to	 22	 phenotypes	 of	 human	 immune	
cells,	which	can	properly	determine	the	diversity	and	landscape	of	
tumor‐infiltrating	 immune	 cells.	 Because	 of	 the	 superior	 perfor‐
mance	 of	 CIBERSORT,	 increasing	 attention	 has	 been	 aroused	 in	
many	studies	on	the	tumor	microenvironment.11,12

In	the	present	study,	we	used	CIBERSORT	to	estimate	the	pro‐
portions	of	22	immune	cells	based	on	the	gene	expression	profiling	
of	DSC	patients.	Then	we	applied	LASSO	analysis	to	identify	import‐
ant	immune	predictors	and	build	diagnostic	and	prognostic	immune	
signature,	which	can	provide	a	powerful	means	of	early	detection	
and	predicting	survival.

2  | METHODS AND MATERIAL S

2.1 | Patients and datasets

This	study	used	data	from	the	public	domain.	The	cohort	of	DSCs	
for	 identifying	 the	 immune	 signature	 consists	 of	 1874	 patients	 in	
TCGA.	 Six	major	 cancer	 types	were	 included:	 ESCA,	 STAD,	 LIHC,	
PAAD,	COAD,	and	READ.	Level	3	data	of	gene	expression	profiles	of	
patients	were	downloaded	from	TCGA	database	(https	://tcga‐data.
nci.nih.gov/tcga/),	 a	 large‐scale	 public	 data	 platform	portal,	meas‐
ured	experimentally	using	the	Illumina	HiSeq	2000	RNA	Sequencing	
platform	 (October	 13,	 2017).	 At	 the	 same	 time,	 patients'	 clinical	
characteristics	were	also	obtained	from	TCGA	data	portal,	including	

age,	gender,	survival	time,	outcome,	and	TNM	stage.	The	data	were	
extracted	 from	 TCGA	 database,	 strictly	 following	 the	 publication	
guidelines	approved	by	TCGA.	Therefore,	there	was	no	requirement	
for	ethics	committee	approval.

2.2 | Estimation of immune cell type fractions

To	quantify	the	proportions	of	immune	cells,	the	CIBERSORT	algo‐
rithm	was	used.	The	normalized	gene	expression	data	were	uploaded	
to	the	CIBERSORT	web	portal,	running	with	the	LM22	signature	and	
1000	permutations.10	LM22,	22	infiltrating	immune	cells,	includes	B	
cells,	T	cells,	natural	killer	cells,	macrophages,	dendritic	cells,	and	my‐
eloid	subsets.	CIBERSORT	derives	a	P	value	for	the	deconvolution	
of	each	sample	using	Monte	Carlo	sampling,	providing	a	measure	of	
confidence	in	the	results.11	The	CIBERSORT	results	of	samples	with	
P	<	 .05	 indicate	that	the	 inferred	fractions	of	 immune	cell	popula‐
tions	 produced	 by	 CIBERSORT	 are	 accurate.	 Therefore,	 only	 pa‐
tients	with	CIBERSORT	P	<	.05	were	considered	eligible	for	further	
analysis.	 For	 each	 sample,	 the	 final	 CIBERSORT	 output	 estimates	
were	normalized	and	immune	cell	type	fractions	summed	up	to	one.

2.3 | Diagnostic analysis

According	 to	 the	 inclusion	criteria:	 (i)	patients'	CIBERSORT	results	
were P	<	.05;	and	(ii)	samples	were	primary	or	normal	tissues,	eligible	
samples	were	selected	for	further	diagnostic	analysis.	Subsequently,	
the	patients	were	 randomly	 separated	 into	 training	 and	validation	
cohorts	(3:1)	using	the	“Sample	function”	in	R	software.	Then	LASSO	
analysis,	 as	 a	 statistical	 method,	 was	 carried	 out	 to	 identify	 the	
most	 important	 immune	cells,	whose	predictive	accuracy	could	be	
improved	significantly.	The	DIS	was	built	based	on	the	coefficients	
of	 LASSO‐logistic	 analysis	 in	 the	 training	 cohort,	which	 could	 dif‐
ferentiate	tumor	and	normal	tissues.	In	addition,	the	sensitivity	and	
specificity	of	the	diagnostic	models	were	analyzed	by	ROC	curves.

2.4 | Prognostic analysis

The	primary	endpoint	for	prognostic	analysis	in	the	study	was	RFS,	
defined	as	the	time	from	the	date	of	the	first	diagnosis	to	the	date	
of	the	earliest	recurrence.	According	to	the	inclusion	criteria:	(i)	pa‐
tients'	CIBERSORT	results	were	P	<	.05;	(ii)	samples	were	primary	tis‐
sues;	and	(iii)	patients'	RFS	information	was	complete.	Subsequently,	
the	eligible	patients	were	randomly	separated	into	training	and	vali‐
dation	cohorts	(3:1).	In	addition,	the	optimal	cut‐off	values	of	each	
immune	cell	type	were	evaluated	based	on	the	patients'	RFS	and	cell	
fraction	 using	 the	 “survminer”	 package.	 The	 LASSO‐Cox	 analysis	
was	 then	used	 to	obtain	 the	most	useful	predictive	 features	 from	
the	 training	 cohort.	 Similarly,	 the	 PIS	was	 built	 based	 on	 the	 cor‐
responding	coefficients.	To	evaluate	the	distinguishing	ability	of	pa‐
tients'	 outcome,	 the	Kaplan‐Meier	 survival	 curves	were	used,	 and	
time‐dependent	ROC	(survival	ROC)	curves	were	applied	to	assess	
the	PIS	prognostic	power.	Moreover,	 the	clinical	usefulness	of	PIS	
was	 determined	 by	 quantifying	 the	 net	 benefits	 under	 different	
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threshold	 probabilities	 using	 decision	 curve	 analysis.13	 Finally,	 to	
provide	a	quantitative	tool	for	predicting	the	individual	probability	of	
patients'	prognosis,	we	built	a	prognostic	nomogram	on	the	basis	of	
PIS	and	patients'	clinical	information.	Calibration	curves	were	plot‐
ted	 to	 compare	 the	 expected	 and	 observed	 survival	 probabilities.	
The	discrimination	of	the	TNM	stage,	PIS,	and	prognostic	nomogram	
was	measured	and	compared	by	the	c‐index.

2.5 | Validation of DIS and PIS using GEO datasets

To	confirm	the	reliability	and	validity	of	the	DIS/PIS,	we	used	other	
cohorts	 from	GEO	 databases	 according	 to	 the	 following	 inclusion	
criteria:	 (i)	 diagnosis	 of	 patients	 with	 DSCs;	 (ii)	 mRNA	 expression	
level	in	tissue	samples;	(iii)	for	DIS	validation,	the	dataset	provided	
tumor	and	normal	 samples;	 and	 (iv)	 for	PIS	validation,	 the	dataset	
provided	patients'	survival	information.	The	exclusion	criteria	were:	
(i)	 datasets	 with	 small	 sample	 size	 (n	 <	 50);	 and	 (ii)	 datasets	 that	
used	cell	line	or	animal	samples.	Therefore,	we	selected	GSE23400,	
GSE13195,	 GSE22058,	 GSE62452,	 GSE90627,	 GSE53625,	
GSE26253,	GSE76427,	and	GSE38832	to	validate	the	results	from	
TCGA	database.

2.6 | Discovery of immune subtypes

To	investigate	possible	associations	between	distinct	classes	of	im‐
mune	cell	infiltration	and	patient	prognosis,	we	carried	out	unsuper‐
vised	clustering	of	the	infiltrating	immune	cells,	dividing	patients	into	
different	immune	subtypes.	According	to	patients'	clinical	informa‐
tion,	the	survival	analysis	of	immune	subtypes	was	also	carried	out.	
Combining	PIS	distribution	and	survival	analysis,	high‐risk	 immune	
subtypes	were	identified.

2.7 | Statistical analysis

All	data	were	expressed	as	mean	±	SD.	Group	comparisons	were	un‐
dertaken	for	continuous	variables	using	Student's	t	test	or	one‐way	
ANOVA.	 The	 LASSO	 analysis	 was	 undertaken	 using	 the	 “glmnet”	
package.	 Survival	ROC	was	plotted	using	 the	 “survivalROC”	pack‐
age.	Decision	curve	analysis	was	carried	out	with	the	“rmda”	pack‐
age.	 Nomograms	 and	 calibration	 plots	 were	 undertaken	 with	 the	
“rms”	package.	Survival	analyses	and	c‐index	calculations	were	car‐
ried	out	using	the	“survival”	package.	Unsupervised	clustering	analy‐
sis	was	carried	out	using	the	“cluster”	package.	The	above	analyses	
were	undertaken	using	R	software	3.5	and	SPSS	software	23.0,	and	
all	statistical	tests	were	2‐sided.	P	<	.05	was	considered	statistically	
significant.

3  | RESULTS

3.1 | Patient characteristics

According	to	the	inclusion	criteria,	801	patients	diagnosed	with	DSC	
from	TCGA	datasets	(99	ESCA	samples,	225	STAD	samples,	57	LIHC	

samples,	122	PAAD	samples,	229	COAD	samples,	and	69	READ	sam‐
ples)	were	analyzed	in	this	study.	Patients	were	64.65	±	12.86	years	
old,	 with	 481	 men	 (60.05%)	 and	 320	 (39.95%)	 women.	 Detailed	
patient	characteristics	are	given	 in	Table	S1.	The	patient	 selection	
scheme	and	analytic	flowcharts	of	the	study	are	shown	in	Figure	S1.

3.2 | Composition of immune cells in DSCs

Figure	S2	provides	a	summary	of	the	immune	cell	composition	within	
and	across	clinical	subgroups	of	DSCs.	In	general,	the	5	most	com‐
mon	 immune	 cell	 fractions	 in	 DSCs	 were	 M0	 macrophages,	 M2	
macrophages,	 CD4	 memory	 resting	 T	 cells,	 CD8	 T	 cells,	 and	 M1	
macrophages,	whose	sum	of	mean	proportions	was	more	than	55%	
in	all	clinical	subgroups.

However,	the	distribution	of	immune	cell	fractions	in	normal	tissues	
was	 different	 from	 that	 in	 tumor	 tissues,	 showing	 that	 plasma	 cells,	
CD4	T	memory	resting	cells,	M2	macrophages,	CD8	T	cells,	and	resting	
mast	cells	were	the	five	most	common	cells.	In	addition,	the	fractions	
of	M0	and	M1	macrophages,	activated	mast	cells,	CD4	memory	acti‐
vated	T	cells,	and	resting	natural	killer	cells	were	significantly	higher	in	
the	tumor	tissues	than	those	of	the	normal	tissues,	and	the	fractions	of	
plasma	cells,	resting	mast	cells,	CD4	memory	resting	T	cells,	monocytes,	
naive	and	memory	B	cells,	and	resting	dendritic	cells	were	significantly	
lower	in	the	tumor	tissues	than	those	of	normal	tissues	(Figure	1A).

3.3 | Diagnostic signature building

We	separated	all	samples	(801	tumor	samples	and	46	normal	sam‐
ples)	into	training	and	validation	cohorts.	Six	potential	predictors	in	
the	training	cohort	were	identified	and	were	features	with	nonzero	
coefficients	 in	 the	 LASSO‐logistic	 regression	 model	 (Figure	 1B,1,	
Table	S2).	We	calculated	DIS	as	the	diagnostic	signature	as	the	fol‐
lowing:	DIS	=	(fraction	level	of	naive	B	cells	×	0.520)	+	(fraction	level	
of	plasma	cells	×	9.710)	+	(fraction	level	of	CD4	memory	activated	
T	cells	×	−5.601)	+	(fraction	level	of	monocytes	×	5.640)	+	(fraction	
level	of	M0	macrophages	×	−4.857)	+	(fraction	level	of	resting	mast	
cells	×	8.246).	Distribution	of	the	DIS	in	tumor	and	normal	tissues	is	
given	in	Figure	S3.	Moreover,	we	evaluated	the	ability	of	DIS	in	dif‐
ferentiating	between	tumor	and	normal	tissues,	suggesting	that	DIS	
had	a	high	accuracy	of	prediction	(AUC	=	0.929,	0.935,	and	0.930	in	
training,	validation,	 and	entire	cohorts,	 respectively;	Figure	1D‐F).	
Similarly,	DIS	showed	high	sensitivity	and	specificity	for	differentiat‐
ing	tumors	from	normal	tissues	in	all	cancer	subtypes	(Figure	S4).

3.4 | Prognostic signature building

According	to	the	inclusion	criteria	for	prognostic	analysis,	644	patients	
were	included	in	the	present	study.	These	patients	were	randomly	di‐
vided	into	training	and	validation	cohorts,	and	optimal	cut‐off	values	
for	the	fraction	of	each	immune	cell	were	generated	in	the	training	
cohort	(Table	S3).	Then	LASSO‐Cox	analysis	was	undertaken	to	iden‐
tify	key	prognostic	markers,	and	PIS	was	built	in	the	training	cohort	
(Figure	2A,2).	The	formula	for	the	model	was	based	on	the	coefficients	

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE23400
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13195
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22058
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62452
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE90627
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53625
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26253
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of	 immune	cells	 (Table	S4):	PIS	=	 (naive	B	cells	×	−0.207)	+	 (CD8	T	
cells	×	−0.008)	+	 (CD4	naive	T	cells	×	0.195)	+	 (CD4	memory	acti‐
vated	T	cells	×	−0.221)	+	(follicular	helper	T	cells	×	−0.083)	+	(regu‐
latory	T	cells	×	0.055)	+	 (M2	macrophages	×	0.272)	+	 (resting	mast	
cells	×	0.045)	+	(eosinophils	×	−0.101).	In	this	formula,	the	immune	cell	
fraction	level	was	valued	as	0	or	1.	A	value	of	1	was	assigned	when	
the	fraction	of	one	type	of	cell	was	over	the	corresponding	cut‐off	
value	and	a	value	of	0	otherwise.

Distributions	of	the	PIS	in	training	and	validation	cohorts	were	
given	in	Figure	S5.	In	addition,	patients	in	the	training	cohort	were	
divided	 into	 high‐PIS	 and	 low‐PIS	 groups	 using	 the	 cut‐off	 value	
(0.059).	The	Kaplan‐Meier	curves	were	plotted	to	confirm	that	the	
patients	with	high	PIS	had	a	significantly	higher	risk	of	relapse	in	the	
training	cohort	(P	<	.001,	Figure	2C).	Furthermore,	the	PIS	showed	
the	strong	predictive	power	of	2‐,	3‐,	and	5‐year	survival	in	the	train‐
ing	cohort	(AUC	=	0.67,	0.72,	and	0.74,	respectively;	Figure	2D).

3.5 | Validation of PIS in validation and 
entire cohorts

To	 confirm	 that	 the	 PIS	 has	 similar	 prognostic	 value	 in	 different	
populations,	 the	 same	 formula	 was	 applied	 in	 the	 validation	 and	

entire	cohorts.	The	patients	were	also	assigned	to	high‐PIS	or	low‐
PIS	groups	using	the	cut‐off	value	obtained	from	the	corresponding	
cohort	 (validation	 cohort,	 0.019;	 entire	 cohort,	 0.047).	 Consistent	
with	the	results	in	the	training	cohort,	patients	with	high	PIS	had	a	
significantly	lower	RFS	time	than	those	with	low	PIS	in	both	the	vali‐
dation	cohort	(P	=	.003,	Figure	2E)	and	the	entire	cohort	(P	<	.001,	
Figure	2F).	Then	survival	ROC	curves	were	applied	to	confirm	the	
strong	 predictive	 power	 of	 PIS	 (AUC	 of	 validation	 cohort	 =	 0.61,	
0.65,	and	0.65,	respectively;	AUC	of	entire	cohort	=	0.66,	0.69,	and	
0.73,	respectively;	Figure	S6),	suggesting	that	the	PIS	had	good	sen‐
sitivity	and	specificity	in	predicting	patients'	2‐,	3‐,	and	5‐year	RFS.	
In	addition,	 the	Kaplan‐Meier	curves	 suggested	 that	patients	with	
high	PIS	had	higher	risk	in	different	cancer	types	(Figure	S7).

3.6 | Clinical use of prognostic signature

To	examine	the	association	of	the	PIS	with	clinical	features,	the	dis‐
tribution	of	PIS	in	clinical	characteristics	and	cancer	subtypes	were	
assessed	 (Table	S5).	Moreover,	univariate	and	multivariate	Cox	 re‐
gression	 analyses	were	 undertaken	 in	 the	 training,	 validation,	 and	
entire	cohorts.	The	multivariate	Cox	regression	model	showed	that	
PIS	 could	 become	 a	 potential	 independent	 prognostic	 indicator	

F I G U R E  1  Construction	and	validation	of	the	diagnostic	immune	score	(DIS)	in	patients	with	digestive	system	cancer.	A,	Volcano	plot	
visualizing	the	differentially	infiltrated	immune	cells	between	tumor	tissues	and	normal	tissues.	Red	and	green	plots	represent	differentially	
statistical	significance	(P	<	.05).	FC,	Fold	Change;	FDR,	False	Discovery	Rate.	B,	Least	absolute	shrinkage	and	selection	operator	(LASSO)	
coefficient	profiles	of	the	fractions	of	22	immune	cell	types.	C,	Tenfold	cross‐validation	for	tuning	parameter	selection	in	the	LASSO	model.	
D‐F,	Receiver	operating	characteristic	(ROC)	curves	of	DIS	in	the	training	(D),	validation	(E),	and	entire	(F)	cohorts.	AUC,	area	under	ROC	curve
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in	 the	 training	 (P	 =	 .005),	 validation	 (P	 =	 .03),	 and	 entire	 cohorts	
(P	 =	 .003)	 (Table	1).	The	 results	of	 the	univariate	Cox	analysis	 are	
shown	in	Table	S6.

The	decision	curve	analysis	for	PIS	and	TNM	stage	is	presented	
in	Figure	3.	The	decision	curve	showed	that	using	the	PIS	to	predict	
patients'	RFS	added	more	benefit	than	TNM	stages.	In	addition,	the	
value	of	PIS	c‐index	was	higher	than	that	of	the	TNM	stage,	indicat‐
ing	that	PIS	was	a	better	predictor	for	patients	 (Table	2).	A	similar	
tendency	was	also	obtained	in	both	the	validation	and	entire	cohorts	
(Table	2).	All	the	above	results	suggested	that	the	PIS	has	good	pre‐
dictive	ability	in	clinical	use.

3.7 | Nomogram construction

To	provide	a	quantitative	tool	to	predict	the	individual	probability	
of	relapse,	we	constructed	the	prognostic	nomogram	on	the	basis	
of	PIS	and	clinical	information	using	the	training	cohort	(Figure	4A).	
The	calibration	curve	of	 the	prognostic	nomogram	showed	good	
agreement	between	prediction	and	observation	in	the	training	co‐
hort	(Figure	4B).	Good	calibration	was	also	observed	for	the	prob‐
ability	of	relapse	in	the	validation	and	entire	cohorts	(Figure	4C,4).	
The	c‐index	for	the	prognostic	nomogram	was	0.84,	0.83,	and	0.82	

in	the	training,	validation,	and	entire	cohorts,	which	improved	the	
prognostic	 accuracy	 compared	with	 that	 of	 the	 TNM	 stage	 and	
PIS	(Table	2).

3.8 | Validation of DIS and PIS using GEO datasets

GSE23400	(ESCA),	GSE13195	(STAD),	GSE22058	(LIHC),	GSE62452	
(PAAD),	and	GSE90627	(COAD	and	READ)	were	obtained	from	the	
GEO	database	to	validate	the	DIS.	We	evaluated	the	ability	of	DIS	
to	 differentiate	 between	 tumor	 and	 normal	 tissues	 using	 these	
datasets,	 showing	 a	 high	 accuracy	 for	 diagnosis	 (AUC	 =	 0.871,	
0.867,	0.812,	0.751,	and	0.978,	respectively;	Table	S7).

Additionally,	 GSE53625	 (ESCA),	 GSE26253	 (STAD),	 GSE76427	
(LIHC),	GSE62452	(PAAD),	and	GSE38832	(COAD	and	READ)	were	
used	 to	 validate	 the	PIS.	Consistent	with	 the	 results	 in	 TCGA	da‐
tabase,	DSC	patients	with	high	PIS	had	poor	survival	compared	to	
those	with	low	PIS	(hazard	ratio	=	1.52,	P	<	.001;	Table	S8).

3.9 | Immune subtypes

To	discern	distinct	patterns	of	immune	infiltration,	we	undertook	
unsupervised	clustering	using	644	patients	based	on	the	immune	

F I G U R E  2  Construction	of	prognostic	immune	score	(PIS)	in	patients	with	digestive	system	cancer.	A,	Least	absolute	shrinkage	and	
selection	operator	(LASSO)	coefficient	profiles	of	the	fractions	of	22	immune	cell	types.	B,	Tenfold	cross‐validation	for	tuning	parameter	
selection	in	the	LASSO	model.	C,	Kaplan‐Meier	curves	for	relapse‐free	survival	by	PIS	group	in	the	training	cohorts.	D,	PIS	measured	by	
survival	receiver	operating	characteristic	(ROC)	curves	in	the	training	cohort.	The	area	under	the	ROC	curve	(AUC)	was	0.67,	0.72,	and	0.74	
at	2,	3,	and	5	y,	respectively.	E,	F,	Kaplan‐Meier	curves	for	relapse‐free	survival	by	PIS	group	in	the	validation	(E)	and	entire	cohorts	(F)

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE23400
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE13195
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE22058
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62452
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE90627
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53625
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26253
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE76427
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62452
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE38832
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cell	proportions.	The	optimal	number	of	clusters	was	6	(Figure	S8)	
and	6	immune	subtypes	were	identified.	The	relationship	between	
cancer	types	and	the	immune	subtype	re	shown	in	Table	S9.	The	
ESCA	patients	were	evenly	distributed	among	the	6	immune	sub‐
types,	most	STAD	patients	were	in	immune	subtypes	1,	and	LIHC	
patients	were	mainly	 immune	 subtypes	1	 and	6.	More	 than	half	
of	PAAD	patients	were	 immune	subtype	6.	Most	COAD	patients	

were	immune	subtype	3	and	a	few	COAD	patients	were	immune	
subtype	2,	which	was	 the	 same	as	 the	distribution	of	READ	pa‐
tients.	The	cell	proportions	of	each	immune	subtype	are	shown	in	
Figure	5A.	Among	them,	 immune	subtype	1	was	defined	by	high	
levels	of	CD8	T	cells,	immune	subtype	2	was	defined	by	high	lev‐
els	of	naive	B	cells,	and	 immune	subtype	3	was	defined	by	mod‐
erate	levels	of	M0	macrophages.	Immune	subtype	4	was	defined	

TA B L E  1  Multivariable	Cox	regression	analysis	of	prognosis	immune	score	and	patients'	characteristics	in	different	cohorts	of	patients	
with	digestive	system	cancer

 

Training cohort Validation cohort Entire cohort

Hazard ratio P value Hazard ratio P value Hazard ratio P value

Age 0.99	(0.97‐1.01) .230 1.01	(0.98‐1.03) .620 0.99	(0.98‐1.01) .611

Gender

Female 1.00	(reference)  1.00	(reference)  1.00	(reference)  

Male 1.27	(0.82‐1.96) .290 1.72	(0.83‐3.54) .140 1.28	(0.89‐1.84) .180

Tumor	stage

I 1.00	(reference)  1.00	(reference)  1.00	(reference)  

II 1.30	(0.67‐2.56) .440 1.89	(0.60‐5.97) .280 1.44	(0.82‐2.53) .210

III 1.20	(0.57‐2.53) .630 2.52	(0.72‐8.83) .150 1.48	(0.79‐2.75) .220

IV 1.38	(0.58‐3.27) .470 0.66	(0.13‐3.34) .610 1.13	(0.53‐2.41) .750

Cancer	status

Tumor‐free 1.00	(reference)  1.00	(reference)  1.00	(reference)  

With	tumor 12.42	(7.35‐21.01) <.001 20.64	(8.42‐50.58) <.001 13.57	(8.71‐21.14) <.001

Residual	tumor

R0 1.00	(reference)  1.00	(reference)  1.00	(reference)  

R1	+	R2 0.68	(0.39‐1.17) .160 0.72	(0.25‐2.12) .550 0.70	(0.43‐1.128) .140

PIS 3.89	(1.50‐10.08) .005 2.35	(1.05‐5.26) .030 3.39	(1.51‐7.59) .003

F I G U R E  3  Decision	curve	analyses	of	the	prognostic	immune	score	(PIS)	and	TNM	stage	for	2‐,	3‐,	and	5‐y	risk	in	the	training	(A),	
validation	(B),	and	entire	(C)	cohorts	of	patients	with	digestive	system	cancer

Cohort PIS TNM stage Nomogram

Training 0.69	(0.64‐0.74) 0.53	(0.48‐0.58) 0.84	(0.81‐0.86)

Validation 0.61	(0.57‐0.70) 0.54	(0.50‐0.58) 0.83	(0.79‐0.86)

Entire 0.67	(0.63‐0.71) 0.53	(0.51‐0.55) 0.82	(0.79‐0.86)

TA B L E  2  Harrell's	concordance	
indexes	of	prognosis	immune	score	(PIS),	
stage,	and	nomogram	in	different	cohorts	
of	patients	with	digestive	system	cancer
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by	moderate	 levels	of	CD4	memory	resting	T	cells	and	M0	mac‐
rophages,	 immune	subtype	5	was	defined	by	more	than	50%	M0	
macrophages,	and	immune	subtype	6	was	defined	by	a	relatively	
high	level	of	M2	macrophages.	In	addition,	immune	subtypes	were	
associated	with	distinct	patterns	of	survival	 (2	=	15.55,	P	=	 .008,	
Figure	5B).	 Immune	subtypes	5	and	6	were	both	associated	with	
poor	RFS.	Moreover,	 the	distribution	of	PIS	 in	different	 immune	
subtypes	was	assessed,	showing	that	subtypes	5	and	6	had	higher	
PIS	 than	 others	 (Figure	 5C,	 Table	 S5).	 Combining	 the	 PIS	 distri‐
bution	and	survival	analyses,	immune	subtypes	5	and	6	were	the	
high‐risk	subtypes	of	relapse.

4  | DISCUSSION

Digestive	system	cancers	are	the	most	prevalent	cancers	with	the	
highest	mortality	worldwide.	The	current	therapeutic	methods,	 in‐
cluding	 surgery,	 radiotherapy,	 and	 immunotherapy,	 are	 constantly	
improving.	However,	because	of	hidden	early	symptoms,	quick	de‐
velopment,	and	 invasiveness,	the	average	survival	time	of	patients	

with	 advanced	DSC	 remains	 very	 low.	 Therefore,	 researchers	 are	
committed	 to	discoveries	of	new	signatures	 for	diagnosis	or	prog‐
nosis.	Huang	et	al14	used	clinicopathologic	risk	factors	to	build	the	
radiomics	signature	and	radiomics	nomogram	for	preoperative	pre‐
diction	 of	 lymph	 node	metastasis	 in	 colorectal	 cancer,	 which	 can	
conveniently	 improve	 the	 preoperative	 individualized	 prediction.	
Zhang	et	al15	used	high‐throughput	microRNA	data	 in	TCGA	data‐
base	to	obtain	a	5‐microRNA	signature	for	predicting	survival	time	
of	gastric	cancer	patients.	A	6‐gene	signature	was	identified	by	using	
univariate	 Cox	 regression	 analysis	 and	 the	 LASSO‐Cox	 regression	
model	to	predict	overall	survival	for	hepatocellular	carcinoma.16 In 
recent	years,	studies	on	the	tumor	immune	microenvironment	have	
been	 in	 the	 leading	position	 in	cancer	 research.17,18	 In	 the	present	
study,	we	explored	the	tumor	 immune	microenvironment	to	find	a	
more	effective	and	precise	signature	for	DSCs.

First,	we	applied	the	newly	developed	algorithm	CIBERSORT	
to	 estimate	 the	 fractions	of	 immune	 cells.	Because	 the	distribu‐
tion	 of	 immune	 cell	 fractions	 in	 normal	 tissues	was	 significantly	
different	from	that	in	tumor	tissues,	we	established	the	DIS.	The	
high	AUC	value	 indicated	 that	DIS	was	an	effective	predictor	of	

F I G U R E  4  Construction	and	validation	of	nomogram	in	patients	with	digestive	system	cancer.	A,	Nomogram	for	predicting	2‐,	3‐,	and	
5‐y	relapse‐free	survival	for	patients	in	the	training	cohort.	PIS,	prognostic	immune	score.	B‐D,	Calibration	curves	of	nomograms	in	terms	of	
agreement	between	predicted	and	observed	2‐,	3‐,	and	5‐y	outcomes	in	the	training	(B),	validation	(C),	and	entire	(D)	cohorts.	Dashed	line	at	
45°	represents	perfect	prediction,	and	the	actual	performances	of	our	nomogram	are	red,	blue,	and	green	lines
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diagnosis,	indicating	that	the	immune	system	participated	in	tumor	
carcinogenesis.	Similarly,	Zhou	et	al19	established	a	diagnostic	im‐
mune	 risk	 score	 for	 the	 diagnosis	 of	 colon	 cancer.	 This	 method	
opens	the	door	to	new	diagnostic	strategies	from	the	perspective	
of	immune	inflammation.

Recurrence	after	primary	resection	is	one	of	the	important	fac‐
tors	affecting	the	overall	survival	rate	of	patients,	suggesting	that	it	
is	essential	to	assess	the	relapse	risk	accurately	for	improving	prog‐
nosis.	Several	immune	score	models	based	on	immunohistochemis‐
try	have	been	built	to	quantify	the	immune	structure	and	to	provide	
a	 strong	parameter	 for	 prognosis	 in	 patients	with	 various	 tumors,	
including	 DSCs.20,21	 However,	 immunohistochemistry	 was	 limited	
by	small	sample	size	and	few	cell	 types.	 In	the	present	study,	can‐
didate	immune	cells	used	to	construct	PIS	were	estimated	based	on	
high‐throughput	gene	expression	generated	by	CIBERSORT.	Then,	

we	used	the	LASSO‐Cox	analysis	to	select	key	immune	biomarkers	
for	 constructing	 the	 PIS.	 The	 PIS	mainly	 included	 naive	 B	 cells,	 T	
cells,	M2	macrophages,	 resting	mast	 cells,	 and	 eosinophils.	 In	 the	
present	 studies,	 CD4	 naive	 T	 cells,	 regulatory	 T	 cells,	M2	macro‐
phages,	 and	 resting	mast	 cells	were	 associated	with	poor	progno‐
sis.	 In	 contrast,	naive	B	cells,	CD8	T	cells,	CD4	memory	activated	
T	cells,	follicular	helper	T	cells,	and	eosinophils	were	the	protective	
factors	of	patients.	T	cells	are	very	complex	and	heterogeneous	with	
constant	renewal	 in	vivo,	and	can	exist	at	different	developmental	
stages	or	functional	subgroups	at	the	same	time.	In	the	immune	re‐
sponse,	different	subsets	of	T	cells	play	different	roles,	such	as	re‐
leasing	lymphokines,	killing	target	cells,	assisting	immune	response,	
and	memory‐specific	antigen	stimulation.22	Naive	B	cells	represent	
one	of	the	differentiation	stages	of	B	cells,	which	is	one	of	the	mech‐
anisms	of	autoimmune	tolerance.	Similar	to	our	results,	Zhang	et	al23 

F I G U R E  5   Immune	subtypes	in	patients	with	digestive	system	cancer.	A,	Unsupervised	clustering	of	all	samples	based	on	immune	cell	
proportions.	Stacked	bar	charts	of	samples	ordered	by	cluster	assignment.	NK,	natural	killer.	B,	Survival	analysis	of	patients	within	different	
immune	subtypes.	C,	Prognostic	immune	score	(PIS)	in	different	immune	subtypes
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also	found	that	naive	B	cells	were	associated	with	superior	survival	
of	 LIHC	 patients.	 Eosinophils	 are	 components	 of	 the	 immune	mi‐
croenvironment	 that	modulate	 tumor	 initiation	 and	 progression,24 
playing	an	antitumorigenic	role	in	gastric,	colorectal,	and	many	other	
cancers.25‐27	 The	 results	 showed	 the	 relapse	 risk	 of	 patients	with	
high	PIS	was	higher	than	that	of	patients	with	low	PIS.	In	addition,	
the	survival	ROC	and	c‐index	analyses	confirmed	the	powerful	pre‐
diction	ability	of	PIS	for	prognosis.	To	determine	its	clinical	useful‐
ness,	we	 further	assessed	whether	 the	PIS	would	 improve	patient	
outcomes.	The	decision	 curve	analysis	 showed	 that	PIS	 could	 add	
more	benefit	than	TNM	stages.28

To	 improve	 the	 accuracy	 of	 predicting	 prognosis,	 we	 recom‐
mended	that	the	nomogram	integrate	PIS,	age,	gender,	TNM	stage,	
cancer	 status,	 and	 residual	 tumor,	with	 satisfactory	discrimination	
achieved	(c‐index	>	0.8).	The	nomogram	took	into	account	markers	
from	 different	 aspects,	 including	 the	 immune	 microenvironment,	
basic	characteristics,	and	clinical	information,	which	could	be	a	prom‐
ising	approach	to	change	clinical	management.29	Similarly,	Toiyama	
et	al30	combined	serum	biomarkers	with	clinical	risk	factors	in	pre‐
dictive	models,	improving	the	predictive	accuracy	of	colon	cancer.	In	
addition,	the	calibration	curve	showed	that	the	prognostic‐immune‐
score	could	predict	the	clinical	consequences	of	patients.

The	effect	of	the	tumor	immune	microenvironment	on	survival	
rate	has	been	well	reported	in	many	cancer	types.31,32	In	our	study,	
we	identified	6	immune	subtypes	by	unsupervised	clustering	based	
on	the	abundance	of	immune	cells,	and	understood	the	distribution	
of	 patients	 in	 different	 immune	 subtypes.	 The	 distribution	 of	 the	
patients	with	upper	digestive	tract	tumors	(ESCA	and	STAD),	diges‐
tive	 gland	 tumors	 (PAAD	and	 LIHC),	 and	 lower	 digestive	 tract	 tu‐
mors	(COAD	and	READ)	was	similar	in	different	immune	subtypes.	
Different	 parts	 of	 the	 digestive	 system	 perform	 different	 basic	
physiological	functions	 (ingesting,	transporting	and	digesting	food,	
absorbing	 nutrients,	 and	 excreting	 waste),	 which	 could	 influence	
the	immune	cell	proportions.	The	results	of	analysis	were	consistent	
with	the	actual	clinical	situation.	We	also	found	that	 immune	sub‐
types	with	high	levels	of	M0	macrophages	or	M2	macrophages	were	
the	high‐risk	subtypes	of	relapse.	Macrophages,	as	important	cells	of	
the	immune	system,	show	different	genotypes	and	functions	in	dif‐
ferent	microenvironments.33	Pereira	et	al12	revealed	the	landscape	
of	glioblastoma,	showing	that	patients	can	be	clustered	in	different	
subtypes	with	M0	and	M2	macrophages	representing	major	contrib‐
utors	to	the	tumor	microenvironment.	Xiong	et	al34	found	that	M2	
macrophages	were	the	independent	prognostic	factors	in	colorectal	
cancer	by	univariate	and	multivariable	Cox	regression	analysis.	Ali's	
team	divided	patients	with	breast	cancer	into	8	clusters.	The	cluster	
defined	by	high	levels	of	M0	and	M2	macrophages	and	the	cluster	
defined	 by	 a	 high	 level	 of	M2	macrophages	were	 both	 associated	
with	poor	prognosis.11

Several	studies	about	the	immune	microenvironment	have	been	
reported.	The	present	study	differed	from	recent	reports	in	several	
important	 aspects	 and	 had	 its	 own	 advantages.	 First,	 no	 studies	
provided	comprehensive	immune	profiles	specifically	for	DSCs.	In	a	
pan‐cancer	analysis,	Chen	et	al35	discovered	4	immune	types	across	

14	solid	cancer	types,	including	COAD,	LIHC,	STAD,	and	other	sys‐
tem	cancers.	 In	 addition,	 studies	of	 the	 tumor	 immune	microenvi‐
ronment	 on	 colorectal	 cancer,36	 esophageal	 cancer,37	 pancreatic	
cancer,38	and	gastric	cancer39	have	been	reported.	We	focused	on	
DSCs	 that	 have	many	 similar	 characteristics	 and	 risk	 factors,	 sys‐
tematically	 analyzing	 the	 immune	environment	 and	providing	pre‐
dictors	of	DSCs.	Second,	we	not	only	comprehensively	analyzed	the	
tumor	environment,	as	other	studies	have	done,34,40	but	also	used	
tumor‐infiltrating	 immune	 cells	 to	 establish	 diagnosis	 and	 progno‐
sis	signatures.	Third,	CIBERSORT	discriminates	immune	cell	pheno‐
types	with	 highly	 sensitive	 and	 specific	 discrimination,	which	was	
the	 most	 accurate	 method.	 The	 LASSO‐Cox	 analysis	 was	 further	
used	as	a	statistical	method	for	screening	cell	variables	to	establish	
DIS	and	PIS,	which	could	significantly	improve	the	accuracy	of	pre‐
diction.41,42	Finally,	we	assessed	the	reproducibility	of	DIS	and	PIS	
in	the	validation	and	entire	TCGA	cohorts	and	in	other	cohorts	from	
GEO	databases,	which	are	more	rigorous	and	reliable.

Nevertheless,	 the	 study	 retains	 a	 few	 limitations.	 First,	 it	was	
based	 on	 TCGA	 database,	 and	 lacked	 some	 patients'	 information.	
Therefore,	 some	 patients	 with	 acute	 infection	 or	 immune	 system	
disorders	were	included	in	the	study,	which	might	affect	analysis	re‐
sults.	Second,	some	risk	factors,	including	living	environment,	smok‐
ing,	drinking,	Helicobacter pylori	 infection,	family	history,	and	other	
factors,	were	incomplete,	which	might	be	more	meaningful	for	diag‐
nosis	and	prognosis.	Finally,	the	potential	bias	relating	to	unbalanced	
clinicopathological	features	with	treatment	heterogeneity	could	not	
be	ignored,	because	all	samples	were	from	the	retrospective	collec‐
tion.	Further	prospective	studies	are	required	to	validate	the	results.	
In	conclusion,	our	study	comprehensively	analyzed	the	utility	of	con‐
sideration	of	immune	cells	 in	the	diagnosis	and	prognosis	of	DSCs.	
The	DIS	and	PIS	signatures	could	serve	as	biomarkers	for	early	diag‐
nosis	and	predicting	survival.
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