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Abstract

Human neuroimaging studies have consistently reported changes in cerebellar function and 

integrity in association with obesity. To date, however, the nature of this link has not been studied 

directly. Emerging evidence suggests a role for the cerebellum in higher cognitive functions 

through reciprocal connections with the prefrontal cortex. The purpose of this exploratory study 

was to examine appetite changes associated with noninvasive prefronto-cerebellar 

neuromodulation in obesity. 12 subjects with class I obesity (mean BMI 32.9 kg/m2) underwent a 

randomized, single-blinded, sham-controlled, crossover study, during which they received 

transcranial direct current stimulation (tDCS; active/sham) aimed at simultaneously enhancing the 

activity of the prefrontal cortex and decreasing the activity of the cerebellum. Changes in appetite 

(state and food-cue-triggered) and performance in a food-modified working memory task were 

evaluated. We found that active tDCS caused an increase in hunger and desire to eat following 

food-cue exposure. In line with these data, subjects also tended to make more errors during the 

working memory task. No changes in basic motor performance occurred. This study represents the 

first demonstration that prefronto-cerebellar neuromodulation can influence appetite in individuals 

with obesity. While preliminary, our findings support a potential role for prefronto-cerebellar 

pathways in the behavioral manifestations of obesity.
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Introduction

Obesity is associated with brain changes and impaired performance in laboratory measures 

of neurocognitive functioning.1–3 These alterations may contribute to the development and 

maintenance of maladaptive eating behaviors, but the specific mechanisms remain largely 

unknown. The cerebellum is one of the regions most consistently associated with body mass 

index (BMI) and obesity. A number of functional neuroimaging studies has identified 

cerebellar activation in response to hunger/satiation4, gastric distension5, and food cues.6 

Obesity and obesity risk status impact the structure of the cerebellum, with a high degree of 

heritability.7 Additionally, the cerebellum is an important target for leptin action8 and its 

gray matter volume is inversely associated with abdominal obesity and related inflammatory 

processes.9 The animal literature also supports an important role for the cerebellum in 

homeostatic control of feeding and body weight.10 Altogether, these data suggest an inverse 

association between BMI/obesity and cerebellar function and integrity, but no study has 

provided direct demonstration for such link in humans to date.

Notably, the cerebellum is well positioned to exert a broad coordinating role in the 

regulation of appetite and food intake, namely via access to the hypothalamus, reward 

centers and cognitive circuits.10,11 Current models posit that the cerebellum may act as a 

multi-domain integrator, fine-tuning the quality of behavioral outputs and providing 

optimized shortcuts.11–14 Emerging data suggest that beyond the well-recognized role of the 

cerebellum in motor control, this area can also contribute to cognition, learning, reward 

processing, habit formation and craving.11–15 In particular, the human cerebellum has a 

highly developed system of contralateral, reciprocal connections (via thalamus and pons) 

with high-order brain regions, including the prefrontal cortex.16 Prefronto-cerebellar 

interactions are believed to coordinate and temporally synchronize multiple cognitive 

representations with external stimuli and voluntary actions12,14,17; however, the extension of 

these functions to cognitive processes that support adaptive behavioral regulation of food 

intake is currently unknown.

In the present study we preliminarily examined acute effects of experimental manipulation 

of prefronto-cerebellar pathways in individuals with obesity. We used transcranial direct 

current stimulation (tDCS), a noninvasive neuromodulation technique that delivers weak 

direct currents to the brain via scalp electrodes18, with the purpose of enhancing the activity 

of the left dorsolateral prefrontal cortex (DLPFC) and reducing the activity of the right 

cerebellum. Previous studies with tDCS in obesity have focused on the DLPFC19,20; 

however, the effects of modulating DLPFC-cerebellum interactions have not yet been 

explored. We selected a left DLPFC/right cerebellum tDCS montage based on past work in 

obesity (target: left DLPFC)19, and some neuroimaging data pointing more specifically to 

the right cerebellum in association with BMI.7 We hypothesized that this tDCS approach 

would facilitate prefronto-cerebellar interactions, by increasing the influence of the DLPFC 

on the cerebellum, leading to a reduction in appetite and an improvement of cognitive 

performance under the presence of food cues.
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Materials and Methods

Twelve tDCS naïve participants (9 female, 3 male) with class I obesity (BMI 32.7 ± 1.9 

Kg/m2) aged 33–47 years (41.6 ± 4.8) took part in this pilot study. Participants were 

recruited from Clinica Sagrada Familia and Universitat Oberta de Catalunya (Barcelona, 

Spain). Exclusion criteria included BMI < 30 or > 35 Kg/m2, unstable body weight (defined 

as ± 5% change within 6 months prior to participation), any history of neurological disorder, 

psychiatric illness, alcohol or drug abuse, and any known cause of secondary obesity (self-

reported). Subjects gave written informed consent to participate at the beginning of the 

study. The study was approved by the Institutional Review Board of Universitat Oberta de 

Catalunya.

The study protocol involved two visits. In each visit, a different stimulation condition (active 

or sham) was applied in a randomized and counterbalanced order. Subjects were unaware of 

stimulation condition. Visits took place on two consecutive days, at the same time of the day, 

and within a postprandial period of 4 hours. tDCS (2 mA, 20 min) was administered with the 

cathode over the right cerebellum (1 cm below and 4 cm lateral to the inion, i.e. centered 

within the posterior cerebellar lobe21,22) and the anode over the left DLPFC (F3) (Fig. 1A). 

This montage, guided by our own computational modeling data (Fig. 1B), was planned with 

the intention of modulating prefronto-cerebellar pathways by simultaneously enhancing the 

activity of the left DLPFC and decreasing the activity of the right cerebellum. We used a 

Soterix Medical 1×1 tDCS device (Soterix Medical, New York, NY) equipped with 5×5 cm 

sponge electrodes soaked in 0.9% sodium chloride solution. During tDCS sessions, 

participants were awake, relaxed and seated in a comfortable chair. All technical aspects of 

tDCS application adhered to recent recommendations for safe and replicable use of this 

technique.23

Subjects were evaluated in three domains: a) subjective appetite, b) food-related cognitive 

performance, and c) general effects on motor performance and working memory. Fig. 1C 

depicts the time course of assessments for each session. For a) we evaluated both state and 

cue-induced changes in appetite using visual analogue scales (VAS) with questions on 

hunger, fullness, desire to eat and prospective consumption.24 State appetite was defined as 

VAS scores obtained immediately before and after receiving tDCS. Cue-triggered appetite 

was defined as VAS scores obtained immediately before and after exposure to food cues. For 

b) we used a food-modified N-back task with 3 levels of cognitive load (1-back, 2-back, and 

3-back). For c) we used a finger tapping task and a digit span test. Additionally, we 

evaluated tDCS adverse effects in each session and, at the end of the study, subjects also 

filled in questionnaires on personality, eating behavior and food craving. For more details 

about methods see Supplementary material section on IJO website.

Statistical analyses were performed as indicated, using α=0.05, and two-tailed hypotheses. 

Normality was examined using Shapiro-Wilk test. All analyses were conducted in SPSS 

software (IBM SPSS Statistics 23, Chicago, IL).
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Results

Fig. 2 shows all changes in appetite VAS scores. Repeated measures ANOVA of appetite 

state revealed an interaction effect time x stimulation condition for hunger (F(1,11)=5.041, 

p=0.046). Post hoc analyses using t-test with Bonferroni correction showed a decrease in 

score after sham stimulation (pre=42.5, post=31.67) nearly significant (p=0.094) but not 

after active stimulation (pre=39.45, post=40.33, p=0.903), indicating a relative increase in 

hunger following active tDCS. There were no other differences pre vs. post stimulation.

In the case of cue-triggered appetite (VAS scores pre/post cue exposure), there was a main 

effect of time on desire to eat, indicating a significant increase when comparing pre vs. post 

task scores (F(1, 11)=5.919, p=0.033). Even though this interaction was not significant, the 

increase was greater in the active stimulation condition (difference: active=9.13, p=0.034; 

sham=6.5, p=0.202). Paired-sample t-test comparing pre vs. post scores also revealed a 

significant increase in hunger for the active condition (t(11)=−2.75, p=0.019), but not for the 

sham condition (t(11)=−1.019, p=0.299).

Regarding performance in the n-back food task, paired-sample t test revealed a tendency 

towards more errors committed after active stimulation, compared to sham (5.25 % more, 

t(11)=1.892, p=0.085). No differences were found in reaction times (speed).

We found no effects on the finger tapping task. Digit span ANOVAs revealed a main effect 

of time on digit backward span (F(1, 11)=10.385, p=0.008) with higher scores the second 

time participants performed the task, both in active and sham sessions (mean 5.08 vs. 5.62). 

Paired-sample t test also revealed an increase in backward digit span only after sham 

stimulation (t(11)=−2.345, p=0.039). Evidence for a possible contribution of individual 

characteristics (personality factors and eating behavior trait) was also observed 

(Supplementary Material, Table S1). Only few -expected- side effects were reported at the 

end of each stimulation session, but with no differences between sham and active conditions 

(Fisher’s exact test) (Table S2).

Discussion

In this study, we examined acute effects on appetite and food-related cognitive performance 

associated with noninvasive prefronto-cerebellar neuromodulation in obesity for the first 

time. Contrary to our hypothesis, we found that active tDCS caused a relative elevation in 

the general state of hunger, compared with sham tDCS. Additionally, there was an increase 

in cue-triggered desire to eat and hunger, and a trend suggesting impairment of performance 

in a food-specific working memory task. While preliminary and limited by the small sample 

size, our results support the notion that prefronto-cerebellar pathways may contribute to 

appetite regulation and mechanisms related to behavioral control over external food cues.

A number of scenarios could explain our unexpected findings. First, tDCS may have caused 

a more dominant impact on the cerebellum (reduced activity) than on the DLPFC (increased 

activity). The association between reduced activity in the cerebellum and increased hunger is 

compatible with the inverse relationship between cerebellar function/integrity and BMI that 

has been reported in the neuroimaging literature.3 Furthermore, previous studies with tDCS 
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that showed decreases in appetite and food craving, i.e. opposite effects from our findings, 

used montages with the same anodal DLPFC location, but different positioning of the 

cathode, which here was placed over the cerebellum, versus the supraorbital/prefrontal 

region in prior studies.19,20 The relative increase in hunger state that we found could also fit 

with a modulatory role of the cerebellum in basic appetite sensations driven by homeostatic 

and visceral regulation, conveyed by cerebellar-hypothalamic circuits10, and more 

selectively related to the vermis sector.25 Abnormalities in cerebellar-hypothalamic 

connectivity have recently been associated with obesity and difficulty achieving successful 

weight-loss.26 A second scenario to explain our findings is that the prefronto-cerebellar 

tDCS montage that we used may have engaged a more ventral sector of the prefrontal cortex, 

or even reached components of the orbitofrontal cortex, which are more prominently 

involved in reward processing (see current density peaks predicted by computational 

modeling, Fig. 1B), and thus could have contributed to the observed increase in hunger. A 

third scenario to interpret our results is that the anodal DLPFC/cathodal cerebellum tDCS 

montage could have disrupted, rather than facilitated, the function of prefronto-cerebellar 

pathways, e.g. due to functional decoupling between DLPFC and cerebellum as a result of 

tDCS simultaneously increasing and decreasing the activity of these interconnected areas, or 

a reversal in the flow of information (DLPFC to cerebellum versus cerebellum to DLPFC). 

This third possibility is particularly intriguing, as prior research with a similar tDCS 

montage in patients with stable mood disorders showed improvements in neurocognitive 

performance.21 Last, we also observed that active tDCS caused an increase in cue-triggered 

appetite (hunger and desire to eat) and a trend-level impairment of food-related working 

memory performance. These effects could be accounted for by the above scenarios, by an 

impact on cerebellar connections to reward centers -known to be altered in obesity27, or 

simply as a result of elevated homeostatic motivation to eat.

Our study has a number of limitations. The prefronto-cerebellar tDCS montage that we used 

has poor topographic resolution, making it impossible to explain effects based on specific 

cerebellar subregions or brain circuits. Future studies should combine tDCS with fMRI, 

allowing for a detailed topographical characterization of the effects and their association 

with specific mechanisms. Also, we only examined the impact of tDCS on the left DLPFC/

right cerebellum pathway. Whether the observed effects can be extended to the homologous 

pathway, i.e. right DLPFC/left cerebellum, remains unknown. We selected this specific side 

as a first investigation, but there is no clear evidence of lateralization, based on the available 

neuroimaging data.22

Given that our results were in the opposite direction as hypothesized, we cannot make 

conclusions on the potential of prefronto-cerebellar neuromodulation for the treatment of 

obesity. Our findings call for alternative strategies to influence prefronto-cerebellar 

pathways in the direction of appetite reduction and improvement of behavioral control over 

food cues. Future studies should examine the effects of reversing the polarity of the tDCS 

montage that we used here, and other higher resolution approaches to simultaneously 

enhance DLPFC and cerebellum activity. If a benefit can be confirmed, clinical trials 

evaluating the effect of repeated tDCS sessions on body weight are warranted. It is also 

unclear whether the effects that we found here are specific of obesity or, rather, can be 

extended to individuals with healthy weight or undereating conditions. Notwithstanding 
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these limitations, our study represents the first direct evidence that the human cerebellum, 

possibly via prefronto-cerebellar pathways, may be involved in the regulation of appetite and 

food cue reactivity, uncovering a role in processes that are central to the behavioral 

manifestations of obesity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A. tDCS montage used in the present study. 5×5 cm electrode pads were placed over right 

cerebellum (cathode) and F3 (anode). B. Computational model of the tDCS montage used. 

Peak electric field magnitude is shown at the approximate location of the electrodes (axial 

images, white circles). The scale bar on the right shows the color code for current density 

values (V/m). C. Study diagram showing the time course of measurements for each of the 

study visits. VAS: visual analogue scale.
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Figure 2. 
Box and dot plots representing changes in the four VAS scores (Δ, columns) for the two 

appetite measurements: state and cue-triggered (rows). The horizontal line represents a 

significant main effect of stimulation condition (active vs. sham) and the asterisks (*) over 

one condition represent significant pre-post differences within that condition.
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