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CD4−CD8− (double-negative, DN) T cells are critical orchestrators of the cytokine network
associated with the pathogenic inflammatory response in one of the deadliest
cardiomyopathies known, Chagas heart disease, which is caused by Trypanosoma
cruzi infection. Here, studying the distribution, activation status, and cytokine
expression of memory DN T-cell subpopulations in Chagas disease patients without
cardiac involvement (indeterminate form—IND) or with Chagas cardiomyopathy (CARD),
we report that while IND patients displayed a higher frequency of central memory, CARD
had a high frequency of effector memory DN T cells. In addition, central memory DN T cells
from IND displayed a balanced cytokine profile, characterized by the concomitant
expression of IFN-g and IL-10, which was not observed in effector memory DN T cells
from CARD. Supporting potential clinical relevance, we found that the frequency of central
memory DN T cells was associated with indicators of better ventricular function, while the
frequency of effector memory DN T cells was not. Importantly, decreasing CD1d-
mediated activation of DN T cells led to an increase in IL-10 expression by effector
memory DN T cells from CARD, restoring a balanced profile similar to that observed in the
protective central memory DN T cells. Targeting the activation of effector memory DN T
cells may emerge as a strategy to control inflammation in Chagas cardiomyopathy and
potentially in other inflammatory diseases where these cells play a key role.

Keywords: Trypanosoma cruzi, pathology, immunoregulation, Chagas disease, cardiomyopathy, memory
response, double-negative T cells
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INTRODUCTION

The generation and maintenance of immunological memory is
fundamental to preserve protective immune responses capable of
controlling pathogens and of immune surveillance (1, 2).
Memory T-cell differentiation progresses from naive cells
toward central memory (CM) and effector memory (EM)
subpopulations (3). While CM cells, defined as CD45RA–

CCR7+, must migrate into secondary lymphoid organs (SLO)
and undergo recall stimulation before becoming fully functional,
EM cells, defined as CD45RA–CCR7–, can migrate directly to the
target tissue and perform effector functions (4–6). Despite these
differences in migration and activation requirements, both
subpopulations execute effector responses and produce
cytokines (7, 8). Effector cells (EF, CD45RA+CCR7−),
generated right after activation of naive cells, can also perform
effector functions without the need to transit through SLO but, as
opposed to CM and EM, are typically short-lived (9).

CM, EM, and EF subpopulations have been identified in
CD4+ and CD8+ T cells, exhibiting similar characteristics
(7, 10). Double-negative (CD4−CD8−, DN) T cells comprise
approximately 3% of the total human circulating lymphocytes
and can express ab or gd T-cell receptors (TCR) (11). For the
lack of co-receptors, they tolerate chronic stimulation, rendering
them crucial in immunity to chronic infections (12). DN T cells
are typically activated by glycoconjugates and lipids presented by
CD1 molecules (13, 14). Protective and pathogenic immune
responses in human diseases have been associated with DN T
cells (13, 15–17), including those caused by parasites, which are
adorned with highly immunogenic glycoconjugates (18–20).

The functional characteristics of DN T cells have been studied
in patients with Chagas disease (13, 18, 21), which is a long-
lasting chronic infection caused by the protozoan Trypanosoma
cruzi. The vast majority of Chagas disease patients do not present
clinical signs, classified as indeterminate (22), while at least
30% progress to Chagas cardiomyopathy (22, 23). The
cardiomyopathy is caused by an inflammatory reaction that
leads to heart failure and death (24, 25). There are no vaccines
to prevent infection and no effective therapies exist to halt disease
progression. Finding strategies to prevent pathology
development and progression is a pressing need.

Previous studies by our group have shown that DN T cells
from indeterminate and cardiac Chagas patients are robust
producers of inflammatory and anti-inflammatory cytokines
and that the balance of these cytokines is shifted toward an
anti-inflammatory or inflammatory profile, in indeterminate and
cardiac patients, respectively (19). In addition, we showed that
T. cruzi-derived glycolipids trigger activation of DN T cells from
both indeterminate and cardiac patients, and the resulting
proinflammatory response observed in cardiac Chagas patients
can be minimized by blocking this activation in vitro (13, 18, 19,
26). Thus, DN T cells are potential targets to diminish
inflammation in Chagas cardiomyopathy. Here, we employed
multiparameter flow cytometry to determine the distribution,
activation, and cytokine profile of DN T cells from indeterminate
and cardiac patients with Chagas disease. In addition, we
performed in vitro blocking assays to show that manipulation
Frontiers in Immunology | www.frontiersin.org 2
of DN T-cell activation can be a useful strategy to modify
EM cells toward a less inflammatory profile in Chagas
cardiomyopathy patients. The ability to manipulate EM DN T
cells may also have implications in other chronic inflammatory
diseases where these cells play a role.
PATIENTS, MATERIAL, AND METHODS

Patient Population
A total of 18 patients with indeterminate (n = 6) or dilated
cardiomyopathy (n = 12) clinical forms of Chagas disease were
enrolled. Serology exams for Chagas disease, electrocardiogram,
and chest X-rays were performed to define the clinical status of
the patient (27). Indeterminate patients (IND) had positive
serology and lacked evidence of digestive or cardiac pathology
and the absence of clinical signs and symptoms. Chagas
cardiomyopathy patients (CARD) displayed positive serology
and lacked evidence of digestive pathology, with some degree of
myocardium damage expressed by abnormal electrocardiogram.
Left ventricular ejection fraction (LVEF) and left ventricular
diastolic diameter (LVDD) were used as parameters of disease
severity (27). Chronic inflammatory diseases, diabetes, heart/
circulatory illnesses, or bacterial infections were used as
exclusion criteria. Table 1 summarizes the clinical
characteristics of the patients. The patients did not previously
receive specific treatment for Chagas disease.

This study was approved by the Ethical Committee from the
Federal University of Minas Gerais (COEP-UFMG–2.809.859)
and complied with the Helsinki Declaration. Treatment and
clinical care were offered to all volunteers, and all signed the
informed consent form prior to inclusion in the study.

Parasites
Trypomastigotes (TRPs) of the Y strain of T. cruzi were grown in
Vero cells (28). Cells were infected with 10 TRPs/cell, cultured in
TABLE 1 | Chagas disease patients enrolled in the study.

Patient ID Clinical form Age (years) Gender LVDD (mm) LVEF (%)

I1 Indeterminate 57 Male 42 73
I2 Indeterminate 45 Female 47 66
I3 Indeterminate 45 Female 51 65
I4 Indeterminate 43 Female 44 76
I5 Indeterminate 52 Female 46 74
I6 Indeterminate 61 Female 47 62
D1 Cardiac 48 Male 57 20
D2 Cardiac 56 Female 55 36
D3 Cardiac 41 Male 52 56
D4 Cardiac 48 Male 59 45
D5 Cardiac 39 Female 70 34
D6 Cardiac 60 Female 40 54
D7 Cardiac – Male – –

D8 Cardiac 69 Female 54 45
D9 Cardiac 42 Male – –

D10 Cardiac 49 Male 69 34
D11 Cardiac – Female 60 55
D12 Cardiac 67 Male – –
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RPMI with 5% fetal calf serum (FCS) and antibiotic (penicillin
500 U/ml and streptomycin 0.5 mg/ml) for 6 days. Cultures were
carried out in an incubator at 37°C, 5% CO2. TRPs were collected
for immediate infection of the peripheral blood mononuclear
cells (PBMC) of the patients. TRPs were also used to prepare
soluble antigens (18, 21), to be used in CD1d blocking assays.

Blood Sampling and In Vitro Infection
Heparinized peripheral blood samples were collected and
PBMCs were obtained (13, 18). PBMCs, resuspended at a
concentration of 107 cells/ml, were infected using a ratio of 10
parasites/cell, incubated at 37°C in 5% CO2 for 3 h, and washed
for the removal of free TRPs. RPMI supplemented with 5% heat-
inactivated human serum (Sigma-Aldrich, St. Louis, MO, USA),
antibiotics (penicillin, 200 U/ml; and streptomycin, 0.1 mg/ml)
(Sigma-Aldrich, St. Louis, MO, USA), and L-glutamine (1 mM)
(Sigma-Aldrich, St. Louis, MO, USA) was added to a final
volume of 1 ml. Infected PBMCs were reincubated at 37°C in
5% CO2 for 14 h. Brefeldin A (1 mg/ml, Sigma-Aldrich, St. Louis,
MO, USA) was added, and cultures were reincubated for an
additional 4 h. Non-stimulated controls (MED) were included.

For the blocking experiments, 3 × 105 PBMCs were incubated
with anti-CD1d antibodies (25 mg/ml) and 20 mg/ml of TRP
antigens (TRP-SA). Cultures were performed as described above
and included PBMCs incubated with media only, media plus
anti-CD1d, TRP-SA only, and TRP-SA plus anti-CD1d.

Cell-Surface Phenotype and Intracellular
Cytokine Staining Using Flow Cytometry
Combinations of monoclonal antibodies (mAbs) anti-CD4, anti-
CD8, anti-TCR ab, anti-TCR gd, anti-CCR7, anti-CD45RA, and
anti-CD69 were used to determine circulating T memory subsets in
DN T cells and their activation state by multiparametric flow
cytometry. CD69 is a molecule often used as an activation marker
for T cells and has previously been used by our group, studying
Chagas disease (19, 20). Antibodies were added to each tube
containing 5 × 105 cells (concentration determined using trypan
blue stain), for 20 min at 4°C. Samples were washed in PBS
containing 1% bovine serum albumin (BSA) and fixed for 20 min
with 2% formaldehyde solution. After washing with PBS, cells were
permeabilized for 15 min with a 0.5% saponin solution and
proceeded to intracellular staining. Samples were incubated with
anti-IL-10 and/or anti-IFN-g for 20 min at room temperature,
washed twice with 0.5% saponin solution, resuspended in PBS, and
read in FACSCanto II (Becton Dickenson, San Jose, CA, USA).
There were 100,000 cells/sample that were collected. FACS data
were analyzed using FlowJo (Becton Dickenson, San Jose, CA,
USA), using exclusion of doublets for all samples. Positive cells
were selected based on isotype controls to set the negatives. T-
distributed stochastic neighbor-embedding (t-SNE) unsupervised
analysis was performed to segregate cell populations and determine
population trajectory analysis. All antibodies were from BioLegend
(San Diego, CA, USA) (Supplementary Table 1).

Statistical Analysis
All data showed a Gaussian distribution, as determined by the
Kolmogorov–Smirnov test. Paired t-test was used to compare
Frontiers in Immunology | www.frontiersin.org 3
unstimulated versus stimulated cultures within the same group of
patients. Unpaired t-test was used to compare data between
different groups of patients (for example, non-stimulated
cultures from IND versus CARD, or stimulated cultures from
IND versus CARD). Correlation analyses were performed using
Pearson’s coefficient. p-values ≤0.05 were considered statistically
significant. Heatmap analysis was performed using the ClustVis
software package R-version 0.7.7 (Metsalu, Tauno and Vilo, Jaak.
ClustVis: a web tool for visualizing clustering of multivariate data
using Principal Component Analysis and heatmap. Nucleic Acids
Research, 43(W1):W566–W570, 2015. doi: 10.1093/nar/gkv468).
RESULTS

Indeterminate Patients Display Higher
Percentages of DN T Cells With
Central Memory and Naive Phenotypes,
Whereas Cardiomyopathy Patients
Display Higher Percentages of Effector
Memory and Effector DN T Cells
The gating strategy to determine the distribution of central
memory (CD45RA–CCR7+), effector memory (CD45RA–CCR7–),
naive (CD45RA+CCR7+), and effector (CD45RA+CCR7−)
subpopulations is shown in Figure 1A.

IND displayed a higher percentage of central memory and
naive DN T cells in TCR ab+ and TCR gd+ subpopulations as
compared with CARD, especially after TRP stimulation
(Figure 1B). However, CARD had a higher percentage of
effector memory DN T cells in TCR ab+ and TCR gd+

subpopulations in non-stimulated cultures, which was also more
evident after TRP stimulation (Figure 1B). The frequency of
effector cells was higher in TCR gd+ DN T cells from CARD as
compared with IND (Figure 1B and Supplementary Figure 3B).

Unsupervised t-SNE analysis clearly confirmed the
predominance of central memory and naive in IND and of
effector memory and effector DN T cells in CARD, especially
after parasite stimulation (Figure 1C). We observed a higher
central/effector memory ratio in IND as compared with CARD,
which was statistically significant in TCR gd+ cells after TRP
stimulation (Figure 1D).

Co-Expression of IL-10 and IFN-g Is Higher
in Central Memory DN T Cells From
Indeterminate Patients
Central memory TCR ab+ and gd+ DN T cells from CARD
displayed a higher expression of IFN-g before stimulation as
compared with IND. TRP stimulation increased IFN-g
production by central memory cells from IND (Figure 2A,
top). Although without statistical significance, effector memory
cells from CARD showed a clear tendency of higher expression
of IFN-g as compared with IND (Figure 2B, top panel;
Supplementary Figure 4B, top panel). No differences were
observed regarding IL-10 expression (Figure 2B, bottom panel;
Supplementary Figure 4B, bottom panel). TRPs lead to an
increase in the frequency of IL-10+IFN-g+ DN T cells in
November 2021 | Volume 12 | Article 761795
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central memory TCR ab+ subpopulation from IND (Figure 2C
and Supplementary Figure 4C).

The Activation Marker CD69 Is
Differentially Expressed in DN T-Cell
Memory Populations From Indeterminate
and Chagas Cardiomyopathy Patients
Central memory DN T cells TCR ab+ and gd+ displayed a higher
expression of CD69 in IND as compared with CARD (Figures 3A,
B and Supplementary Figures 5A, B), especially after TRP
stimulation. TRP stimulation decreased the frequency of central
memory CD69+ cells in TCR a/b and g/d subpopulations from
Frontiers in Immunology | www.frontiersin.org 4
CARD (Figures 3A, B and Supplementary Figures 5A, B), while
it increased the expression of CD69 in TCR ab+ effector memory
DN T cells from IND and CARD (Figure 3A and Supplementary
Figure 5A). Although no changes in CD69 expression by naive
TCR ab+ cells were observed in IND, TCR gd+ naive cells
expressed a higher percentage of CD69 after TRP stimulation in
IND than in CARD (Figure 3B and Supplementary Figure 5B).
No differences were observed in CD69 expression by TCR ab+

effector DN T cells between IND and CARD before or after
stimulation. However, TRP stimulation increased CD69 in TCR
gd+ effector DN T cells in IND and CARD (Figure 3B and
Supplementary Figure 5B).
A B

C

D

FIGURE 1 | Analysis of double-negative (DN) memory subpopulations, naive and effector cells in indeterminate (IND, n = 6) and cardiac (CARD, n = 6) Chagas
patients. (A) Representative dot plots illustrating the selection of DN T-cell subpopulations after selection of singlets: central memory (CM), effector memory (EM),
naive (N), and effector cells (EF). Representative plots were performed using data from one IND patient, in non-stimulated culture. (B) Frequencies of DN TCR ab+ or
gd+ CM, EM, N, and EF cells before (MED) and after in vitro stimulation with live parasite (TRP). (C) t-SNE from combined data obtained from all IND and CARD
patients using MED or TRP cultures, in TCR ab+ or TCR gd+ DN T cells. Colors correspond to phonograph-guided clustering. (D) Ratio of CM/EM DN T-cell memory
subpopulations in IND and CARD, before (MED) and after in vitro stimulation with live parasite (TRP). Results in (B, D) are expressed as percentage in box plot,
extending from the 25th to 75th percentile, with a horizontal line at the median with whiskers. Paired or unpaired t-tests were used to compare unstimulated and
stimulated cultures or cultures between different groups of patients, respectively. Statistical significance is indicated in each graph.
November 2021 | Volume 12 | Article 761795
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t-SNE analysis highlights the differential expression of CD69
by ab+ central memory DN T cells from IND and CARD after
TRP stimulation (Supplementary Figure 1A). CD69 expression
co-localizes with IL-10 in IND, while a decrease in these two
markers is evident in CARD.
Frontiers in Immunology | www.frontiersin.org 5
Cluster Analysis of Central and
Effector Memory DN T Cells
Segregates Indeterminate and
Chagas Cardiomyopathy Patients
We performed cluster analysis using the frequencies of central
and effector memory DN T cells and their expression of
cytokines and activation markers. While the analysis in
unstimulated cells did not allow for a clear separation between
IND and CARD, TRP stimulation did (Figure 4A). Segregation
was more evident in gd+ cells, showing IND associated with the
frequency of central memory cells and IL-10 and CD69
expression, while CARD was associated with the frequency of
effector memory cells and IFN-g expression (Figure 4A). The
trajectory plot (Figure 4B, top) shows the overall diversion of
central and effector memory from the main naive population.
When we segregated the distribution into IND and CARD
(bottom plots), we observed a clear progression toward effector
memory in CARD and toward central memory in IND,
confirming the association of the clinical outcomes with
different memory populations.

Central Memory and Effector Memory
DN T Cells Are Differentially Correlated
With Ventricular Cardiac Function in
Chagas Disease Patients
A higher frequency of central memory DN TCR ab+

subpopulation was negatively correlated with LVDD and
positively correlated with the LVEF, parameters related to the
degree of the left ventricular dilatation and ventricular ejection
function, respectively (Figure 5A). A similar trend was observed
for the DN TCR gd+ cells, with a significant positive correlation
with LVEF (Figure 5C). Opposingly, the frequency of effector
memory DN TCR ab+ and gd+ cells was positively correlated
with LVDD (Figures 5B, D), displaying a trend of negative
association with LVEF (Figures 5B, D). These data reinforce the
association between central memory DN T cells with protective
responses and better cardiac function and effector memory DN T
cells with impairment of cardiac function in Chagas disease.

Blocking CD1d-Mediated Activation Is
Associated With Increase of IL-10
Expression by Effector Memory Cells From
Patients With Severe Cardiomyopathy
Given that we determined that effector memory DN T cells are
predominant in CARD, associated with a more inflammatory
profile and worse cardiac function, we sought to investigate if
reducing antigen presentation via blocking the CD1d molecule
would interfere with the cytokine profile of effector memory cells
from CARD. Figure 6A shows representative gating strategy for
the analysis. Although we did not observe statistically significant
changes in IFN-g expression in effector memory cells after CD1d
blocking comparing stimulated and non-stimulated cultures
(Figure 6B), CD1d blocking led to a statistically significant
increase in IL-10 expression in gd+ effector memory cells in
stimulated cultures (Figure 6B). No statistically significant
changes were observed in the frequency of central memory,
A

B

C

FIGURE 2 | Analysis of cytokine expression in DN memory subpopulations
from indeterminate (IND, n = 6) and cardiac (CARD, n = 6) Chagas patients.
(A) Representative density color illustrating the distribution of DN T-cell
subpopulations and selection of CM DN T cells, followed by analysis of
single and double-positive IFN-g+ and/or IL-10+ cells. Representative
density color was performed using data from one IND patient, after in vitro
stimulation with live parasite (TRP). (B) Frequency of IFN-g+ or IL-10+ in
central memory (CM) and effector memory (EM) in DN TCR ab and DN TCR
gd subpopulations. (C) Frequency of cells co-expressing IFN-g+ and IL-10+

in CM and EM in DN TCR ab and DN TCR gd subpopulations. The results
are expressed as percentage in box plot, extending from the 25th to 75th
percentile, with a horizontal line at the median with whiskers. Paired or
unpaired t-tests were used to compare unstimulated and stimulated
cultures or cultures between different groups of patients, respectively.
Statistical significance is indicated in each graph.
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effector, and naive DN T cells expressing IFN-g or IL-10
(Supplementary Figure 2). Although the result did not reach
statistical significance, the frequency of IFN-g+IL-10+ also
increased in the TCR gd+ effector memory subpopulations after
CD1d blocking, suggesting the establishment of a more balanced,
potentially protective profile (Figure 6C).
DISCUSSION

Here, we show that human DN T-cell subpopulations display a
distinct distribution in IND and CARDChagas patients.While IND
has a higher frequency of CM, CARD has a higher percentage of
circulating effectormemory (EM)DNTcells. TheseCMandEMDN
T cells differ, in both clinical forms, as to the expression of the
activationmarkerCD69 and the cytokines IFN-g and IL-10, allowing
to segregate IND and CARD using cluster analysis. CM DN T cells
display a more balanced cytokine profile in IND than CARD, with a
higher frequencyof IFN-g+IL-10+ cells.Moreover, a higher frequency
of CMDNTcells is correlatedwith echocardiographic parameters of
ventricular function, suggesting a protective role for these cells.
Importantly, we show that manipulating the activation of DN T
cells fromCARDby inhibitingCD1d-mediated antigen presentation
affectsEMDNTcells, predominant in thesepatients, rendering them
less inflammatory by increasing IL-10 expression and leading to a
more balanced profile. Together, these results show that it is possible
Frontiers in Immunology | www.frontiersin.org 6
tomanipulate the activation of EMDNTcells in patients with severe
Chagas cardiomyopathy, reverting their cytokine profile to the one
observed in the protective CM DN T cells from IND.

The subpopulations of systemic memory T cells can be
subdivided into CM and EM distinguished primarily by their
ability to perform effector function and expression of homing
receptors (7). CM cells constitutively express CCR7, CD45RA,
and CD62 and produce IL-4 and IFN-g in response to antigen
stimulation. EM cells cease to express CCR7 and CD45RA and
may or may not express CD62L, displaying a faster response to
antigens, high cytotoxic potential, and cytokine production (7).
Thus, progression from CM to EM is accompanied by changes in
phenotypic and, importantly, in functional capacities. Our data
suggest that this progression in Chagas patients may lead to the
loss of a protective response, executed by CM T cells, and the
establishment of a pathogenic response, due to the activity of EM
T cells. Our results of the trajectory analysis indeed suggest that
cells from CARD progress to the EM profile, while DN T cells
from IND remain with the CM phenotype. Hence, manipulating
the profile of EM cells in CARD may be the key to maintain a
favorable immune response.

The frequency and functional characteristics of CM and EMDN
T cells allowed to segregate IND and CARD in a cluster analysis,
which was particularly evident within TCR gd+ DN T cells. Our
previous studies of DN T cells in Chagas disease suggested that the
TCR gd+ subpopulation is more responsive than the ab+
A B

FIGURE 3 | Analysis of activation status of DN T-cell central (CM) and effector (EM) memory subpopulations, naive (N) and effector (EF) cells in indeterminate (IND, n = 6)
and cardiac (CARD, n = 6) Chagas patients gauged by CD69 expression, before (MED) and after in vitro stimulation with live parasite (TRP). The graphs (A, B, top)
represent the frequency of activated DN T-cell subpopulations in the different groups and under distinct conditions. The results are expressed as percentage in box plot,
extending from the 25th to 75th percentile, with a horizontal line at the median with whiskers. Paired or unpaired t-tests were used to compare unstimulated and
stimulated cultures or cultures between different groups of patients, respectively. Statistical significance is indicated in each graph. (A, B, bottom panels) Representative
histograms of the expression of CD69 in the different DN T-cell subpopulations in IND and CARD. Clear curves show CD69 expresion in MED and gray curves show
CD69 expression in TRP.
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counterpart (13, 19), which was confirmed here for the different
memory populations, especially the EM cells. TCR gd+ DN T cells
display intense cytotoxic activity to viral and bacterial infections (29,
30) and are associated with oligoclonal antigen recognition (29). We
have demonstrated that TCR gd+ DN T cells from Chagas disease
patients express higher levels of activation markers upon
stimulation with T. cruzi-derived glycoconjugates than do TCR
ab+ DN T cells (18). Pinpointing the antigen responsible for the
activation of DN T cells emerges as a strategy to further modulate
the activation of these cells, potentially interfering with the immune
response to establish (or re-establish) a protective profile. The fact
that CD1 molecules that present antigens to DN T cells are not
polymorphic, as opposed to MHC molecules, may also present an
advantage in discovering the stimulating antigen.

Our results that DN T cells of the CM phenotype are
predominant and associated with a more balanced immune
response in IND agree with studies evaluating the memory
response of CD4+ T cells in human Chagas disease (31). Those
studies also suggested that the CM response in the CD8+ T-cell
Frontiers in Immunology | www.frontiersin.org 7
compartment was associated with a higher expression of IFN-g in
CARD, but not IND. Opposingly, it has been shown that the
frequency of CD8+ EM T cells is higher in IND than in CARD and
that the expression of IFN-gwas lower in CD8+ T cells from CARD,
suggesting that CD8+ T cells undergo exhaustion in the latter (32). It
is important to emphasize that the lack of co-receptor renders DN T
cells more resistant to chronic stimulation and possibly exhaustion
(12), highlighting the importance of these cells as potential targets of
immune modulation in Chagas disease.

Our data showed that CM DN T cells display a more balanced
cytokine profile in IND, given the increased frequency of IFN-g+IL-
10+ cells, which was lower in CARD. The self-regulatory capacity of
IFN-g-producing cells by concomitant expression of IL-10 has been
demonstrated, highlighting its clinical implications (33, 34). Jankovic
et al. showed that IFN-g-producingTh1 cells were themain source of
host-protective IL-10 in infection with Toxoplasma gondii (35).
While IFN-g was important to control the parasite, the
concomitant expression of IL-10 avoided tissue destruction. The
co-expressionof IFN-g and IL-10byCD4+Tcells has been associated
A

B

FIGURE 4 | Cluster heatmap analysis of activation marker (CD69) and cytokine expression (IFN-g and IL-10) in DN T-cell subpopulations from indeterminate (IND)
and cardiac (CARD) Chagas patients. (A) Top panels contain the cluster heatmap analysis of non-stimulated cultures (MED) and bottom panels contain the cluster
heatmap analysis after in vitro stimulation with live parasite (TRP). The left panels show the distribution of TCR ab DN T cells, and the right panels the TCR gd DN T
cells. (B) Difusion maps showing the trajectories and relationships of the different DN T-cell subpopulations. The top plots contain all patients grouped together and
the bottom plots discriminate IND and CARD, showing distinct trajectories progressing toward EM and CM, respectively.
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A

B

C

D

FIGURE 5 | Correlation analysis of the frequency of DN central memory cells (CM—A, C) and DN effector memory cells (EM—B, D) from Chagas patients (n = 11)
and clinical parameters of disease severity: left ventricular ejection fraction (LVEF) and left ventricular diastolic diameter (LVDD). The left panels contain the correlation
analysis in TCR ab DN T cells, and the right panels contain the correlation analysis in TCR gd DN T cells. Correlation analyses were performed using Pearson’s
coefficient. p-values and r2 are indicated in each graph.
A B

C

FIGURE 6 | Analysis of IFN-g and IL-10 expression by effector memory (EM) DN T-cell subpopulations from cardiac Chagas patients (CARD, n = 4) before and after
treatment with anti-CD1d monoclonal antibodies, as described in the Material and Methods. (A) Representative FACS plots showing the gating of CD4−CD8− TCR ab+ or
TCR gd+ EM cells, followed by histograms of IL-10 expression measured in the presence of media alone (M), media plus anti-CD1d monoclonal antibody (M+block),
parasite antigen alone (TRP-SA), or presence of TRP-SA plus anti-CD1d monoclonal antibody (TRP-SA+block). Representative plots were performed using data from one
CARD patient, in stimulated culture. Histograms were from cultures stimulated and treated with blocking antibody. (B) Percent frequency of TCR ab+ or TCR gd+ EM DN
T cells expressing IFN-g and IL-10 as indicated. (C) Frequency of TCR gd+ EM DN T cells co-expressing IFN-g and IL-10. The results are expressed as percentage ratio
for each culture condition (media+block/media or TRP-SA+block/TRP-SA) in box plots, extending from the 25th to 75th percentile, with a horizontal line at the median
with whiskers. Paired t-tests were used to compare unstimulated and stimulated cultures. Statistical significance is indicated in the graph.
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with protective responses induced by vaccination in experimental
infection with T. cruzi (36). Also, in autoimmune diseases and
recovery after inflammatory injury, the co-expression of IFN-g and
IL-10 has been associated with favorable responses (37–39). Despite
the clear trend in increase of IFN-g+IL-10+ EM cells after blocking of
CD1d, these analyses were not statistically significant, possibly due to
the fact that only four patientswere included in these experiments. In
addition, including non-specific antibodies would provide
information regarding the specific effects of the anti-CD1d
antibody. Thus, future studies will be performed to tackle these
limitations and to confirm if controlling DN T-cell activation
increases the frequency of IFN-g+IL-10+ EM cells in CARD,
suggesting that modulating these cells renders them more similar
toCMDNTcells. In our previouswork characterizing theDNTcells
in Chagas disease (19), we compared the profile of those cells from
patients with the indeterminate and cardiac forms of Chagas disease
and non-Chagas individuals. We observed that the DN T cells from
non-Chagas patients did not respond to parasite antigens, as
measured by the expression of activation markers and
inflammatory and anti-inflammatory cytokines. In the current
study, given those results and since we were focused on memory
cells and recall responses,wedidnot includenon-Chagas individuals.

Given the fact that DN T cells are major producers of
inflammatory cytokines in CARD (19) and their high frequency of
EMDNT cells, demonstrating that it is possible to alter the EMDN
T-cell inflammatory profile in CARD opens possibilities to interfere
with the immune response of the patient to control pathology.
Importantly, the lack of alteration on the expression of IFN-g and
IL-10 by central memory and effector, as well as naive DN T-cell
subpopulations, infers that their immune functionwasnot affectedby
the blocking of activation using anti-CD1d. Our data also have
implications in other diseases where DN T cells play a role in
pathology, as well as in the establishment of protective
memory responses.
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