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Abstract: A magnetic polymer-based nanocomposite was fabricated by the modification of an
Fe3O4/SiO2 magnetic composite with polypyrrole (PPy) via co-precipitation polymerization to
form PPy/Fe3O4/SiO2 for the removal of Congo red dye (CR) and hexavalent chromium Cr(VI)
ions from water. The nanocomposite was characterized using various techniques including X-ray
diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope
(SEM), vibration sample magnetometer, and thermogravimetric analysis (TGA). The results confirm
the successful fabrication of the nanocomposite in the size of nanometers. The effect of different
conditions such as the contact time, adsorbent dosage, solution pH, and initial concentration on the
adsorption process was investigated. The adsorption isotherm suggested monolayer adsorption
of both contaminants over the PPy/Fe3O4/SiO2 nanocomposite following a Langmuir isotherm,
with maximum adsorption of 361 and 298 mg.g−1 for CR dye and Cr(VI), respectively. Furthermore,
the effect of water type on the adsorption process was examined, indicating the applicability of
the PPy/Fe3O4/SiO2 nanocomposite for real sample treatment. Interestingly, the reusability of the
nanocomposite for the removal of the studied contaminants was investigated with good results
even after six successive cycles. All results make this nanocomposite a promising material for
water treatment.

Keywords: polymers; magnetic nanomaterials; adsorption; Congo red removal; chromium removal

1. Introduction

Industrial wastewater treatment has become increasingly complex in recent decades as
a result of the rapid industrialization and the presence of complex mixtures of toxic metal
ions and organic dyes that harm human health and the environment [1–3]. The textile,
paper, and plastic industries are the most common manufacturing purposes including dyes
as important aromatic compounds [4]. In addition to their carcinogenic effects, contam-
inated drinking water with dyes causes various symptoms including severe headaches,
skin irritation, and acute diarrhea [5]. Similarly, metal ions are not less dangerous than
organic dyes due to their high toxicity when discharged in water supplies [6]. One of these
toxic metals, hexavalent chromium (Cr(VI)), is classified as a very toxic and carcinogenic
metal, causing nephritis, gastrointestinal ulceration, and cancer in the digestive tract [7].
The accepted concentrations of hexavalent chromium in drinking water and industrial
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wastewater are 5.0 and 200.0 µg/L, respectively [8]. Therefore, the removal of such pollu-
tants from water has become a challenge for environmental engineers. Several techniques
have been applied for the removal of these harmful metallic ions and dyes from water
and wastewater such as membrane filtration [9], photocatalytic reduction [10], biological
treatment [11], precipitation [12], electrocoagulation [13], and adsorption [14,15].

The adsorption technique is considered as the most effective treatment method due
to several reasons such as its high removal efficiency, economic viability, and simple pro-
cessing, which make it a cost-effective method for pollutant removal from water [16–18].
Recently, nanomaterials with exceptional properties [19–22] have been found to be use-
ful in different fields, especially water treatment. Magnetic nanoparticles as a class of
nanomaterials have been widely used in different fields, due to their ease of separation
using an external magnet, high specific surface area, and simple modification. Generally,
these magnetic nanomaterials include elements with magnetic properties in their chemical
structure such as iron, nickel, and cobalt. The exceptional properties of iron oxide (Fe3O4)
nanoparticles such as high adsorption, superparamagnetic behavior, good compatibil-
ity, low toxicity, high surface energy, and large surface area have attracted attention in
recent years. Thus, these nanoparticles are appropriate for the elimination of targeted
molecules. The toxicity and safety of using nanoparticles in water and food applications
are important points. Interestingly, the non-toxicity of Fe3O4 allowed its wide applications
in water and food fields among all other magnetic nanoparticles [23]. To increase the
adsorption capacity and efficiency of Fe3O4 nanoparticles, they are usually modified by
other organic or inorganic compounds to save the functional groups for capturing the
target molecules. The surface of Fe3O4 magnetic nanoparticles can be easily modified
using silica (silicon oxide) that has a high surface/volume ratio and, subsequently, can
improve the adsorption capacity of Fe3O4 nanoparticles. Silica is widely used in different
industries such as ceramics, ferrosilicon production, porcelain, and glassmaking, and as
semiconductors in electronics [24]. This makes silica a promising material for different
applications. The structural characteristics of silicon oxide allow carrying macromolecules
such as proteins and polymers that associate the potential properties of polymers and the
silica mechanical stability. This association of different properties is paving the way to
numerous technological uses.

Among various polymers, polypyrrole (PPy) has received considerable interest due
to its biocompatibility, low cost, excellent chemical stability, and conductivity. Moreover,
PPy can be easily synthesized and used in different applications such as the nanomedicine
sector, electrochemical sensors, and water treatment. In this context, the use of PPy to
adsorb pollutants such as heavy metals has been reported [25–27]. Thus, PPy is an excellent
choice for the modification of magnetic composites, especially the PPy polymer previously
composited with magnetic nanoparticles for different applications such as lithium-ion
batteries [28], due to its good compatibility with different nanoparticles.

Therefore, we can conclude that the use of composite materials for water treatment
purposes can enhance the chelation and adsorption power of the materials toward targeted
molecules. Herein, we synthesized an Fe3O4/SiO2/PPy magnetic nanocomposite for
water treatment purposes. In the first part of the paper, we report the synthesis and
characterization of the magnetic nanocomposite. In the second part of the paper, we report
the application of the synthesized materials to the removal of Cr(VI) and Congo red dye
with a discussion of the compositing process’s role in the improvement of the material
removal efficiency.

2. Materials and Methods
2.1. Chemicals

Congo red (97%) and K2Cr2O7 (99.9%) were supplied by Sigma-Aldrich (Cairo, Egypt),
while the monomer of pyrrole (98.0%) was purchased from Merck Co. (Cairo, Egypt).
Tetraethyl orthosilicate (TEOS, 98%), aqueous ammonia (25%), ammonium ferrous sulfate
salts (99%), and ferric chloride (98%) were supplied by Sigma-Aldrich (Cairo, Egypt).
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Hydrochloric acid (35.0%) and sodium hydroxide (97.0%) for the pH adjustment were
supplied by El Nasr Co. (Cairo, Egypt).

2.2. Synthesis of Fe3O4/SiO2/PPy Magnetic Nanocomposite

The synthesis of the Fe3O4/SiO2/PPy magnetic nanocomposite was achieved in three
steps. The first step included the synthesis of Fe3O4 nanoparticles, which was followed by
the second step consisting of the modification of Fe3O4 nanoparticles with SiO2. The third
step included the formation of polypyrrole over the Fe3O4/SiO2 composite. For Fe3O4
nanoparticle synthesis, we followed the literature [29] in which hydrochloric acid (HCl,
0.5 M, 100 mL) was used for dissolving ammonia iron sulfate ((NH4)2Fe(SO4)2·6H2O),
7.85g) and ferric chloride (FeCl3, 10.82 g), followed by placing this mixture at 30 ◦C in an
ultrasound bath for half an hour. After that, the temperature of the mixture was adjusted at
80 ◦C, aqueous ammonia (25%, 60 mL) was added drop-wise, and the solution was stirred
at 1500 rpm to form the Fe3O4 nanoparticles as a black precipitate. The stirring process of
the mixture was continued up to one hour followed by collecting the nanoparticles via an
external magnet, and the collected Fe3O4 nanoparticles were washed several times with
distilled water and dried for half a day at 70 ◦C in an oven. Finally, Fe3O4 nanoparticles
were ready to be used. In the second step, Fe3O4 nanoparticles were modified with SiO2
by using tetraethyl orthosilicate (TEOS). This was achieved by using a mixture of distilled
H2O (40 mL) and ethyl alcohol (99.9%, 170 mL) to dissolve 2.0 g of synthesized Fe3O4
nanoparticles. Then, after adding 6 mL of aqueous ammonia, this mixture was placed
for 15.0 min at 30 ◦C in an ultrasound bath. After the complete dispersion of Fe3O4 with
vigorous stirring up to half a day under argon gas environment, 2 mL of TEOS was added
to the solution. The synthesized Fe3O4/SiO2 was then collected by an external magnet,
washed several times with absolute ethyl alcohol, and finally dried at 70 ◦C in an oven
for four hours. The final step was the formation of PPy over the synthesized Fe3O4/SiO2
composite via the co-precipitation chemical method. In a glass beaker, 100 mL of distilled
water was used to disperse 1.0 g of Fe3O4/SiO2 nanoparticles. For the complete dispersion
of nanoparticles, the beaker was placed for 15.0 min at 30 ◦C in an ultrasound bath. After
that, the solution was stirred vigorously and during that, pyrrole (0.1 M) was added and the
stirring was continued up to two hours followed by the addition of ferric chloride (0.1 M,
50.0 mL); the reaction was continued for an additional three hours. Finally, the synthesized
nanocomposite of PPy/Fe3O4/SiO2 was collected by an external magnet, washed several
times with absolute ethyl alcohol, and then dried in an oven at 60.0 ◦C for 6.0 h.

2.3. Material Characterization

The synthesized materials were characterized using various techniques including
X-ray diffraction (XRD), magnetometer, Fourier transform infrared spectroscopy (FT-IR),
scanning electron microscope (SEM), and thermogravimetric analysis (TGA) measurement.
A GNR APD-2000 PRO (GNR, Cairo, Egypt) diffractometer was used to measure XRD
using Cu Ka radiation (λ = 1.5406 Å), operating at 45 kV. The diffraction intensities were
recorded over 2θ ranging from 5◦ to 60◦ with a constant scanning rate of 1◦ min−1. A
vibrating sample magnetometer (Lake Shore 7410, Lake Shore (Cryotronics Inc., Westerville,
OH, USA) was used to measure the magnetization of the nanocomposite. A Bruker, Tensor
27 FT–IR (BRUKER, Karlsruhe, Germany) spectrophotometer was used to perform FT-
IR spectra in the range of 400–4000 cm−1 at room temperature and collected these at a
resolution of 4 cm−1. An SEM Hitachi S4800 (Hitachi, Tokyo, Japan) was used to study
the morphology of the synthesized material. A Perkin Elmer STA 6000 (PerkinElmer Inc.,
Shelton, USA) was used to measure the thermogravimetric analysis for the evaluation of
thermal stability.



Polymers 2021, 13, 1742 4 of 16

2.4. Adsorption Studies
2.4.1. The Effect of Contact Time

The effect of the contact time on the removal of Cr(VI) and Congo red from water
using the PPy/Fe3O4/SiO2 nanocomposite was studied using a volume of 100 mL of
contaminated water (100 mg.L−1) and adsorbent mass of 0.02 g at pH of 4.0. The solution
shaking was conducted up to 24 h with sampling at various times to investigate the
remaining contaminants using ICP and a UV–Vis spectrophotometer. The adsorbent
was collected after each experiment using a magnet. All experiments were performed
in triplicate.

2.4.2. The Effect of Adsorbent Dosage

Different masses of the adsorbent PPy/Fe3O4/SiO2 nanocomposite were used to study
the effect of adsorbent dosage on the removal of Cr(VI) and Congo red. The definite mass
of adsorbent was mixed with 100.0 mL of polluted water with pH of 4.0 up to 12 h. When
equilibrium was reached, the adsorbent was collected with a magnet, and the solution
was examined for the presence of Cr(VI) and Congo red. Experiments were performed
in triplicate.

2.4.3. The Effect of Solution pH

A pH range of 3.0 to 7.0 was used to investigate the pH effect on the removal of Cr(VI)
and Congo red using the PPy/Fe3O4/SiO2 nanocomposite. The adsorbent mass used was
0.05 g, the time was 12.0 h, and the solution volume was 100.0 mL. After each experiment,
magnetic separation was used to collect the adsorbent, and the solution was examined
for any residual pollutants using ICP and a UV–Vis spectrophotometer (Hach, CO, USA).
Experiments were performed in triplicate.

2.4.4. The Adsorption Isotherm

To study the maximum adsorption capacity and the type of the adsorption process of
Cr(VI) and Congo red over the synthesized PPy/Fe3O4/SiO2 nanocomposite, the contami-
nated solution (100.0 mL) was mixed with 0.02 g of the composite for 24.0 h at pH 4.0. The
adsorption mechanism was represented by three isotherm models: Freundlich, Langmuir,
and Temkin.

2.4.5. The Regeneration Study

To assess the commercial application of an adsorbent, it is necessary to determine the
reusability of the material for the effective removal of contaminants several times. This
was achieved by performing the adsorption experiment 6.0 successive times by mixing
the contaminated water (100 mg.L−1, 100 mL, pH 4.0) with adsorbent (0.05 g) for 12.0 h.
After each cycle, the adsorbent was collected with an external magnet, washed with
distilled water extensively, and then dried at 50.0 ◦C for 5.0 h to be used in the next cycle.
Experiments were performed in triplicate.

2.4.6. Water Type Effect

Different types of water including wastewater, groundwater, tap water, and distilled
water were used to determine the water type effect on the removal of Cr(VI) and Congo red
using the synthesized PPy/Fe3O4/SiO2 nanocomposite. Polluted solution prepared using
target water with a concentration of 100.0 mg.L−1 and volume of 100.0 mL was mixed with
0.05 g of adsorbent for 12 h. After each experiment, the solution was examined for the
presence of contaminants.

3. Results and Discussion
3.1. Nanocomposite Characterization

The synthesized materials including Fe3O4, Fe3O4/SiO2, and PPy/Fe3O4/SiO2 nano-
materials were investigated using different techniques such as X-ray diffraction (XRD),
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Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscope (SEM).
The XRD spectra of Fe3O4 nanoparticles, Fe3O4/SiO2, and PPy/Fe3O4/SiO2 are shown
in Figure 1a. The XRD of Fe3O4 nanoparticles alone indicated the cubic phase structure,
and the peaks correspond to the (511), (422), (400), (311), and (220) crystalline planes [30].
The XRD of the Fe3O4/SiO2 composite showed the appearance of all Fe3O4 peaks with the
reduction in the peak intensity and the disappearance of the peak at 2θ = 20 [31] indicating
the crystallinity decrease in Fe3O4 by the combination with amorphous SiO2. The XRD
of the PPy/Fe3O4/SiO2 nanocomposite showed the appearance of all Fe3O4 peaks, and
there was an overlap between the two peaks of Fe3O4 and PPy at 2θ = 20 that made this
peak wider [32]. The diffraction intensity of this peak showed a clearly increase linked to
the marked increase in the thickness of the polypyrrole shell, indicating the existence of
amorphous polypyrrole in the sample. Additionally, the amorphous structure of SiO2 and
PPy caused a reduction in the intensity of Fe3O4 peaks. This indicates the formation of
the composite PPy/Fe3O4/SiO2. The XRD results are in agreement with previous studies
of Fe3O4, Fe3O4/SiO2, and PPy [31–33]. For the investigation of the functional groups
present, the FT-IR spectra of Fe3O4 nanoparticles, Fe3O4/SiO2, and PPy/Fe3O4/SiO2 are
shown in Figure 1b. The FT-IR spectrum of Fe3O4 nanoparticles showed the appearance of
an Fe-O band at 570 cm−1 with the appearance of a hydroxyl group band at 3418 cm−1, due
to the existence of H2O in the nanoparticle structure [34]. In the spectra of Fe3O4/SiO2, the
peaks appeared at 796 cm−1 and 1074 cm−1 and correspond to an Fe-O-Si bond and a Si-O
bond, respectively. Additionally, the same peaks of Fe3O4 nanoparticles corresponding to
hydroxyl group and Fe-O are observed with a small shift due to the interaction between
Fe3O4 and SiO2, while the FT-IR spectrum of the nanocomposite PPy/Fe3O4/SiO2 showed
the existence of all peaks corresponding to Si-O-Fe, Si-O, and Fe-O with a small shift due
to the interaction between Fe3O4 and PPy [35]. Additionally, the NOH peak appeared at
934 cm−1 and the C-N peak appeared at 1192 cm−1. Additionally, the C-H vibrations were
represented by the peaks at 1052, 1300, and 1298 cm−1 [36]. The pyrrole ring vibrations
were represented by the peaks at 1552 and 1547 cm−1. The wide peak observed at the range
of 3500–3000 is characteristic of PPy composites, due to the N-H bonds’ large number [28].
Furthermore, the N-H and O-H vibrations were represented by the peaks at 3447 and
3434 cm−1 [28,36]. The results of FT-IR are in excellent agreement with previous studies of
Fe3O4, Fe3O4/SiO2 [29], and PPy and its compounds [37].

An advantage of the present nanocomposite is its magnetic properties that allow
its separation from the experimental media. Therefore, the magnetization curves of the
synthesized materials Fe3O4, Fe3O4/SiO2, and PPy/Fe3O4/SiO2 at room temperature are
shown in Figure 1c. According to Figure 1c, the highest saturation magnetization was
observed at 68 emu.g−1 for Fe3O4 nanoparticles. This value dropped to 35 emu.g−1 after
the modification of Fe3O4 with silica, indicating the effective interaction between Fe3O4 and
SiO2 [38]. Moreover, the successful modification of the composite Fe3O4/SiO2 with PPy
was indicated by the dropped value of saturation magnetization to 8 emu.g−1, indicating
that the SiO2 layer was thinner than the PPy layer [39]. It can be noticed that all synthesized
materials have good magnetic properties, allowing magnetic separation using an external
magnet, as shown in (Figure 1c, inset).

The thermal stability of the synthesized nanomaterials (Fe3O4, Fe3O4/SiO2, and
PPy/Fe3O4/SiO2) was investigated using thermogravimetric analysis (TGA), as shown
in Figure 1d. According to the TGA curve of Fe3O4, there is a minor weight loss (in the
temperature range of room temperature to 10,000 ◦C) equal to about 3.0% that is attributed
to the evaporation of the chemical or physical attached water or hydroxyl groups on the
surface of Fe3O4 nanoparticles. The TGA curve of Fe3O4/SiO2 indicated the successful
deposition of thermally stable SiO2 on the Fe3O4 surface as there was only 3.5% weight loss
in the temperature from room temperature to 161 ◦C, which is attributed to the evaporation
of adsorbed water. The TGA curve of the PPy/Fe3O4/SiO2 nanocomposite showed 5.0%
weight loss at the temperature range from room temperature to 300.0 ◦C, which is attributed
to the removal of the PPy monomer and the evaporation of adsorbed water. Ppy chains
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have good thermal stability and can be destroyed at high temperatures only. This fact is
indicated by the sharp peak at 640.0 ◦C and weak peak at 400.0 to 500.0 ◦C. The low thermal
stability of the PPy layer resulted in higher weight loss of PPy/Fe3O4/SiO2 compared
to Fe3O4/SiO2. The TGA results indicate the good incorporation of PPy and silica in the
synthesized PPy/Fe3O4/SiO2 nanocomposite.
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nanocomposite, and PPy/Fe3O4/SiO2 nanocomposite.

For determining the surface structure and morphology of the synthesized materials,
the SEM images were assessed (Figure 2).

The SEM image of Fe3O4 nanoparticles indicated their granular shape with a size
range of 40.0 to 100.0 nm (in Figure 1a). Similar granular shapes with no big differences in
porosity, morphology, and structure were observed between the Fe3O4/SiO2 composite
(Figure 2b) and Fe3O4 nanoparticles. However, the morphology of the particles was
changed by the addition of PPy, as shown in Figure 2c. The particles became cabbage in
shape with an increase in their size as expected due to the deposition of pyrrole over Fe3O4
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firstly, followed by the synthesis of PPy, causing the size increase. The present results are in
agreement with the previous studies of Fe3O4 nanoparticles, Fe3O4/SiO2 composites [29],
and PPy composites [40] from the view of particle shape, morphology, and porosity.
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3.2. Adsorption Studies
3.2.1. Effect of Contact Time

The effect of the contact time on the removal of Cr(VI) and Congo red dye from water
using the magnetic PPy/Fe3O4/SiO2 nanocomposite was studied, as shown in Figure 3a.
According to Figure 3a, there were two stages of removal of both pollutants. The first
stage showed a rapid removal of Cr(VI) and Congo red dye that appeared in the plot
as a linear curve. The second stage showed stable removal of Cr(VI) and Congo red
dye, which appeared in the plot as a plateau curve, meaning that the adsorption process
reached equilibrium.

This behavior can be explained in that the first stage occurred due to the existence
of a large number of empty adsorption sites on the adsorbent surface, allowing the rapid
capture of pollutants within a short period. After that, the adsorption sites became filled,
and equilibrium was achieved [41,42]. According to Figure 3a, the Cr(VI) and Congo
red dye removal by the magnetic PPy/Fe3O4/SiO2 nanocomposite increased from 8.0 to
193.0 mg.g−1 and from 17.0 to 213.0 mg.g−1, respectively, when the contact time increased
from 5.0 to 1440.0 min. As clearly shown in the contact time plot, 480.0 min was the point
at which equilibrium was reached for the removal of Cr(VI) and Congo red dye using the
PPy/Fe3O4/SiO2 nanocomposite.
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3.2.2. Effect of Adsorbent Dosage

Figure 3b shows the effect of adsorbent dosages on the removal of Cr(VI) and Congo
red dye from water using the PPy/Fe3O4/SiO2 nanocomposite. This was achieved using
different masses of the nanocomposite as follows: 0.06, 0.05, 0.04, 0.03, 0.02, and 0.01 g.
According to Figure 3b, the increased dose of the nanocomposite led to an increase in
the removal percentage of both pollutants. This behavior is attributed to the existence of
accessible and sufficient adsorption sites for the uptake of Cr(VI) and Congo red, which
are increased by adding more quantities of the adsorbent, as reported in previous stud-
ies [43]. According to the Figure 3b, the removal efficiencies of Cr(VI) and Congo red were
increased from 16.0% to 98.0% and from 19.0% to 99.5%, respectively, when the mass of the
PPy/Fe3O4/SiO2 nanocomposite increased from 0.01 to 0.06 g. When the adsorbent mass
increased from 0.05 to 0.06 g, there was no significant increase in the removal efficiencies.
Therefore, 0.05 g was considered the optimum adsorbent dose for the removal of both
contaminants using the PPy/Fe3O4/SiO2 nanocomposite. This behavior may be attributed
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to the saturation of the adsorption sites or the agglomeration of adsorbent particles when
their quantity increased, leading to the constant removal efficiency [44].

3.2.3. Effect of Solution pH

The pH effect on the removal of Cr(VI) and Congo red using the PPy/Fe3O4/SiO2
nanocomposite was investigated in the range of 3.0 to 8.0, as shown in Figure 3c. According
to Figure 3c, the highest removal efficiencies were achieved at the lowest pH (3.0 to 4.0)
with removal values of 99.0% and 99.7% for Cr(VI) and Congo red, respectively. Moreover,
the pH increase allowed a removal efficiency decrease for both Cr(VI) and Congo red. This
behavior is attributed to many factors such as the charge in adsorbates and the adsorbent
surface charge in the water environment. The increased removal efficiency at very low pH
values is attributed to the high electrostatic attractions between the negatively charged
adsorbates (acidic CR dye and Cr(VI)) and the protonated adsorbent functional groups.
The decreased removal efficiency at a higher pH value is attributed to the existence of
negatively charged hydroxyl groups that compete with adsorbate molecules for adsorption
active sites. Additionally, Cr2O7

2− and HCrO4
− are the predominant ions of chromium in

the pH range of (2.0 to 6.0), while this form changes by a pH increase to HCrO4
2−. It is well

known that the HCrO4
− form of chromium ions has the lowest adsorption energy equal to

(0.60 to 2.50 kcal.mol−1) [45] that explains their high removal at a lower pH. Moreover, at a
low pH, H+ ions neutralize the negatively charged adsorbent surface, thereby reducing the
barrier to diffusion of dichromate ions. However, the pH effect may be controlled by the
development of an electric double layer over the adsorbent. With the increase in pH, the
concentration of H+ ions changes from acidic to basic, and, consequently, the polarity of the
double layer at the adsorbent surface may be changed from positive to negative. At a lower
pH, the system attained equilibrium faster and also the percentage of chromium adsorbed
increased, as explained by Verma et al. [46]. Finally, we can conclude that the adsorption
behavior at different pH values is dependent on the protonation or deprotonation of the
adsorbent functional groups which detect the attraction or repulsion forces between these
functional groups and metallic ions and dyes. Therefore, the adsorbent active binding sites
and surface chemistry of the material are clearly influenced by the pH, which affects the
efficiency of the adsorption.

3.2.4. Initial Concentration Effect

Figure 3d shows the effect of using different Congo red dye and Cr(VI) initial concen-
trations on their adsorption over the PPy/Fe3O4/SiO2 nanocomposite. This was achieved
by using a concentration range of 25.0–300.0 mg.L−1 for both Congo red dye and Cr(VI).
According to Figure 3d, the adsorption capacity increased by increasing the initial concen-
tration of Congo red dye and Cr(VI), and at a certain point, equilibrium was reached (the
adsorption increase became slower). Equilibrium was reached at 100.0 mg.L−1 for both
Congo red dye and Cr(VI), which is considered the optimum initial concentration. The
maximum adsorption capacities reached 207.0 mg.L−1 and 257.0 mg.L−1 for Cr(VI) and
Congo red dye, respectively. These highest values of pollutant removal at higher concen-
trations could be explained on the basis of the high attraction forces between pollutants
and the adsorbent surface at high concentrations.

3.2.5. Adsorption Isotherm

Freundlich, Langmuir, and Temkin adsorption isotherms were used to investigate the
adsorption isotherm of Congo red dye and Cr(VI) ions over the surface of the PPy/Fe3O4/SiO2
nanocomposite. The main purpose of studying the adsorption isotherm is to understand
the adsorption mechanism over the studied adsorbent (i.e., assess the adsorption limit
and the distribution of the pollutants on the adsorbent sites). The fitting of isotherms is
presented in Figure 4.
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The first studied isotherm was the Freundlich model that suggested heterogeneous
adsorption of contaminants over the surface of the adsorbent, and the adsorption was
achieved via the construction of multilayers from the pollutant ions [47]. The Freundlich
model can be represented by the equation

qe = KF + Ce
N, (1)

where qe denotes the amount of uptake pollutants after equilibration (mg.g−1), Ce denotes
the rest concentrations (mg.L−1), and N and KF are the normal constants of the Freundlich
model and related to the adsorption intensities and capacities, respectively.

The second studied isotherm was the Langmuir model that suggested homogenous
adsorption of contaminants over the surface of the adsorbent, and the adsorption was
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achieved via the construction of a monolayer from the pollutant ions [48]. The Langmuir
model can be represented by the equation

qe = KLqm/(1 + KLCe), (2)

where KL denotes the Langmuir constant and qm denotes maximum adsorption after
reaching saturation.

The last model is the Temkin isotherm that indicates the effect of sorbate ions on each
other during the adsorption process. The Temkin model can be represented by the equation

qe = B lnA + B lnCe, (3)

where B and A denote Temkin model constants. Table 1 summarizes the Freundlich
and Langmuir parameters for the removal of Congo red dye and Cr(VI) ions over the
PPy/Fe3O4/SiO2 nanocomposite.

Table 1. The calculated Langmuir and Freundlich isotherm parameters for the removal of Cr(VI) and
CR dye over PPy/Fe3O4/SiO2 nanocomposite.

Pollutant Langmuir Freundlich Temkin

qmax
(mg.g−1)

KL
(L.mg.g−1) R2 N KF

(L.mg.g−1) R2 B
(J.mol−1)

A
(L.g−1) R2

CR
dye 361.43 0.017 0.946 0.487 2.1360 0.842 69.44 4.33 0.931

Cr(VI) 298.22 0.013 0.892 0.537 1.2720 0.785 57.12 4.52 0.835

According to the data in Table 1, there was a lower fit of the Freundlich and Temkin
isotherms than the Langmuir isotherm for the adsorption of Congo red dye and Cr(VI)
metal on the surface of the PPy/Fe3O4/SiO2 nanocomposite, as indicated from the values of
R2. The maximum adsorption capacities of the PPy/Fe3O4/SiO2 nanocomposite calculated
using the Langmuir model were found to be 298.22 mg.g−1 and 361.43 mg.g−1 for Cr(VI)
and Congo red dye, respectively. Subsequently, the adsorption of Cr(VI) and Congo red
dye on the surface of the PPy/Fe3O4/SiO2 nanocomposite was achieved in the form
of monolayer uptake on the energetically symmetrical (homogeneous) adsorption sites.
Additionally, the values of N obtained from fitting of the experimental data with the
Freundlich isotherm were higher than zero, indicating the favorable adsorption of both
pollutants. Additionally, the experimental data also fitted the Temkin model, indicating
that the adsorption process was possibly affected by pollutant ion interactions.

3.2.6. The Regeneration Study

The application of any studied adsorbent at a large scale for wastewater treatment
essentially requires an investigation of its regeneration [49,50]. Concerning this, the reusabil-
ity of the PPy/Fe3O4/SiO2 nanocomposite for the removal of Cr(VI) ions and Congo red
dye was studied for up to six successive cycles, as shown in Figure 5a.

After each cycle, the adsorbent was separated using an external magnet, washed
several times extensively with distilled water to remove any adhered pollutants, and
then dried in an oven to be used in the next adsorption–desorption cycle. The studied
PPy/Fe3O4/SiO2 nanocomposite showed good reusability for the removal of Cr(VI) and
Congo red dye during the studied cycles, with a decrease in the efficiencies by increasing
the cycles. The composite’s efficiency to remove Congo red dropped from 98.0% to 74.0%,
while for Cr(VI) removal, it dropped from 93.0% to 72.0% after six reuse cycles. This
behavior is attributed to the destroyed adsorption sites over the nanocomposite surface
after each cycle, causing the decrease in the material efficiency to capture the pollutants.
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3.2.7. The Water Type Effect

The removal efficiency of Cr(VI) ions and Congo red dye on the surface of the
PPy/Fe3O4/SiO2 nanocomposite using different types of water including sewage water,
groundwater, tap water, and distilled water was investigated to determine the applicability
of the synthesized nanocomposite for an effective real water treatment (Figure 5b). The
order of the removal efficiency for both pollutants (Cr(VI) and Congo red dye) was distilled
water > tap water > groundwater > sewage water. This resulting behavior is attributed
to the existence of other contaminants in each water type that compete with the studied
pollutants for the adsorption active sites over the nanocomposite surface. Furthermore,
the selectivity of any innovative adsorbent should be studied toward different competing
co-ions including bicarbonate, sulfate, and chloride ions that may be present in water. For
example, it was reported that sulphate and chloride negatively affect the adsorption of
Cr(VI) on polypyrrole@magnetic chitosan nanocomposites [51]. Additionally, the sim-
ilarity of the ionic charge between Cr(VI) and bicarbonate ions showed a competitive
effect on the adsorption of Cr(VI) [51,52]. Therefore, it is very important to determine the
chemical composition of the water before starting the adsorption experiments. Matched
to the reported concentrations in nature, these removal efficiencies were achieved for a
pollutant concentration of 100.0 mg.L−1, which is considered high. This fact approves the
applicability of the PPy/Fe3O4/SiO2 nanocomposite for real water treatment.

3.2.8. Comparative Study

The assessment of the synthesized nanocomposite for the removal of Congo red dye
and Cr(VI) ions required its comparison with previously reported adsorbents. In this
regard, we summarized the previously studied adsorbents for the removal of Congo red
dye and Cr(VI) ions in Table 2. According to Table 2 [53–68], it is noticeable that the present
synthesized PPy/Fe3O4/SiO2 nanocomposite showed a good removal capacity for the
removal of Cr(VI) ions and Congo red dye when compared to previously reported materials.
However, the difference in the adsorbent efficiency between materials may be controlled
by the variability of the interactions between pollutants and the material functional groups.
Strong interactions with specific functional groups present on the adsorbent surface allow
a high adsorption capacity [67]. Furthermore, the competitive potential application of these
innovative adsorbents should be evaluated taking into consideration different parameters
associated with the material characteristics (regeneration, degradation, life cycle, etc.) and
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with the wastes resulting from the process (loaded pollutant disposal, chemicals used for
the adsorption–desorption, etc.). Moreover, a cost comparison between these materials
should be conducted.

Table 2. Comparative assessment of CR dye and Cr(VI) ions adsorption capacity of PPy/Fe3O4/SiO2 nanocomposite with
previously reported adsorbents.

Adsorbent Pollutant qm (mg.g−1) Ref.

PPy/Fe3O4/SiO2 CR dye and Cr(VI) 361.43 and 298.22 This study
PPy/Fe3O4/AgCl Cr(VI) 111 [52]
PPy-rGO/Fe3O4 Cr(VI) 227 [53]

PPy-coated halloysite nanotubes Cr(VI) 149 [54]
PPy-PANI fibers Cr(VI) 227 [55]

Glycine-doped PPy Cr(VI) 217 [56]
PPy/Fe3O4 Cr(VI) 169 [57]

Fe3O4 glycine-doped PPy Cr(VI) 238 [58]
Aspartic acid-doped PPy Cr(VI) 177 [59]

Hierarchical porous MgBO2(OH) microspheres CR dye 228 [60]
Mesoporous activated carbon CR dye 189 [61]

NiO nanosheets CR dye 168 [62]
MgO powders CR dye 105 [63]

Neem leaf powder2 CR dye 41 [64]
Magnetic core–manganese oxide shell CR dye 42 [65]

Chitosan/montmorillonite nanocomposite CR dye 55 [66]
Ashitaba waste-based activated carbons CR dye 289–381 [67]

Walnut shell-based activated carbons CR dye 314–400 [68]
Nanofibrous membranes from ion polymers CR dye 70.8 [69]

4. Conclusions

In this study, a promising polymer-based nanocomposite, PPy/Fe3O4/SiO2, was
synthesized for the elimination of Congo red dye and Cr(VI) from water. The synthesized
nanocomposite was characterized using different techniques (XRD, FT-IR, SEM, etc.). XRD
results confirmed the crystalline structure of Fe3O4 nanoparticles that decreased by the
addition of PPy and silica. Additionally, SEM images confirmed the size of the synthesized
materials. FT-IR bands approved the successful combination between three components of
the hybrid Fe3O4, SiO2, and PPy. The synthesized nanocomposite was examined for the
removal of Cr(VI) and Congo red dye from water. The effects of different factors including
the contact time, adsorbent dosage, solution pH, and initial concentration on the adsorption
process were studied to detect the optimum conditions. The adsorption data were found
to be more fitting to the Langmuir model with maximum adsorption of 298.22 mg.g−1

and 361.43 mg.g−1 for the removal of Cr(VI) and Congo red, respectively. This indicated
the monolayer adsorption of Cr(VI) and Congo red on the energetically homogeneous
active sites of the PPy/Fe3O4/SiO2 nanocomposite. The regeneration study indicated the
ability to reuse the nanocomposite several times for the removal of Cr(VI) and Congo
red, which may reduce the overall cost of the treatment. Finally, we can conclude that the
PPy/Fe3O4/SiO2 nanocomposite is a promising material for water treatment and must be
examined in the future for additional pollutant removal.
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