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Abstract: This paper presents a day ahead optimal dispatch method for smart grids including two-
axis tracking photovoltaic (PV) panels, wind turbines (WT), a battery energy storage system (BESS)
and electric vehicles (EV), which serve as additional storage systems in vehicle to grid (V2G) mode.
The aim of the day ahead schedule is the minimization of fuel-based energy, imported from the main
grid. The feasibility of the proposed method lies on the extensive communication network of the
smart grids, including sensors and metering devices, that provide valuable information regarding
the production of the distributed energy resources (DER), the energy consumption and the behavior
of EV users. The day ahead optimal dispatch method is applied on a smart grid in order to showcase
its effectiveness in terms of sustainability, full exploitation of DER production and ability of EVs to
act as prosumers.

Keywords: smart grid; V2G; day ahead optimization; energy management; distributed energy
resources

1. Introduction

The reduction of greenhouse gas emissions is a primary goal of the European Union
that has already produced encouraging results [1]. More specifically, as part of the Euro-
pean Green Deal, the European Commission has set the target of 55% reduction by 2030
in greenhouse gas emissions compared to 1990 [2]. Toward that end, the adoption of
renewable energy sources (RES) such as photovoltaic panels (PV) and wind turbines (WT),
as well as battery energy storage systems (BESS) and other energy storage systems (ESS), is
ever increasing [3–5]. Another recent trend is the procurement of electric vehicles (EVs) by
public and private entities alike [6–8]. The importance of the mass use of EVs is paramount
as they reduce greenhouse gas emissions compared to conventional vehicles using fossil
fuels [9]. Though electric vehicles are usually considered as loads to the grid since they are
charged from it (G2V), they also have the capability of acting as power sources that can
give back energy from the vehicle to the grid (V2G) [10,11]. Essentially, this allows electric
vehicles to act as small BESSs for the duration of their stay at a charging station, which
increases the flexibility of the grid and the capability for RES penetration [12–14].

The aforementioned technologies can be efficiently combined in smart grids [15,16].
A defining characteristic of smart grids aside from “green energy” presence is that they
contain advanced metering infrastructure (AMI) comprising smart sensors and meters
capable of both measurements and wireless communication with other devices to use
all the integrated assets to their full potential [17,18]. For example, smart grids employ
smart sensors and smart meters to determine when EVs arrive and depart, the state of
charge of the EVs and grid BESSs, the angles of the PVs to implement tracking for optimal
generation, etc. [19]. The integration of all these sensors makes smart grids exemplary
cyber-physical systems that allow flow of information among their assets. The data from
sensors is provided securely through communication protocols to the operator so that they
can take the necessary actions and can then be stored, to potentially make predictions for
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the future based on them. Of note, this sort of environment also promotes the incorporation
of more recent, advanced technologies in the overall monitoring and control system, such
as the internet of things (IoT), home energy management, etc. [20–23].

All the available information by the smart sensors and smart meters to the operator
make day-ahead optimal scheduling possible [24–26], especially in combination with
forecasting techniques, EV charging patterns, solar and wind databases, etc. [27–29]. This
scheduling is extremely useful for the grid operator that can estimate the dispatch required
to satisfy consumers and the charge and discharge schedule of EVs and BESSs, doing so
in a manner that maximizes a desired benefit. Thus, day-ahead optimization provides
a benchmark regarding the schedule of distributed energy resources (DER) utilization,
without which the energy dispatch decisions would have to be made on-the-spot (which
would be quite insufficient, especially in the case of V2G, where the dispatch needs to be
conducted according to the schedules of the EV owners) [30–32]. Of course, day-ahead
scheduling is not without its flaws as there are errors in all its included predictions. So,
it is imperative that the errors have a known bound and that their impact is taken into
account [33].

Several approaches have been proposed in literature to address day-ahead optimiza-
tion problems for smart grids that include EVs with V2G mode and RES production. They
differ from each other in their goals and the assets they add to the installation under study.
For example, in [34] an optimization model is introduced for a grid including both EVs that
support V2G mode and PV panels. The purpose of the optimization is the maximization
of self-consumption. Additionally, in [35] a similar installation is investigated, including
both EVs with V2G capability and PV panels, but this time the objective is to minimize
the cost for the grid operator while also minimizing the load variance throughout the day.
The optimization is achieved through particle swarm optimization (PSO), which is a meta-
heuristic method. However, there are cases where the integration of EVs (considering V2G
mode) in a grid is studied along with wind farms (WFs), instead of PV panels, as presented
the work of [36–39]. More specifically, in the case of [36] the objective is to simultaneously
optimize the wind power curtailment, the generation cost, and the emissions from the
daily operation of the grid. Additionally, in [37] the goal of the proposed methodology
is to achieve high wind integration and low charging cost for the EV users. The purpose
of [38,39] is to minimize the cost for the operator through the optimal charge/discharge
schedule of the EVs in combination with the wind generation. Furthermore, there are
studies where the EVs are combined with both PVs and wind generation. For example,
in [40] an optimization model for microgrids (MG) including wind and solar generation as
well as EVs is introduced. The purpose of the optimization is to provide the EV’s charg-
ing/discharging schedule that minimizes the variance of equivalent load, considering a rich
environmental-friendly energy mix. Additionally, research has been conducted regarding
the operation of EVs (including V2G mode) in grids that incorporate a variety of DER, as
presented in [41,42]. More specifically, [41] proposes an optimization model for a grid that
includes EVs, PV installations, wind generation, a diesel engine and a microturbine. The
authors utilize two variations of PSO to generate an optimal day-ahead schedule in terms
of cost minimization and maximization of environmental protection. Furthermore, the
authors of [42] study a grid that consists of EVs, a PV installation, a WF and a gas turbine.
The purpose of the study is to minimize the system compensation and abandoned energy
costs while maximizing distributed generation income. There are also cases where the
aspect studied is not the viewpoint of the smart grid operator but the one of the operator
of the EV station, as presented in the work of [43,44]. In fact, the authors of [43] solve
the dispatch problem from the side of the operator of an EV charging station, where the
EVs support V2G mode. The station is equipped with a PV installation and a BESS. The
purpose of the day-ahead optimization is to maximize the daily profit of the station and
minimize the losses in the dedicated BESS lifetime. In a similar installation, in [44], the
operator of an EV charging station equipped with PV panels and an ESS aims to minimize
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the total net cost of charging vehicles and maximize V2G penetration, PV power sale, and
ESS usage.

The present paper proposes a day-ahead scheduling method, taking advantage of
the extensive communication network of the smart grids (sensors, metering devices, etc.)
which promote the efficient integration of a variety of DER and EVs. The problem includes
an extensive number of smart grid assets: a main (fuel-based) grid, a PV system with
two-axis tracking, a WF, a BESS, industrial, commercial and residential loads and a large
number (300) of EVs with V2G capability, as presented in Figure 1. Since the proposed
methodology takes into consideration all of these environmental-friendly assets (instead of
a subset of them), it expands the scope of the [34–44], thus contributing to the research field
of environmental-friendly technologies and smart grid energy dispatch. Furthermore, due
to environmental concerns (and the presence of RES and storage units), the objective is to
minimize the environmental footprint of the smart grid, but attention is also given to cost
factors where possible as the paper takes into account the reduced electricity price offered
to consumers during certain hours of the day in Greece (reduced grid price schedule, [45]).
According to the approach of the proposed methodology, the EVs and the BESS are charged
with energy produced by the smart grid’s RES. In addition to the main contribution,
described above, it is noted that the BESS never discharges completely to ensure that the
grid always has a quantity of energy available to it (back-up) regardless of circumstances.
Furthermore, the problem is solved so that parity is maintained between all controllable
assets (main fuel-based grid, BESS and EVs). The results of the proposed methodology are
compared with the respective results without V2G capability, but also with the results of
an extensive sensitivity analysis. To conclude with, the main contribution of this paper is:

1. The optimization of the energy management in a smart grid that includes a PV system,
a WF, a BESS and EVs with V2G capability.

2. The minimization of energy exchange between the fuel-based main grid and the smart
grid and the maximization of the smart grid’s self-consumption. Thus, the EVs and
the BESS are charged from RES.

3. The reduced electricity prices are taken into account.
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The paper is organized as follows: Section 2 describes the methodology (formulation
of the optimizer and uncertainties related to day-ahead optimization), Section 3 describes
the case study, Section 4 presents the results of the case study, but also the results of the
sensitivity analysis, while Section 5 presents the conclusions.

2. Methodology
2.1. Formulation of the Optimizer

The basis of the proposed day-ahead optimization method constitutes a mixed-integer
linear programming (MILP) model, since it includes both continuous and binary variables.
Its scope is to optimally utilize the RES of the smart grid (i.e., the two-axis tracking PV sys-
tem and the WTs), the EVs (considering their potential to act as both programmable loads
and storage units) and the BESS, in order to minimize the energy exchange between the
fuel-based main grid and the smart grid and maximize the smart grid’s self-consumption.
The day-ahead optimization requires forecasts of the PV and WF production as well as
forecasts regarding the behavior of EV owners. It does also require information regard-
ing the technical specifications of the smart grid’s assets (e.g., the efficiency of the EVs
and the BESS). The outcome is a twenty-four-hour schedule composed of the optimal
charge/discharge actions for each controllable asset (i.e., the EVs and the BESS).

The objective function (1) minimizes the environmental footprint of the smart grid by
minimizing the fuel-based energy imported from the main grid and the energy exported to
it. It is the power imported from the main grid at time-step t. Et is the power exported to
the main grid at time-step t. ∆t is the duration of the time-step. It is noted that there are
24 time-steps, one for each hour of the day.

minF =
24

∑
t=1

(I t∆t+Et∆t) (1)

The energy balance of the smart grid at time-step t is represented by (2). PPV
t is the

two-axis tracking PV production at time-step t. PWF
t is the WF’s generation at time-step t.

DEVi
t is the power discharged from the i-th EV at time-step t. DBESS

t is the power discharged
from the smart grid’s BESS at time-step t. Lt is the load of the smart grid at time-step t.
CEVi

t is the power charged to the i-th EV (or EVi) at time-step t. CBESS
t is the power charged

to the smart grid’s BESS at time-step t.

PPV
t ∆t+PWF

t ∆t + ∑
i
(D EVi

t ∆t) + DBESS
t ∆t+It∆t − Et∆t= Lt∆t + ∑

i
(C EVi

t ∆t) + CBESS
t ∆t, ∀t (2)

The upper and lower limits of the state of charge of each EV, SOCEVi
t , are expressed by

(3), where SOCEVi
min is the minimum and SOCEVi

max is the maximum state of charge respectively.
As expressed by (4), at the time of departure of each EV, Tdepi, the state of charge needs to
be equal to the user-defined one, USOCEVi .

SOCEVi
min ≤ SOCEVi

t ≤ SOCEVi
max, ∀t, i (3)

SOCEVi
t=Tdepi

= USOCEVi , ∀i (4)

The energy balance of each EV is expressed by (5) where ηEVi is the efficiency of each
EV’s battery and TEVi

t is the consumption rate due to transportation. Of course, an EV can
only be charged or discharged when it is parked, as expressed by (6) and (7) respectively.

SOCEVi
t+1= SOCEVi

t +CEVi
t ηEVi ∆t −

DEVi
t ∆t

ηEVi
− TEVi

t ∆t, ∀t, i (5)

CEVi
t = 0 if TEVi

t > 0, ∀t, i (6)
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DEVi
t = 0 if TEVi

t > 0, ∀t, i (7)

The maximum power that can be charged to an EV, CEVi
max, is taken into account in

(8). It is noted that uEVi
cht

is the binary variable that indicates whether the i-th EV is being
charged at time-step t or not. Similarly, the maximum power that can be discharged from
an EV, DEVi

max, is taken into account in (9), where uEVi
dcht

is the binary variable that indicates
whether the i-th EV is being discharged at time-step t or not.

CEVi
t ≤ CEVi

maxuEVi
cht

, ∀t, i (8)

DEVi
t ≤ DEVi

maxuEVi
dcht

, ∀t, i (9)

Additionally, as expressed by (10), an EV cannot be simultaneously charged and
discharged.

uEVi
cht

+uEVi
dcht

= 1, ∀t, i (10)

Regarding the smart grid’s BESS, it is noted that in order to have back-up in case of an
emergency a certain quantity of energy needs to always be stored in it [46]. Therefore, the
minimum acceptable state of charge of the BESS is not the technical minimum but the one
that ensures the grid’s seamless operation in case of an emergency. This value is expressed
by the parameter SOCBESS

min and along with the maximum state of charge of the smart grid’s
BESS, SOCBESS

max , limits the BESS’s state of charge, SOCBESS
t , as presented in (11).

SOCBESS
min ≤ SOCBESS

t ≤ SOCBESS
max , ∀t (11)

The energy balance of the BESS is expressed by (12) where ηBESS is the BESS’s efficiency.

SOCBESS
t+1 = SOCBESS

t +CBESS
t ηBESS∆t −

DBESS
t ∆t

ηBESS , ∀t (12)

The maximum power that can be charged to the BESS, CBESS
max , is taken into account

in (13). It is noted that uBESS
cht

is the binary variable that indicates whether the BESS is
being charged at time-step t or not. Similarly, the maximum power that can be discharged
from the BESS, DBESS

max , is taken into account in (14), where uBESS
dcht

is the binary variable that
indicates whether the BESS is being discharged at time-step t or not.

CBESS
t ≤ CBESS

max uBESS
cht

, ∀t (13)

DBESS
t ≤ DBESS

max uBESS
dcht

, ∀t (14)

Finally, as expressed by (15), the BESS cannot be simultaneously charged and dis-
charged.

uBESS
cht

+uBESS
dcht

= 1, ∀t (15)

Regarding the smart grid’s wind generation, it is noted that the total WF generation at
time-step t, PWF

t , consists of the sum of each WT’s generation at time-step t, PWTw
t , where

w is the index of each WT, as presented in (16):

PWF
t =

WTs

∑ PWTw
t , ∀t (16)

Regarding the smart grid’s load at time-step t, Lt, all three possible load types are
considered, i.e., residential, LR

t , commercial, LC
t , and industrial, LI

t, as presented in (17):

Lt = LR
t + LC

t + LI
t, ∀t (17)

Additionally, the reduced, off-peak tariff during certain hours of the day which is
applied in Greece is taken into consideration. This means that this method not only
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maximizes the self-consumption of the smart grid but also, if it is necessary to import
energy from the main grid, selects the hours which correspond to the reduced cost to do so.
In this way, the overall cost of energy from the fuel-based main grid is reduced.

Furthermore, the proposed method is set to not exhaust one of its resources against
another but is set to utilize the whole range of the resources available. This means that, if
the RES production is not enough to cover the demand, the algorithm shall not choose to
drain one source (e.g., the BESS) while leaving another source (e.g., the EVs) intact.

A critical point of this study is that, since the objective is to minimize the environmental
impact of the smart grid’s operation, the optimizer is formulated in a way that all EVs and
the BESS can only be charged from the smart grid’s RES.

Of note, if there was no capability for V2G operation the above model would be the
same but with DEVi

t equal to zero throughout the day for all EVs.
A limitation of this methodology is that it takes into account the aggregations of DER.

This is assumed because the smart grids to which this methodology may be applied are
not as extensive as the large distribution grids. In this sense, effects such as branch losses,
voltage angles, etc. can be ignored.

The proposed optimizer is implemented in Pyomo [47,48] and the solver used to solve
the problem is the basic open-source nonlinear mixed integer programming (Bonmin)
solver [49,50]. According to the basic algorithm of the solver, the problem constraints form
a field of possible solutions (within the range of the decision variables). The set of decision
variables that minimizes the value of the objective function is considered to be the optimal
one. Therefore, it constitutes the optimal energy dispatch schedule.

2.2. Uncertainties Related to Day-Ahead Optimization

When it comes to day-ahead optimization, certain forecasts and assumptions need to
be made regarding uncertainties, because not all of the parameters are initially known to
the operator. In this sense, they may be useful for the planning of the system’s operation.
Yet, no matter how accurate a forecast or an assumption can be, they may deviate from
reality, which may affect the planning and operation of the system.

In the case of smart grids, as presented in Figure 2, some of the most common uncer-
tainties may be related to [33]:
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• RES production time-series forecast: In the beginning of the day, a forecast of the PV
and WF generation is produced so that the operator may proceed with the day-ahead
optimization. Yet, these forecasted values come with respective errors. In order to
evaluate the effect of the forecast errors in the system’s operation, the operator may
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consider the worst-case scenario that could occur. In this study, that would be to
have the minimum possible PV and WF generation considering the maximum error
throughout the whole forecast values. It should be noted that PV production and
wind generation forecasts do not have the same errors because PV production is more
predictable than wind generation [51,52]. In order to evaluate the worst-case scenario,
the optimization problem should be solved considering (1), (3)–(18) instead of (2):(

PPV
t − ePV

t

)
∆t +

(
PWF

t − eWF
t

)
∆t +∑

i
(DEVi

t ∆t) + DBESS
t ∆t + It∆t − Et∆t = Lt∆t +∑

i
(CEVi

t ∆t) + CBESS
t ∆t, ∀t (18)

where ePV
t is the maximum PV forecast error and eWF

t is the maximum wind genera-
tion error.

• Load variations: The total demand of a region usually comprises residential, commer-
cial and industrial load. Out of all, the most unpredictable one is the residential load
which depends on human activity and is not quite scheduled, in contrast with the
operation of the commercial and industrial sector. The residential load is also highly
related to thermal comfort, which increases its mutability and affects the overall load
significantly [53]. In fact, it is estimated that 64% of the energy consumption in the
residential sector is used for space heating, 15% is used for water heating, 14% is used
for lighting and appliances and 6% is used for cooking [54]. In this study, the impact
of the variations of the residential load are taken into consideration by simulating the
expected results with special attention to the highest and lowest expected limits of res-
idential load variations. In order to evaluate the different scenarios, the optimization
problem should be solved considering (1)–(16) and (19) instead of (17):

Lt= LR
t ± vt+LC

t +LI
t, ∀t (19)

where vt is the variation of the residential load at time-step t.
• DER availability: The smart grid operator may plan the day-ahead schedule consid-

ering that all of their assets shall be 100% available. However, sometimes this is not
the case. More specifically, there are cases where a WT might stop functioning or the
BESS may be unavailable due to fault or maintenance issues. Furthermore, the BESS
or the batteries of the EVs may age through time and usage, which decreases their
capacity. The impact of these issues to the overall performance of the system can be
evaluated by the operator. In this study, the impact of DER availability is studied for
(a) the PV system, for the whole range of 0–100% availability, (b) the WF, considering
losing a number of WTs (i.e., losing 0, 1, . . . , all of the WTs), (c) the loss of the smart
grid’s BESS, (d) the degradation (end of life-time) of the BESS, (e) the degradation
of the batteries of the EVs, (f) the degradation of both the BESS and the batteries of
the EVs, and (g) the loss of the BESS and degradation of batteries of the EVs. More
specifically, the two-axis tracking PV system availability can be studied by gradually
decreasing the overall PV production (from 0% decrease, i.e., normal operation, up to
100% decrease, i.e., complete failure of the installation). In order to evaluate the impact
of the PV system’s availability, the optimization problem should be solved considering
(1), (3)–(17) and (20) instead of (2), where aPV is the PV availability ranging from (0%,
10%, . . . , 100%):

PPV
t aPV∆t+PWF

t ∆t + ∑
i
(D EVi

t ∆t) + DBESS
t ∆t+It∆t − Et∆t= Lt∆t + ∑

i
(C EVi

t ∆t) + CBESS
t ∆t, ∀t (20)

The WF availability can be studied by decreasing the total number of operational
WTs. This can be accomplished by considering having initially all WTs available, then
having all WTs available except from one (and so on) until having no WTs available. In
order to evaluate the impact of the WF’s availability, the optimization problem should
be solved considering (1)–(15), (17) and (21) instead of (16), where n is the number of
unavailable WTs and its values may be in the range of (0, 1, . . . , total number of WTs):
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PWF
t =

WTs−n

∑ PWTw
t , ∀t (21)

As regards the loss or degradation of the smart grid’s storage, including the BESS and
the EVs, a variety of combinations can be studied, as presented in Figure 3.
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In order to evaluate the impact of the loss of the smart grid’s BESS, the optimization
problem should be solved considering (1), (3)–(10), (16), (17) and (22) instead of (2):
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t ∆t+PWF

t ∆t + ∑
i
(D EVi

t ∆t) + It∆t − Et∆t= Lt∆t + ∑
i
(C EVi

t ∆t), ∀t (22)

In order to evaluate the degradation of the BESS, the optimization problem should
be solved considering (1)–(17) with special attention to (11) where the capacity is reduced
to 80% of the nominal, according to [55,56]. Similarly, for the evaluation of the impact of
the degradation of the batteries of the EVs, the optimization problem should be solved
considering (1)–(17) with special attention to (3) where the capacity is reduced to 80% of the
nominal. Of course, the two degradation scenarios can be combined, and their impact can
be evaluated by solving the optimization problem considering (1)–(17) and 80% capacity in
both (3) and (11). Finally, in order to have all the combinations examined, it is important to
evaluate the impact of the scenario where the BESS does not operate and the batteries of the
EVs are degraded. This can be studied by solving the optimization problem considering
(1), (3)–(10), (16), (17) and (22), with 80% capacity in (3).

3. Case Study

The optimization method described above is tested on a hypothetical smart grid
located in Greece. The overall daily demand of the smart grid contains a mix of residential,
commercial and industrial load curves, attained from the CIGRE benchmark systems,
presented in [57].

The smart grid’s assets include a two-axis tracking PV system, WTs and a BESS, as
presented in Table 1, but also EVs (with V2G capability) as presented in Table 2. In more
detail, the smart grid is equipped with a two-axis tracking PV system with nominal power
equal to 1 MW, which is justified by the smart grid’s needs. In fact, the total average



Sensors 2021, 21, 7295 9 of 20

daily load of the CIGRE benchmark system is equal to 8.8 MWh and the average daily
production of the two-axis tracking PV system is equal to 5.7 MWh. The smart grid is
also equipped with 2 Bonus B23/150 WTs [58]. Each WT’s installed power is equal to
150 kW, its hub height is equal to 24.5 m and its average daily production is equal to
0.9 MWh. The selection of the installed number of WTs is based on the EU goal of having
24% of the demand covered by WTs [59]. It is assumed that the smart grid is equipped
with adequate RES in order to showcase the benefits of the proposed methodology. If
there was lack of renewable production (either due to the location/potential of the smart
grid or due to lack of adequate RES installations) there would be no reason to study the
environmental-friendly energy management (as the BESS and V2G mode would not be
utilized and the RES production would directly feed the load).

Table 1. Specifications of the PV, WT and BESS utilized in the case study.

Asset Magnitude Value

Two-axis tracking PV system Installed power 1 MW
Average daily production 5.7 MWh

WT

Installed power of one WT 150 kW
Hub height 24.5 m

Average daily production per WT 0.9 MWh
Number of WTs 2

BESS
Nominal energy 1 MWh

Maximum input/output power 500 kW
Efficiency 0.92

Table 2. EV specifications.

EV Technical Specification Value

Nominal battery energy 40 kWh
Maximum input/output power 3.6 kW

Consumption 164 Wh/km
Efficiency 0.9

The BESS of the smart grid has capacity equal to 1 MWh, in order to be compati-
ble with the smart grid’s RES. Additionally, the maximum power that can be charged
to/discharged from it is equal to 500 kW and its efficiency is equal to 0.92, as presented
in [60]. Furthermore, it is assumed that the back-up energy required in case of an emer-
gency corresponds to a minimum state of charge equal to 50%, since the average hourly
demand of this use case is equal to 367 kWh [46].

As regards the EVs, they are modeled according to Nissan Leaf’s technical specifica-
tions [61], presented in Table 2. More specifically, the nominal battery energy is equal to
40 kWh and the maximum input and output power is equal to 3.6 kW. The consumption
due to transportation is 164 Wh/km and the battery’s efficiency when the EV is being
charged or discharged is equal to 0.9.

The features and behavior of the EV owners are presented in Table 3. It is assumed
that each EV owner travels 5.6 km daily according to [62], which is the average daily
travelling distance in Greece. It is calculated that the energy consumption due to the daily
transportation is equal to 918.4 Wh according to (23), where DCEVi is the daily consumption
of an EV, dEVi is the distance it travels and cEVi is its consumption per kilometer.

DCEVi= dEVi cEVi , ∀i (23)
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Table 3. EV owner characteristics.

EV Owner Feature/Behavior Value

Daily travelling distance 5.6 km
Daily consumption due to transportation 918.4 Wh

User defined state of charge at departure from workplace 100%
Time of arrival at workplace 7:00–9:00 following uniform distribution

Working hours 8 h
Number of EV owners 300

The overall daily travelling distance of each EV is assumed to be divided in two equal
parts, in order for the EV owners to arrive and to leave their workplace respectively. In
this sense, TEVi

t , is equal to 459.2 Wh. The time of arrival at the EV owners’ workplace
follows uniform distribution from 7:00 am until 9:00 am, which is a representative interval
according to [63]. This means that for a total of 300 EV owners, 100 arrive at their workplace
at 7:00, 8:00 and 9:00 equally. It is also assumed that the EV owners remain at their
workplace for 8 h and expect to have the batteries of their EVs fully charged by the time
they leave it.

Finally, it is taken into account that the reduced electricity price in Greece from the 1st
of May until the 31st of October (summer period) lasts from 23:00 until 7:00, while from
the 1st of November until the 30th of April (winter period) the reduced cost per kWh lasts
from 2:00 until 8:00 and from 15:00 until 17:00 [45].

Due to the fact that there are two different policies for reduced cost per kWh, depended
on the month of the year, two representative days of the year need to be simulated,
one for each policy, i.e., simulated day 1 and simulated day 2. As presented in Table 4,
simulated day 1 is considered to be a representative day because the PV production is
equal to 5.8 MWh, which is close to the daily average (5.7 MWh) and the WF production is
equal to 2.2 MWh, which is 25% of the daily demand and meets the EU goal of 24% [59].
Furthermore, since this day occurs in October, the electricity price is reduced from 23:00
until 7:00. On the other hand, simulated day 2 is considered to be a representative day
because the PV production is equal to 5.9 MWh, which is also close to the daily average of
5.7 MWh and the WF production is equal to 2.1 MWh, which is 24% of the daily demand
and equal to the EU goal. Since this representative day occurs in January, the cost per kWh
is reduced from 2:00 until 8:00 and then again from 15:00 until 17:00. It should be noted
that the two selected days differ from each other in terms of weather conditions as October
is considered to be a warm month in Greece (typical of a mild beginning of autumn in
such a Mediterranean Southeastern European country), whereas January is considered to
be a cold month (heart of wintertime). The PV and wind generation curves are attained
from [64,65] and are presented in Figure 4.

Table 4. Data of the simulated days.

Data Simulated Day 1 Simulated Day 2

Time interval for reduced cost per kWh 23:00–7:00 2:00–8:00 and 15:00–17:00
PV production 5.8 MWh 5.9 MWh
WF production 2.2 MWh 2.1 MWh

Apart from the main/validity analysis of the case study (which will be conducted
according to the aforementioned boundaries), in order to evaluate the effect of certain
parameters to the proposed solution an extensive sensitivity analysis is carried out, as
presented in Section 2.2. In this context, the effect of the forecast error of RES production
time-series needs to be evaluated (in this case the error concerns the PV forecast and WF
forecast). Additionally, the effect of residential load variations needs to be examined. Last
but not least, the sensitivity analysis presents the effect of DER availability, including PV
panels, WTs, BESS, and EVs.
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4. Results

This Section aims to present the results of the case study as well as the results of the
sensitivity analysis.

4.1. Case Study Results

The hourly energy mixes for the two simulated days are presented in Figure 5. Fur-
thermore, the charge/discharge schedules of the EVs are presented in Figure 6 and the
overall daily energy mix of each simulated day is presented in Figure 7.
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It is noted that in both simulated days the energy mix relies mostly on RES production
feeding directly the load, i.e., 64% and 62% respectively. The RES feed directly the load
throughout the day, especially during noon when the PV production is high, as presented
in Figure 5. During the hours when the RES production exceeds the demand, i.e., during
9:00–17:00 for day 1 and during 8:00–15:00 for day 2, the EVs are charged since the objective
is to maximize the smart grid’s self-consumption, according to Figure 6. In both cases,
the EVs contribute to the energy mix (V2G) when the RES production is lower than the
demand, especially in the afternoon, having a substantial contribution to the energy mix,
i.e., 14% and 15% respectively. The BESS is in both cases fully utilized, contributing 5%,
based on the minimum state of charge set equal to 50% for back-up (which means that
0.5 MWh of the energy stored inside the BESS is kept as back-up). Additionally, it is noted
that the reduced grid price timing is taken into account in both simulated days, as the
smart grid uses only energy imported from the main grid if the RES production does
not meet the demand in the time intervals when the reduced grid cost per kWh applies.
Altogether, even though the two cases have different production curves, the overall share
of the energy mix is almost the same as the storage units (EVs and BESS) distribute the
RES production efficiently throughout the day, proving the effectiveness of the proposed
methodology. However, it should be mentioned that the percentage of RES production
feeding directly the load is slightly higher (64% compared to 62%) and the percentage of
V2G is slightly lower (14% compared to 15%) for day 1, even though both days are chosen
to have equal RES production (i.e., 8 MWh). This is attributed to the fact that the RES
production for day 1 is more evenly distributed throughout the day than in day 2. For
example, according to Figure 4, at 8:00 the RES production for day 2 is more than twice as
much as the RES production for day 1. As a result, in day 1 more energy feeds directly the
load and less energy needs to be stored (as it exceeds the demand). Furthermore, since the
storage units (EVs and BESS) are only charged by RES and are not ideal, meaning that they
have efficiency rate lower than 1, the energy losses need to be covered from the main grid.
This is the reason why in day 2 the contribution of the main grid is equal to 18% while in
day 1 is equal to 17%, as stated in Figure 7.

4.2. Sensitivity Analysis Results

This sub-section aims to present the results of the extensive sensitivity analysis that
was carried out according to the methodology of Section 2.2.

4.2.1. Sensitivity Analysis Results Considering the RES Production Time-Series Forecast

The hourly energy mixes for the two simulated days, considering the worst-case sce-
nario for the RES production are presented in Figure 8. The corresponding charge/discharge
schedules of the EVs and the overall daily energy mix of each simulated day are presented
in Figures 9 and 10, respectively. It should be noted that the PV forecast error for time-step
t, ePV

t , is considered to be equal to 11%*PPV
t , according to [51]. On the other hand, the wind

generation forecast error for time-step t, eWF
t , is considered to be equal to 24.67%*PWF

t ,
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according to [52]. Table 5 compares the day-ahead optimization results with/without V2G,
with/without uncertainty regarding the RES production time-series forecast.
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Table 5. Comparison between the day-ahead optimization modes with/without V2G, with/without uncertainty regarding
the RES production time-series forecast.

Operation Mode
Self Consumption

(%)
Energy from the

Grid (kWh)
Energy from the

EVs (kWh)
Reverse Flow of
Energy (kWh)

Day 1 Day 2 Day 1 Day 2 Day 1 Day 2 Day 1 Day 2

V2G 83% 82% 1456 1541 1237 1324 0 0
V2G with RES uncertainty 72% 71% 2479 2568 541 728 0 0

Without V2G 69% 67% 2693 2865 0 0 1382 1504
Without V2G with RES uncertainty 66% 63% 3020 3297 0 0 596 827
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As expected, the RES production feeding directly the load is lower than in the reference
cases, i.e., 61% and 58% of the total energy mix, respectively (compared to 64% and 62%
respectively for the reference cases). Furthermore, since the EVs are only charged from the
RES, V2G is significantly reduced, i.e., 6% and 8% of the total energy mix (compared to
14% and 15% respectively for the reference cases), as presented in Figures 9 and 10. Since
the storage can only be charged by the RES and the RES production is reduced, the smart
grid’s demand is met through fuel-based energy imported from the main grid, as presented
in Figure 8, which is increased reaching up to 29% of the daily consumption.

Yet, either with or without taking the RES uncertainty into consideration, it should be
noted that the smart grid with V2G capability has self-consumption rate at least equal to
71%, reaching up to 83% and there is no reverse flow of energy, according to Table 5. The
maximum V2G contribution is considered to be equal to 1324 kWh, which corresponds to
15% of the smart grid’s load. On the contrary, without V2G capability, self-consumption
cannot exceed 69% and reverse flow of energy is observed in all cases, reaching up to
1504 kWh, highlighting the importance of EVs as storage units.

4.2.2. Sensitivity Analysis Results Considering Residential Load Variations

The impact of the variations of the residential load is presented in Figure 11. The
variation at time-step t, vt, is considered to range from −15%*LR

t up to +15%*LR
t , with

a step set equal to 5%, according to [66]. The robustness of the proposed methodology
is proven by the self-consumption rate which is in all cases higher than 77%. This value
corresponds to 15% increase of residential load for day 2. Of note, self-consumption may
even reach 89.7%, which occurs for −15% residential load for day 1.
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4.2.3. Sensitivity Analysis Results Considering DER Availability

The sensitivity analysis regarding the two-axis tracking PV system availability is
presented in Figure 12, considering the whole range of 0–100% with step equal to 10%. In
this case, the smart-grid’s self-consumption may be affected substantially, with minimum
value equal to 21%, for day 2 considering 0% PV availability. This happens because the
smart grid under study is mostly based on PV production, as presented in Figure 4. The
V2G capability is utilized for PV availability at least equal to 80% in case of day 1 and for
PV availability at least equal to 70% for day 2 (with a small contribution equal to 17 kWh).
This small inclination between the starting points of V2G usage has been expected, as V2G
energy has always been higher for day 2 so far (compared to day 1) and is attributed to the
RES production profile of day 2, as previously discussed.

The sensitivity analysis regarding the WF availability is presented in Figure 13, con-
sidering the possible loss of the smart grid’s WTs. Since the WF production is not as high
as the PV production for both simulated days (see Table 4), the WF availability has a lower
effect on the smart grid’s self-consumption. In fact, even without wind generation, i.e.,
considering 2/2 WTs out of order, the self-consumption is at least equal to 60% (observed
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for day 2). Additionally, in all cases of WF availability, the overall RES production is
enough to enable V2G contribution, ranging from 419 kWh (2/2 WTs out of order for day 1)
up to 1324 kWh (0/2 WTs out of order for day 2).
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The sensitivity analysis on the smart grid’s storage systems is presented in Figure 14.
Five main combinations of absence or degradation of both storage systems, i.e., EVs and
BESS, are considered. It should be noted that in all cases the self-consumption of the
smart grid remains almost the same, i.e., equal to 83% for day 1 and 82% for day 2. This
happens because the overall system capacity is enough to perform the energy management
efficiently.
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More specifically, when considering only EV battery degradation, the results remain
the same as in the reference cases, where fully operational storage is assumed (same self-
consumption, same V2G energy usage, same amount of energy from the main grid). This
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occurs as the energy utilized from the batteries of the EVs is low enough to not be affected
by degradation, i.e., 1237 kWh for day 1 and 1324 kWh for day 2 while the overall battery
energy of EVs is equal to 12,000 kWh.

However, since the BESS is fully utilized in the reference cases, in the scenarios where
BESS degradation is considered (with or without simultaneous degradation of the batteries
of the EVs) the energy mix is affected. In fact, since the BESS can no longer fully participate
due to degradation, the energy it was supposed to store gets stored in the EVs. As a result,
more V2G energy is used, i.e., equal to 1413 kWh for day 1 and 1500 kWh for day 2.

The energy mix is further affected when considering the absence of the BESS, either
with or without EV battery degradation. In this case, the EVs need to absorb even more
energy and contribute more to the energy mix, as presented in Figure 14, i.e., 1615 kWh
for day 1 and 1764 kWh for day 2. Yet, as presented in the respective result for day 1,
there is a small amount of energy, equal to 77 kWh, flowing reversely. This reverse flow
is observed during afternoon hours and is attributed to the profile of RES production in
combination with the constraints of the EVs imposed by their users. In fact, the EVs depart
from the workplace at 15:00, 16:00 and 17:00. At this time, they are expected to be fully
charged and travelling towards the residences of the EV owners. However, at that time
interval, i.e., 15:00–17:00, the RES production happens to be particularly high, reaching
up to 800 kWh hourly, as presented in Figure 4. Since the RES production is high and the
EVs are expected to be fully charged, there is not enough storage capability for all the RES
production. Therefore, a small amount of RES production flows reversely to the main grid.
This would have been avoided if the BESS was available and showcases its importance.

5. Conclusions

This paper presents a day-ahead optimization method for the optimal integration
of V2G capability in smart grids considering a rich energy mix, taking advantage of the
possibilities and information provided by the smart grid’s sensors and communication
system. The aim of the proposed optimizer is the minimization of the smart grid operation’s
environmental footprint. For this purpose, the EVs as well as the BESS of the smart grid are
charged with energy generated from RES, while the energy imported from the (considered
as fuel-based) main grid is minimized. Additionally, attention is paid to the intervals
where reduced grid cost per kWh is applied and to the BESS, which cannot be fully
discharged as it may be used for back-up in case of an emergency. The simulations are
carried out in a hypothetical smart grid located in Greece for two representative days of
the year with different reduced grid price intervals. The results highlight the merits of V2G
capability, reaching:

• Self-consumption at least equal to 82%
• V2G energy usage up to 15%.

Furthermore, various parameters of the method are taken into account in this study,
including:

• The forecast error of the RES production time-series, which may reduce the self-
consumption down to 71%

• The residential load variations which may reduce the self-consumption down to 77%
• The RES and storage availability, which may reduce the self-consumption even down

to 21% (in the case of total loss of the PV system).

Overall, the sensitivity analysis results highlight the effect of selected parameters in the
smart grid’s self-consumption and the importance of V2G participation in the energy mix.
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Abbreviations

Indices
i EV indice
t Time-step indice
w WT indice
Parameters
aPV PV availability
cEVi Consumption per kilometer of the i-th EV
CEVi

max Maximum power that can be charged to the i-th EV
CBESS

max Maximum power that can be charged to the BESS
dEVi Daily distance travelled by the i-th EV
DCEVi Daily consumption of the i-th EV
DEVi

max Maximum power that can be discharged from the i-th EV
DBESS

max Maximum power that can be discharged from the BESS
ePV

t Maximum PV forecast error at time-step t
eWF

t Maximum WF forecast error at time-step t
Lt Load at time-step t
LC

t Commercial load at time-step t
LI

t Industrial load at time-step t
LR

t Residential load at time-step t
PWTw

t Production of the w-th WT at time-step t
PPV

t Production of the PV system at time-step t
PWF

t Production of the WF at time-step t
SOCEVi

max Maximum state of charge of the i-th EV
SOCBESS

max Maximum state of charge of the BESS
SOCEVi

min Minimum state of charge of the i-th EV
SOCBESS

min Minimum state of charge of the BESS
Tdepi Time of departure of the i-th EV
TEVi

t Consumption of the i-th EV due to transportation at time-step t
USOCEVi User-defined state of charge of the i-th EV at the time of departure
vt Variation of residential load at time-step t
ηEVi Efficiency of the battery of the i-th EV
ηBESS Efficiency of the BESS
∆t Duration of time-step t
Decision variables
CEVi

t The power charged to the i-th EV at time-step t
CBESS

t The power charged to the BESS at time-step t
DEVi

t The power discharged from the i-th EV at time-step t
DBESS

t The power discharged from the BESS at time-step t
Et The power exported to the main grid at time-step t
It The power imported to the main grid at time-step t
SOCEVi

t State of charge of the i-th EV at time-step t
SOCBESS

t State of charge of the BESS at time-step t
uEVi

cht
Binary variable indicating whether the i-th EV is being charged at time-step t

uBESS
cht

Binary variable indicating whether the BESS is being charged at time-step t
uBESS

dcht
Binary variable indicating whether the BESS is being discharged at time-step t

uEVi
dcht

Binary variable indicating whether the i-th EV is being discharged at time-step t
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