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Abstract We propose a principle of consistency between

different hierarchical levels of biological systems. Given a

consistency between molecule replication and cell repro-

duction, universal statistical laws on cellular chemical

abundances are derived and confirmed experimentally.

They include a power law distribution of gene expressions,

a lognormal distribution of cellular chemical abundances

over cells, and embedding of the power law into the net-

work connectivity distribution. Second, given a consistency

between genotype and phenotype, a general relationship

between phenotype fluctuations by genetic variation and

isogenic phenotypic fluctuation by developmental noise is

derived. Third, we discuss the chaos mechanism for stem

cell differentiation with autonomous regulation, resulting

from a consistency between cell reproduction and growth

of the cell ensemble.

Introduction

Biological systems generally form a hierarchy. Ecological

systems consist of a population of organisms, an organism

consists of an ensemble of cells, and a cell consists of

interacting biomolecules. Of course, such hierarchical

structures also exist in nonliving systems. Then, is there

some characteristic property underlying biological hierar-

chical systems? In a hierarchical system, the description of

units at a lower level and a description of how they come

together may lead to an understanding of the upper level.

However, this bottom-up picture may not be sufficient for a

complex biological system, since each unit at a given lower

level is not rigidly determined but can change in adaptation

to feedback from a higher level.

As an example, consider a cell in a multicellular organ-

ism, which has internal degrees of freedom and can change

its chemical composition or gene expression patterns. (This

is in strong contrast with an electron functioning as a

hierarchical unit in a physical system). Through interactions

with other cells, the characteristics of a cell are changed

through the process of cell differentiation. A cell in isolation

and a cell in a community sometimes exhibit different

characteristics, since the importance of cell–cell interac-

tions is so significant. A cell, and a tissue as an ensemble of

cells, mutually determine their character. In other words,

the character of a unit (e.g., a cell) is determined not

independently but is changed dynamically by an ensemble

of the units (see Fig. 1). Such dynamic circulation is an

essential characteristic of a complex biological system

(Kaneko and Tsuda 2000; Kaneko 2006): genes encoded in

the DNA control macroscopic phenotypes in an organism,

while competition between phenotypes at the population

level determines the expression of genes.

This interdependence between hierarchy levels has been

studied in statistical physics, in particular, in collective

phenomena. Self-consistent solutions or approximations

are usually adopted in studying cooperative phenom-

ena, where stationary, consistent relationships between
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microscopic elements and their mean (collective) field are

generated. Although statistical physics is important for

studying complex biological systems, an essential factor in

biological systems is not addressed in standard statistical

physics. A biological unit usually has the potential to

reproduce. With reproduction, the number of units increa-

ses, which may change the relationship between levels,

since the upper level consists of a population of lower-level

units, and this number changes in time. This may lead to

instability in the consistency between elements and the

mean (collective) field. Despite changes in population size,

biological systems generally maintain a degree of consis-

tency between levels, even though each unit has many

degrees of internal freedoms (e.g., a cell has a huge variety

of molecules).

For example, in cell reproduction, the duplication of

molecules in a cell is correlated such that it keeps some

synchrony with the reproduction cycle of a cell. In the

development of a multicellular organism, reproduction of

cells is correlated so that the growth of each cell does not

interfere with the growth of an ensemble of cells.

Besides the potential for reproduction and internal

reproduction, a biological unit often has the potential to

evolve, which requires consistency between the time scales

of evolution and of development of each unit. Phenotypes

are generated as a result of the developmental process,

which is robust both against noise in the developmental

process and against some genetic mutations. Although the

time scales of development and evolution are different,

both are robust against noise or mutation, which suggests

consistency between development and evolution (Wagner

2000; Wagner et al. 1997; Kirschner and Gerhart 2005).

Here, we propose that understanding ‘‘consistency’’

among levels and its consequence is important for under-

standing a biological system. In question is how such

consistency between different levels is sustained and

whether there are resulting universal laws that apply to all

biological systems.

Here, we attempt to answer these questions by consid-

ering three examples: statistical laws representing

consistency between molecule replication and cell repro-

duction; general relationships between genetic variation

and phenotypic fluctuation resulting from consistency

between developmental and evolutionary stability; and the

general robust cell differentiation process resulting from

consistency between cell reproduction and multicellular

development.

Consistency between cell reproduction and molecule

replication

Reaction network for cell reproduction

A cell consists of several replicating molecular species that

help in the synthesis of new molecules through catalytic

reactions. As a result, a cell grows until it divides to pro-

duce two cells with similar chemical compositions (see

Fig. 2).

These molecule replications must be synchronized;

otherwise, the cellular chemical composition cannot be

maintained, and the reproduction of cells with similar

compositions will not continue. At the very least, a mem-

brane to separate a cell from the environment must be

synthesized, and this process must be synchronized with

the replication of other internal chemicals. It is unclear how

such recursive production and chemical diversity can be

maintained. Perhaps, there is some statistical law for a

system to sustain such reproduction.

To investigate the intracellular dynamics of replicating

cells, we studied several cell models with intracellular

flexible units

higher level

lower level

Complex System

feedback

.................

Fig. 1 Schematic picture for a hierarchical system. In contrast to a

simple system, a complex system is regulated by feedback from an

upper to a lower level. Consistency between the levels should be

considered

Cell

Diffusion

Nutrient (Resource)

.............

chemcal(catalyst)

Divsion (Interaction)

Fig. 2 Basic structure of a reproducing cell with internal catalytic

chemical reactions. Cell–cell interaction is discussed in ‘‘Consistency

between cell replication and reproduction of multicellular organisms’’
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catalytic reaction networks that transform nutrient chemi-

cals into other chemical species (Furusawa and Kaneko

2003) (see Fig. 2 for a schematic representation). Within a

cell there are a large number of chemical species that

mutually catalyze a reaction. There are nutrient chemicals

that are transported from the outside of a cell and are then

transformed to other molecules through catalytic reactions.

When the number of specific (or total) molecule species

increases beyond a given threshold, the cell divides.

We studied a variety of models within this class, by

adopting a stochastic simulation for the reaction. By vary-

ing the speed of nutrient intake, we found that the cell

continues reproduction, keeping an approximately stable

composition of chemicals, where the growth is optimized

(Furusawa and Kaneko 2003). The recursive production is

satisfied either by tuning the diffusion constant D of nutrient

across the membrane, or by introducing an active transport

process (C. Furusawa, K. Kaneko, in preparation). In the

former case, the fidelity of reproduction, i.e., the similarity

of chemical components is maximized at D ? Dc, where

Dc is a critical point beyond which the production of a cell

does not continue. Around D * Dc, recursive production of

a cell with chemical diversity is possible.

Universal power law in chemical abundances

over species

We investigated the universal statistical characteristics of

reproduction state. First, we studied the statistics on the

abundance of chemicals for a cell undergoing reproduction

with constant chemical compositions. We measured the

rank-ordered distributions of chemical species by plotting

the number of molecules ni as a function of their rank as

determined by ni. As first reported in Furusawa and Kaneko

(2003), the distribution displays a power law with an

exponent of -1, often called Zipf’s law.

In our model, this power law of gene expression is

maintained by a hierarchical organization of catalytic

reactions. Major chemical species are synthesized through

catalysis by less abundant chemicals. The latter chemicals

are synthesized by chemicals with much less abundance,

and this hierarchy of catalytic reactions continues until it

reaches the most minor chemical species. Indeed, with the

aid of mean-field analysis in statistical physics, we can

show the appearance of a power law distribution with an

exponent of -1.

We have confirmed the universality of Zipf’s law by

examining a variety of conditions in a cell model with

reaction networks. They include (i) a distributed network

connectivity such as the scale-free network distribution, (ii)

distributed reaction coefficients, (iii) higher-order catalytic

reactions, (iv) several schemes for transporting nutrients

including active transport and passive diffusion, and (v)

several schemes for cell divisions. Our results are constant

despite modifications to the model. This power law in

regard to abundances is observed in any cells that achieve

recursive production, i.e., consistency between molecule

replication and cell reproduction.

Furthermore, this power law is confirmed by measuring

gene expressions (i.e., by measuring the abundances of a

variety of mRNAs). For over a hundred cell types exam-

ined, we confirmed this power law with an exponent of -1

(see also Kuznetsov et al. 2002; Ueda 2003). The rank-

ordered distribution of protein abundances in yeast cells,

based on protein expression analysis shown in Ghaem-

maghami (2003), also suggests the power law with an

exponent close to -1.

Universal lognormal distribution of chemical

abundances in cells

We have thus far examined the average abundance of each

chemical. Because the chemical reaction process is sto-

chastic, the number of each type of molecule differs

between cells. We therefore studied the distribution of each

molecule number, sampled among cells, to find that the

distribution is fitted reasonably well by the lognormal

distribution, i.e.:

PðniÞ�
1

ni
exp �

log ni � log ni

� �2

2r

 !

; ð1Þ

where log ni indicates the average of logni among cells. In

other words, the distribution of the chemical abundances is

fit by the normal (Gaussian) distribution, only after the

logarithm of the abundances is taken.

This lognormal distribution holds for the abundances of

all chemicals, except for a few chemical species that are

supplied externally to a cell as nutrients, which obey the

standard Gaussian distribution (Furusawa et al. 2005). In

other words, molecules that are reproduced in a cell obey

the lognormal distributions. These results beg the question

as to why the lognormal distribution law generally holds.

For illustration, consider an autocatalytic process where

a molecule (or a set of molecules) xm is replicated with the

aid of other molecules. Then, the growth of the number

nm(t) of the molecule species xm is given by dnm(t)/dt = A

nm(t), with A describing the rates of the reaction processes

that synthesize the molecule xm. Clearly, the synthetic

reaction process depends on the number of the molecules

involved in the catalytic process. At the same time, how-

ever, all chemical reaction processes are inevitably

accompanied by fluctuations arising from the stochastic

collisions of molecules. Consequently, the above rate A has

fluctuations g(t) around its temporal average �a such that

dnmðtÞ=dt ¼ nmðtÞð�aþ gðtÞÞ; and hence we obtain:
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d log nmðtÞ=dt ¼ �aþ gðtÞ: ð2Þ

In other words, the logarithm of the chemical abundances

shows Brownian motion around its mean, as long as g(t) is

approximated by random noise. Accordingly, one would

expect the logarithm of the chemical abundances (i.e.,

molecule numbers) to obey a normal (Gaussian)

distribution.

In our cell model, however, each reaction process is not

autocatalytic, but is catalytic with the aid of other molecule

species, such that the equation is of the type dni=dt ¼
anjn‘ði 6¼ ‘; jÞ: Thus, the above discussion cannot be

directly applied. However, a multiplicative reaction pro-

cess still exists. For example, it is the case that species 3

catalyzes the synthesis of species 1 and 2, as given by

dn1/dt = an2n3, and dn2/dt = an1n3. Then, d(n1 + n2)/

dt = a(n1 + n2)n3 follows. If the molecule concentration

n3 fluctuates, the above argument on multiplicative noise is

applied, leading to a lognormal distribution.

Of course, simple catalysis does not generally exist in

our random catalytic network. We note a cascade reaction

hierarchy, which supports the recursive production around

the critical state D * Dc. A portion of possible reaction

pathways are used dominantly, which organizes a cascade

of catalytic reactions so that a chemical in the ith group is

catalyzed by the (i + 1)th, and that in the (i + 1)th group

is catalyzed by the (i + 2)th, and so forth. A ‘‘modular

structure’’ with groups of successive catalytic reactions is

self-organized in the network. The fluctuations are suc-

cessively multiplied through this cascade, i.e., the noise at

the (i + 2)th level multiplicatively influences the (i + 1)th

level, and (i + 1)th level to ith level,..., and so forth. By

taking the logarithm of concentrations (i.e., log nm ), these

successive multiplications are transformed into successive

additions of random variables, for which the central limit

theorem is applied, leading to the Gaussian distribution of

log nm.

Another simple derivation of lognormal-type distribu-

tions in the concentration of chemicals is provided by

noting that the change in concentration c of some chemical

in a cell is given by dc/dt = (Synthesis)–(Decomposition)–

(Dilution), where the dilution results from the increase in

cell volume V, given by the term (dV/dt)c. As the growth

rate dV/dt fluctuates, there appears a multiplicative noise

term. By computing a stationary probability distribution of

c (from the Fokker–Planck equation corresponding to the

Langevin equation), a log-tailed distribution appears which

approximately agrees with a lognormal distribution at a

tail.

The lognormal distribution is observed in a variety of

models where the cells reproduce efficiently. Following the

above argument, the distribution reflects a balance between

the replication of each molecule and the growth of the cell,

leading to the equation dnm/dt. This distribution is a result

of consistency between replication of molecules and

reproduction of a cell.

Embedding the abundance power law into network

topology

Next, we investigated the relationship between the network

connectivity statistics and the abundance statistics. The

distributions in the connectivity of reaction networks has

been studied extensively (Jeong et al. 2003; Li 2004),

while the power law in chemical abundances discussed

here is independent of the network structure, as long as the

cell satisfies efficient and recursive growth.

The stability of reproduction as well as the growth speed

may differ based on the network structure. We studied the

evolution of the network by generating slightly modified

networks and then selecting those that grew faster. We

prepared n cells with a randomly connected catalytic net-

work with a given initial path number. Then, from each of

these mother cells, m mutant cells are generated by ran-

domly adding one reaction path to the reaction network of

the parent cell. Then, for each of the n 9 m cells, reaction

dynamics are computed, to obtain the growth speed of each

cell. Among the cell population, n cells with higher growth

speeds are selected. Again, from each of these cells, m

mutants are generated. This mutation–selection cycle is

then repeated.

In the beginning, the parameters are not set at the critical

point, such that Zipf’s law on abundances is not observed.

By using selection experiments to choose cells with higher

growth speed, however, Zipf’s law on abundances is

achieved within ten generations. The network structure is

still random. When we continue selection processes,

however, P(k), the network connectivity distribution of

reaction path numbers k, obeys a power law with an

exponent close to –3 (Furusawa and Kaneko 2006).

This scale-free-type of connectivity distribution emerges

in this evolution because attachment of paths to the

chemicals with larger abundances is preferred as a result of

the selection process. Note that the power law distribution

of chemical abundances has already been established

through evolution. A connection between a reaction path

and a more abundant chemical is more effective in

increasing the growth speed of a cell. A change in the

growth speed by addition of an outgoing path from a given

chemical species likely increases with its abundance x,

since the degree of change increases in proportion to the

flux of the reaction. Then, the probability qout(x) to have

such an outgoing path after selection will increase with x,

even though the addition of the path itself is random. If

such probability linearly increases with x, then the abun-

dance power law is transformed to the connectivity power

198 Theory Biosci. (2008) 127:195–204
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law as P(kout) � kout
-2. Numerically, we found that the

probabilities qout(x) are fit by qout(x) � xa with a & 1/2.

In this case, the connectivity distribution is given by

k-(a + 1)/a = k-3 (Furusawa and Kaneko 2006).

It is interesting to note that the power law in abundances

emerges first, and later, through evolution, it is embedded

into the power law in the network connectivity. The

abundance power law is in regard to the number of pro-

teins, while the network is given by genes that ultimately

determine whether a particular enzyme species that cata-

lyzes a given reaction is present. When genes mutate, the

network path is changed accordingly. In this sense, what

we have observed here can be rephrased as ‘‘phenotype

(metabolic process or gene expression pattern) first, and

genes later’’. The power law in the abundance of the former

is later ‘‘assimilated’’ by the gene network structure, as

genetic assimilation as proposed by Waddington (1957).

Consistency between genetic variation and phenotypic

fluctuation

Evolutionary fluctuation response relationship

The result of ‘‘Universal lognormal distribution of chemi-

cal abundances in cells’’ suggests the existence of large

phenotypic fluctuations among cells with identical genes.

In the model, the network and the parameters are identical,

and in the experiment, isogenic bacteria are used. Still,

there exist large isogenic phenotypic fluctuations. Here, we

discuss the relevance of such fluctuations to evolution, in

relation to genotype–phenotype mapping.

Phenotypes are determined from genes through the

developmental process. However, we note that the devel-

opmental process from a single genotype does not

necessarily produce a single phenotype (see Fig. 3). As

mentioned, the developmental process is generally noisy,

and, hence, the phenotype (such as abundances of proteins)

from isogenic cells (organisms) fluctuates.

One might think that such isogenic phenotype fluctua-

tions are not related to evolution, since phenotypic change

without genetic change is not transferred to the next gen-

eration. However, the degree of fluctuation is determined

by the gene, and is heritable. Hence, there may be a rela-

tionship between fluctuation and evolution. We have found

evolutionary fluctuation–response relationships in bacterial

evolution in the laboratory, where the evolution speed is

proportional to the variance of the isogenic phenotypic

fluctuation (Sato et al. 2003). This proportionality was

confirmed in a simulation of the reaction network model in

the last section (Kaneko and Furusawa 2006). The origin of

proportionality between the isogenic phenotypic fluctuation

and genetic evolution has been discussed in light of the

fluctuation–response relationship in statistical physics

(Einstein 1926; Kubo et al. 1985).

There is an established relationship between evolution-

ary speed and phenotypic fluctuation. It is the so-called

fundamental theorem of natural selection by Fisher (1958)

that states that evolution speed is proportional to the vari-

ance of phenotype due to genetic variation, which is

denoted as Vg. It is the phenotypic variance as a result of

the distribution of genes in a population, defined as the

fluctuation of variance of average phenotype over indi-

viduals with different genes. In contrast, the evolutionary

fluctuation–response relationship, proposed here, concerns

phenotypic fluctuation of isogenic individuals as denoted

by Vip. While Vip is defined as variance over clones, i.e.,

individuals with the same genes, Vg is a result of the dis-

tribution of genes. Hence, the fluctuation–response

relationship and the relationship concerning Vg by Fisher’s

theorem are not identical.

If Vip and Vg are proportional, the two relationships are

consistent. Such proportionality, however, is not self-evi-

dent, as Vip is related to variation against the

developmental noise and Vg against the mutation. The

relationship between the two, if it exists, postulates a

constraint on genotype–phenotype mapping and may create

a quantitative formulation of a relationship between

development and evolution.

To determine this possible relationship, we again

adopted the cell model with catalytic reaction networks and

applied the genetic algorithm to evolve the network to

increase a given fitness. Here, the fitness is given by the

number nis of a given chemical is, so that reproducing cells

with higher nis are selected. We evolved cells (with

recursive production as mentioned in ‘‘Consistency

between cell reproduction and molecule replication’’), such

that the concentration of a given chemical increases. We

adopted a genetic algorithm with a fitness proportional to

Genotype

Phenotype

Selection

Reprodcution,
 Mutation

a

P(a)

P(x,a)

 x

Fig. 3 Schematic representation of evolutionary processes with

genotype and phenotype distributions
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the concentration of cis : Here, the mutation rate is given by

the probability that a path in the network is added or

deleted at each generation.

As mentioned, for a given network, there are fluctua-

tions in the abundances of each chemical. We took the

phenotype variable x ¼ logðnisÞ; since the distribution of ni

is approximately lognormal, while theoretical studies (Sato

et al. 2003) adopt a variable x whose distribution is close to

Gaussian. As a measure of the phenotypic fluctuations, we

computed a variance of x for a network that gives peak

abundances at each generation.

To investigate the distributions of phenotypes due to

genetic variation, we computed the average phenotypes �x
over isogenic cells. This average phenotype �x differs from

mutant to mutant, from which its distribution is obtained.

The variance of �x over all mutants computed from this

distribution gives Vg, while Vip is just the variance of x

from a given single genotype (i.e., network).

Vg versus Vip is plotted in Fig. 4, which confirms that

Vip � Vg holds for each evolutionary process with a fixed

mutation rate. As the mutation rate l increases, the slope of

Vg/Vip increases, approaching the line Vg = Vip. When l is

increased at some value lmax, mutant populations exhibit-

ing very low values of x increase, the distribution becomes

flat, and the peak in the distribution shifts downwards.

Indeed, around l & lmax, Vg is the order of Vip. For

mutation rates beyond lmax, the phenotype distribution is

almost flat, as shown in Fig. 5, and the value of x after

selection cannot increase from generation to generation.

Evolution no longer progresses. Thus, the evolution speed

is optimal around l & lmax.

Theoretical discussion

Is it possible to formulate a phenomenological theory to

support the relationship observed in numerical (and par-

tially in in vivo) experiments presented in ‘‘Evolutionary

fluctuation response relationship’’?

Here, we consider the distribution both in phenotype x

and genotype a. Through the evolutionary process, the

genotype changes from its dominant type a = a0, and then

the corresponding average phenotype for each genotype

changes from x = X0 accordingly. To investigate evolu-

tion, both with regards to the distribution of phenotype and

genotype, we introduced a two-variable distribution,

P(x, a).

Vip is the variance of x, which can be written as VipðaÞ ¼R
ðx� xðaÞÞ2Pðx; aÞdx; where xðaÞ is the average pheno-

type of a clonal population sharing the genotype a, namely

xðaÞ ¼
R

Pðx; aÞxdx: Vg is defined as the variance of the

average xðaÞ; over genetically heterogeneous individuals

and is given by Vg ¼
R
ðxðaÞ � h�xiÞ2pðaÞda; where p(a) is

the distribution of genotype a and h�xi as the average of xðaÞ
over all genotypes.

Assuming the Gaussian distribution, the distribution

P(x, a) is written as follows:

Pðx; aÞ ¼ bN exp �ðx� X0Þ2

2aðaÞ þ Cða� a0Þ
"

� ðx� X0Þ=a�
1

2l
ða� a0Þ2

�
; ð3Þ

With bN as a normalization constant. The Gaussian

distribution exp � 1
2l ða� a0Þ2

� �
represents the

distribution of genotypes around a = a0, whose variance

is (in a suitable unit) the mutation rate l. The above

equation can then be rewritten as:
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Fig. 4 The relationship between Vip, the variance of the phenotype x
of the isogenic cells and Vg, the variance of the phenotype x over

10,000 mutants of the selected cell. Plotted with identical symbols are

the relationships over a given evolution course with fixed mutation

rates as indicated in the figure (based on Kaneko and Furusawa 2006)
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Fig. 5 Distribution of the phenotype x over 10,000 mutants, gener-

ated with mutation rates 0.003, 0.01, 0.02, 0.03, and 0.05. When the

mutation rate l approaches lmax (in this case, lmax is around 0.03),

the distribution is flattened, and the peak position shifts downward
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Pðx; aÞ ¼ bN exp �ðx� X0 � Cða� a0ÞÞ2

2aðaÞ

"

þ C2

2aðaÞ �
1

2l

� �
ða� a0Þ2

�
: ð4Þ

Our second assumption evolutionary stability states

that at each stage of the evolutionary process, the

distribution has a single peak in (x, a) space. In order for

this distribution to have a single peak (i.e., not to be

flattened along the direction of a), the following condition

(besides a[ 0) should be satisfied: C2

2a � 1
2l � 0;

i:e:; l� a
C2 � lmax:

This means that the mutation rate has an upper

bound lmax beyond which the distribution does not have a

peak in the genotype–phenotype space. Beyond this

mutation rate, the distribution is extended to very low

values of x (fitness). This breakdown of the high-fitness

phenotype is a kind of error catastrophe, if we follow the

term by Eigen and Schuster (1979). This is consistent with

the observation in Fig. 5.

We investigated the phenotypic variance due to the

genotype distribution. First, we considered the average �xa

over the distribution P(x, a) for a given fixed a, and then

considered the distribution of �xa according to the distri-

bution p(a), noting that �xa �
R

xPðx; aÞdx ¼ X0þ
Cða� a0Þ: For the population having identical phenotype

x = X0, the genetic variance in this distribution is given by

\(da)2[ = l. Hence, the phenotype variance from this

population (of given phenotype x) is written as:

Vig � hð�xa � �xa0
Þ2i ¼ C2l: ð5Þ

We note that C = 0, so that the (average) phenotype

changes with the change of genotype.

Noting that a is the phenotypic variance \dx2[ of iso-

genic individuals, Vip, the inequality l\ a/C2 is rewritten

as:

Vig�Vip: ð6Þ

Since the genetic variance in the population \(da)2[ is

proportional to the mutation rate, the above inequality is

simply the threshold for the error catastrophe mentioned

above. In other words, at the threshold mutation rate

as lmax, Vig = Vip holds. Then, recalling Vig � l, we get

Vig ¼ l
lmax

Vip:

In general, Vg = Vig, as Vg is the variance over all

current populations. In this case, the variance \(da)2[ is

computed over the entire population, and is given

by l/(1 - l C2/a). Thus, Vg = Vig/(1 - Vig/Vip). (Note

Vig/Vip \ 1). If the mutation rate is small, however,

Vg & Vig, so that the proportionality between Vg and Vip is

explained from the above argument.

To sum up the present formulation of distribution, we

have obtained

(i) Vip C Vig, and (ii) proportionality between Vg and Vip

for small mutation rate cases through a given course of

evolution are derived.

Although these relationships are supported by the above

simulation as well as by recent studies about gene networks

(Kaneko 2007), the above formulation is not a ‘‘deriva-

tion’’. First, we assumed the existence of two-variable

distributions in genotype and phenotype P(x, a). As genetic

change is not given simply by the change of a continuous

parameter, it is not a trivial assumption. (For example, the

genetic change in the cell network model is an addition or a

deletion of a reaction path, and if expressed as a continuous

variable is not self-evident). Second, the stability assump-

tion assuring a single peak is expected to be valid for

gradual evolution. Third, to adopt Eq. (3), the existence of

error catastrophe (to produce mutants with very low fitness

values at a large mutation rate) is implicitly assumed. With

these three assumptions, error catastrophe is shown to

occur at Vig & Vip.

In numerical evolution, the error catastrophe is esti-

mated around Vg * Vip. Here, the phenotype at each

generation is within a small range, and the deviation of Vig

from Vg is not so large. Indeed, the estimate of the critical

mutation rate for the error catastrophe is not accurate

enough to distinguish between the two. Thus, the above

theoretical estimate for the error catastrophe is consistent

with the numerical result.1

The above results ask why the error catastrophe pro-

duces low-fitness phenotypes. Note that the growth of a cell

in our model (and in nature) requires maintenance of a

variety of chemicals through reproduction. Mutants may

fail to synthesize some chemicals concurrently. When the

isogenic phenotypic fluctuation is large, there is room to

search for networks that are robust against such mutational

change, while for a large mutation rate, the network with

the highest fitness is not maintained over generations.

The relationships (i)–(ii) as well as the estimate of error

catastrophe are also confirmed in a gene network model

(Kaneko 2007). We expect these relationships (as well as

the existence of the error catastrophe) to be generally valid

for systems satisfying the following conditions.

A. Fitness is determined through developmental dynamics.

B. Developmental dynamics is complex such that its

orbit, when deviated by noise, may fail to reach the

state with the highest fitness.

C. There is effective equivalence between mutation and

noise in the developmental dynamics with regards to

phenotype change.

1 As Vg = Vig, the inequality between Vip and Vig does not set the

bound between Vg and Vip. Hence, the bound for heritability as

anticipated at the discussion part of Kaneko and Furusawa (2006) is

not derived.
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Condition (A) is straightforward in our model, and

condition (B) is satisfied because of the complex reaction

dynamics to sustain the growth of a cell. Postulate (C) is

satisfied since either the phenotypic fluctuation to increase

the number of catalysts for a synthesis reaction or mutation

to add another reaction term for its synthesis can contribute

to the increase in the concentration of a given chemical in

the same manner. Condition (A)–(B) supports the existence

of ‘‘error catastrophe’’. In several models of evolution,

fitness is directly represented as a function of genotype.

Then, a slight change in genotype does not lead to major

differences in phenotype. On the other hand, in a system

with (A)–(B), slight differences in genotype may lead to

huge differences in phenotype, as the phenotype is deter-

mined after temporal integration of the developmental

dynamics where slight differences in genotype (rule gov-

erning the dynamics) are accumulated and amplified.

Note that relationship (ii) shows correlation between the

phenotypic change by gene and spontaneous phenotypic

fluctuation. In other words, the degree to which genes can

alter phenotypes is presumed in the spontaneous pheno-

typic fluctuation. This suggests consistency between

genetic and phenotypic levels (see Fig. 3), as was first

discussed by Waddington, as genetic assimilation (Wadd-

ington 1957).

Consistency between cell replication and reproduction

of multicellular organisms

We briefly discuss cell differentiation, i.e., diversification

into a discrete set of cell types through development and

robustness in the population distribution of each cell type

through development.

In cell differentiation in multicellular organisms, there

usually exists irreversibility. Embryonic stem cells have the

potential to produce all types of cells. Stem cells produced

from them have the potential to produce only a limited

class of cells (for example, a blood stem cell can only

generate all types of blood cells). The stem cells proliferate

or differentiate into other types with some probability.

Successive differentiation from stem cells (S) terminates at

determined cells, which can only replicate (see Fig. 6).

This cell society must then maintain some ratio of popu-

lation sizes of cell types. Stem cells must then regulate the

ratio of proliferation and differentiation, depending on the

population distribution of each cell type. In the example

displayed in Fig. 6, the ratio of differentiation S ? A has

to be increased when the number of type A cells is

decreased, while the ratio of proliferation S ? S is

increased when the number S is decreased.

We have studied a reaction network model as given in

Fig. 2, choosing the model so that the chemical

concentration changes chaotically (Furusawa and Kaneko

2001). We considered cell–cell interactions. As the cell

number increases by cell divisions, the cells share common

resources. Through the concentration change of resources

in the medium, cells interact with each other. This inter-

action introduces a change in intracellular dynamics.

Here, cell state is given by the composition of chemicals

(i.e., by location in the phase space of chemical concen-

trations). Each cell type is determined as an ‘‘attractor’’ in

the intracellular reaction dynamics during cell–cell inter-

action. Initially, the cellular state is a chaotic attractor that

gives type ‘‘S’’. With cell divisions, we found that some

cells differentiate from the original cell state ‘‘S’’ to a

different type with a distinct chemical composition (‘‘A’’),

while another type (‘‘B’’) is differentiated later. With fur-

ther increases in the cell number, differentiation from A to

A1, A2, and A3 progresses. In summary, cell differentia-

tion progresses as displayed in Fig. 6. Stem cells

differentiate into other types stochastically due to the

instability caused by cell–cell interactions.

The differentiation is ‘‘stochastic’’, arising from chaotic

intracellular chemical dynamics. The choice of a stem cell

either to proliferate or to differentiate appears stochastic as

far as the cell type is concerned. However, this is not due to

external fluctuations but is a result of the intracellular state.

As this state is influenced by cell–cell interaction, the

probability of differentiation can be regulated according to

the population of cell types. As the number (fraction) of

stem cells increases, the basin for such chaotic attractors

touches with the attractor itself so that the cells switch to a

different cellular state. On the other hand, as the fraction of

stem cells decreases, the original chaotic attractor is stable

so that the stem cells can proliferate. With this spontaneous

tuning in the stability of the stem cell state, the fraction of

each cell type is regulated. On the other hand, the state of

stem cells is ‘‘marginally stable’’, in the sense that its

Stem Cell

S

A

B

A1 A2 A3

A

S

B

# of S p
S

# of A p
A

...............

p
p

p

Fig. 6 Schematic representation of hierarchical differentiation from a

stem cell
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attractor is on the verge of touching with its basin bound-

ary, through this regulation.

Reaction networks allowing for chaotic dynamics and

differentiation are not common. We checked a variety of

networks to examine the growth speed of each cell (i.e., the

inverse of the division time) and the ensemble of cells

(Furusawa and Kaneko 2000). First, cells having networks

allowing for chaotic dynamics and differentiation do not

grow quickly at the cellular level. Cells having other net-

works without any oscillatory dynamics in chemical

concentrations often divide faster. However, as the number

of cells grows, the speed of division for such non-oscil-

lating cells is drastically reduced, while for cells with

chaotic dynamics and differentiation, the speed is not so

reduced. This is because cells of the latter type do not

strongly compete for resources. In other words, consistency

between a single cell division and the growth of an

ensemble of cells is achieved for cells having networks

allowing for chaotic dynamics. Hence, the consistency

between reproduction of each cell type and population

growth as an ensemble of cells works as a pressure to select

networks exhibiting chaotic dynamics. Regulation to

maintain the proportion of each cell type and the ‘‘marginal

stability’’ of the stem cell state are a consequence of the

cell system that satisfies the consistency.

Conclusion

Here, we reviewed three problems in biology from the

viewpoint of ‘‘consistency between different levels’’. First,

as a result of consistency between molecule replication and

cell reproduction, chemical reaction dynamics are shown to

be at a critical state, and a power law distribution of

chemical abundances (gene expression) is derived. The

dynamics of the molecule number is shown to include a

multiplicative noise term, which leads to a lognormal dis-

tribution of chemical abundances over cells. Through

evolution, the power law distribution of abundances is

embedded into the network topology, leading to a scale-

free network, demonstrating consistency between reaction

dynamics and network structure.

Second, the genotype–phenotype relationship is

discussed. We found a general relationship between phe-

notype fluctuations by genetic variation Vg, and isogenic

phenotypic fluctuation by developmental noise Vip, as a

result of a consistency between genotype and phenotype,

because of feedback from phenotype to gene through

selection.

As the third topic, we touched upon the chaos mecha-

nism for stem cell differentiation with autonomous

regulation, as a result of consistency between cell repro-

duction and growth of the cell ensemble. Although not

described here, recent studies show the existence of spon-

taneous adaptation as a result of consistency between

cellular growth and (stochastic) gene expression patterns

[Kashiwagi et al. 2006, Furusawa and Kaneko 2008]. We

propose that the consistency principle is generally relevant

to understanding reproduction, adaptation, evolution, and

development in biological systems.
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