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Kinesin family protein 2A (KIF2A), an M-type nonmotile microtubule depolymerase, has attracted attention for its role in
carcinogenesis and poor prognoses in various human cancers. In this study, we aimed to evaluate the expression of KIF2A
and its robustness and potential to predict clinical outcomes in gastric cancer (GC) patients. The messenger RNA (mRNA)
expression of KIF2A was determined in 24 pairs of cancerous and adjacent nontumor tissues by real-time polymerase chain
reaction. Immunohistochemistry of KIF2A was performed on a tissue microarray composed of 461 GC and 65 matched adjacent
nontumor tissues removed during surgeries and 18 chronic gastritis, 15 intestinal metaplasia, and 37 low-grade and 62 high-grade
intraepithelial neoplasias acquired through gastric endoscopic biopsies. Univariate and multivariate Cox regression models were
used to perform survival analyses. The high KIF2A expression was significantly correlated to histological type, TNM stage, and
lymph node metastasis. A negative correlation was found between KIF2A expression and the 5-year survival rate of GC patients. In
addition, multivariate analysis indicated that KIF2A is an independent prognostic factor in GC. This study demonstrated the high
KIF2A expression might serve as an independent marker for poor prognoses in GC patients.

1. Introduction

Gastric cancer (GC) is one of the most prevalent and aggres-
sive cancers worldwide with 952,000 new cases diagnosed
annually [1, 2]. Approximately 70% of GC cases seen are from
developing countries. In China, GC is the third leading cause
of death from all cancers, with an age-standardized inci-
dence of 22.7/100,000 [3]. Notwithstanding rapid advances
in treatments, including surgery, chemotherapy, and targeted
therapy, the prognosis for GC patients is far from satisfying
[4]. High rates of metastasis and recurrence are major
obstacles to improving long-term survival after a curative
resection [5, 6]; therefore, newmolecular prognostic markers
and therapeutic targets are needed to improve the clinical
outcome for patients with this disease. Although countless
efforts have been made to pinpoint reliable GC prognostic
biomarkers based on tumor biology [7], many issues, such as
reproducibility and specificity, still need to be addressed and

much work is needed to identify high-quality GC prognostic
markers.

Studies have shown that cytoskeletal reorganizations
play an important role in the migration of neoplastic cells
[8]. Microtubules (MTs), the fundamental component of
the cytoskeleton, are essential not only for mitotic activity
of malignant cells but also for invading neighboring tis-
sues and causing distant metastasis [9]. The decrease and
depolymerization of MTs are associated with the metastatic
potential of the malignant tumors. The kinesin-13 family
members, including kinesin superfamily protein 2A (KIF2A)
and KIF2B, and the mitotic centromere-associated kinesin
(MCAK), are M-type nonmotile microtubule depolymerases
and play central role in regulatingmicrotubule dynamics dur-
ing mitotic progression [10, 11]. The spindle, a microtubule-
based structure, is required for accurate chromosome segre-
gation in both the mitotic and meiotic cell cycles [9]. KIF2A
is a microtubule minus an end-depolymerizing motor and is
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essential in assembling normal bipolar spindles and mitosis
progression [12]. With the depletion of KIF2A, cells form
monopolar spindles, whichmight result in chromosome gain
or loss in the human pancreatic cancer line CFPAC-1 and
osteosarcoma cell line U2OS [10, 13]. As a result, cancer
cell-cycle progression is also halted [10, 13]. Interestingly,
several lines of evidence have indicated that KIF2A might
be implicated in carcinogenesis and the development of
drug resistance in cancer cells [14]. The abnormal expression
and dysfunction of KIF2A are associated with tumorigenesis
and the progression of certain types of human cancers [15].
Silencing the KIF2A gene suppressed the proliferation of
squamous cell carcinoma of the tongue (SCCT, cell line
Tca8113) and synergized the tumor suppression effect of 5-
fluorouracil in a nude-mice model [16]. Furthermore, it was
demonstrated that patients with a high expression of KIF2A
tend to have a poor prognosis for certain types of human
cancers. For example, upregulation of KIF2A is associated
with the metastasis and poor prognosis of colorectal cancer
[17], breast cancer [18], and laryngeal squamous cell car-
cinoma [19]; however, until now, very few studies on the
relationship between KIF2A and other malignant tumors
have been reported and the expression of KIF2A and its
prognostic role in GC have not yet been explored. With
this in mind, we examined the expression of KIF2A in GC
and evaluated its association with the disease’s progression,
invasion, and metastasis.

2. Materials and Methods

2.1. Subject Characteristics. Six hundred fifty-eight formalin-
fixed, paraffin-embedded tissue samples from patients with
GC (𝑛 = 461) and paired adjacent nontumor tissues (𝑛 = 65)
taken during surgical procedures and chronic gastritis (𝑛 =
18), intestinal metaplasia (𝑛 = 15), low-grade intraepithelial
neoplasia (𝑛 = 37), and high-grade intraepithelial neoplasia
(𝑛 = 62) acquired through gastric endoscopic biopsies were
used in this study. All tissue blocks were randomly obtained
from the clinical biobank of Affiliated Hospital of Nantong
University between January 2005 and December 2010.

In terms of the 461 GC patients, none of them had
received any type of treatment before surgery. All samples
were histopathologically confirmed by at least two inde-
pendent pathologists. Median cancer patient age was 55.2
years (range: 27.5 and 78.4 years). Clinical characteristics as
well as follow-up data were retrieved retrospectively from
patients’ medical records and clinical biobank of Affiliated
Hospital of Nantong University. The 1-, 3-, and 5-year overall
survival (OS) of the cohort were 80.52, 61.36, and 42.27%.
At last follow-up, 211 (45.82%) patients had died from either
recurrence of the disease (𝑛 = 177) or surgery-related compli-
cations without recurrence (𝑛 = 34). Among the remaining
250 patients, themean duration of follow-upwas 43.7months
(range: 16.4–59.6 months, standard deviation: ±9.2). OS was
defined as the interval between the initial biopsy-confirmed
diagnosis and death or between the initial biopsy-confirmed
diagnosis and the last follow-up for surviving patients.

The study protocol was approved by the Human Research
Ethics Committee of Nantong University Affiliated Hospital.

All of the procedures were done in accordance with the
Declaration of Helsinki and relevant policies in China.

2.2. Tissue Microarray Construction and Immunohistochem-
istry. Tissue microarrays (TMAs) were constructed as pre-
viously described [3]. In brief, TMAs were generated using
the UT06 Quick-Ray Manual Tissue Microarrayer (Unitma
Co., Ltd., Seoul, SouthKorea). Immunohistochemistry (IHC)
analysis was performed according to standard protocols and
carried out using a mouse monoclonal anti-human KIF2A
antibody (dilution 1 : 100) (Abcam, Cambridge, MA, USA).
Reactions were detected using the Envision+� peroxidase
kit (Dako, Carpinteria, CA, USA). Samples were incubated
with 3,3󸀠-diaminobenzidine plus (Dako, Carpinteria, CA,
USA), then counterstained with hematoxylin, dehydrated
with graded alcohol, cleared in xylene, and placed in perma-
nent mounting media with a cover slip.

All cases were reviewed and scored by researchers blinded
to the clinical characteristics of the patients. KIF2A expres-
sion was scored using the semiquantitative H-score method,
taking into account both the staining intensity and the
percentage of cells that stained at that intensity. The staining
intensity was scored as 0 (no stain), 1+ (weak stain), 2+
(moderate stain), or 3+ (intense stain).The percentage of cells
that stained at each intensity was determined and multiplied
by the intensity score to produce an intensity percentage
score. The scores representing the percentage of positive
cells were as follows: 0, 0–20%; 1, 21–50%, 2, 51–75%; 3, 76–
100%. The final staining scores were calculated by adding
the four intensity percentage scores. The staining score had
a minimum value of 0 (no stain) and a maximum value of
300 (100% of cells with a 3+ staining intensity).

2.3. Quantitative Real-Time Polymerase Chain Reaction. Fresh
frozen tumor tissue samples (𝑛 = 24) and matched adjacent
samples were collected for quantitative real-time polymerase
chain reaction (qRT-PCR) analysis to investigate the difference
of KIF2A expression between cancerous and normal tissues.
Total tissue ribonucleic acid (RNA) was extracted using
the RNeasy Mini Kit (Qiagen, Valencia, CA, USA). qRT-
PCR analysis was performed according to the manufacturer’s
instructions (Quant SYBR Green PCR Kit, Tiangen Biotech,
Beijing, China).TheKIF2Aprimer sequenceswere as follows:
forward 5󸀠-GCCTTTGATGACTCAGCTCC-3󸀠 and reverse
5󸀠-TTCCTGAAAAGTCACCACCC-3󸀠. Moreover, the glyc-
eraldehyde-3-phosphate dehydrogenase (GAPDH) gene as the
housekeeper gene was run in parallel to normalize KIF2A
gene expression (forward primer 5󸀠-TGCACCACCAAC-
TGCTTAGC-3󸀠 and reverse primer 3󸀠-GGCATGGACTGT-
GGTCATGAG-5󸀠). For relative quantification, 2−ΔΔCt was
calculated and used as an indicator of the level of enzyme
expression. All analyses of the samples were performed in
triplicate.

2.4. Statistical Analysis. The statistical analyses were per-
formed using SPSS 22.0 (IBM Corporation, Armonk, NY,
USA). Cutoff values for high or low KIF2A expression
were determined using X-tile (Rimm Lab at Yale University,
http://www.tissuearray.org/rimmlab) [20]. The relationship
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Figure 1: KIF2A expression in benign and malignant gastric tissue samples in TMA sections. (a) Gastric cancer tissue with strongly positive
KIF2A staining; (b) high-grade intraepithelial neoplasia withmoderately positive KIF2A staining; (c) low-grade intraepithelial neoplasia with
moderately positive KIF2A staining; (d) intestinal metaplasia with weakly positive KIF2A staining; (e) chronic gastritis with KIF2A-negative
staining. Columns 1 and 3 and 2 and 4 are KIF2A staining at a magnification of ×40 (bar = 500 𝜇m) and ×400 (bar = 50𝜇m), respectively.

between KIF2A expression and clinicopathologic variables
was estimated using the𝜒2 test. Survival curveswere analyzed
using the Kaplan-Meier method and compared by log-rank
test. The Cox-regression model was used for univariate and
multivariate analyses, in which all of the clinicopathologic
features served as covariates. Statistical significance was
established at 𝑝 < 0.05 (two-tailed).

3. Results

3.1. KIF2A Expression in Gastric Cancer Tissues. We explored
KIF2A expression by performing IHC analysis on TMAs
comprising 461 GC and 65 matched tumor adjacent tissues
from patients with GC. We also examined KIF2A expression
in 18 chronic gastritis, 15 intestinal metaplasia, and 37 low-
grade and 62 high-grade intraepithelial neoplasias. IHC
analysis of TMA sections showed that KIF2A was expressed
mainly in the tumor epithelial cells, and staining showed that
it occurred primarily in the cytoplasm (Figure 1). Overall,
only a small proportion of chronic gastritis (27.78%, 5/18)

and tumor adjacent tissues (29.23%, 19/65) displayed high
KIF2A expression, whereas high expression of this protein
was detected in 43.24% (16/37) of low-grade intraepithelial
neoplasia, 59.68% (37/62) of high-grade intraepithelial neo-
plasia, 73.33% (11/15) of intestinal metaplasia, and 64.86%
(299/461) of GCs (𝑝 < 0.001) (Table 1).

To determine whether KIF2A mRNA expression differs
between GC and normal tissues, we also analyzed KIF2A
gene levels in tissue samples from 24 patients with GC and
compared them with the corresponding peritumoral tissue
samples. KIF2A expression was significantly higher in the
cancerous tissue samples than in their paired peritumoral
counterparts (𝑝 < 0.001) (Figure 2).

3.2. Relationship between KIF2A Expression and Clinico-
pathologic Characteristics. To determine whether KIF2A is
important in determining the clinical outcomes for patients
with GC, we examined the relationship between the KIF2A
expression and clinical parameters of these patients. High
expression of KIF2A correlated significantly with the patient’s
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Table 1: KIF2A expression in gastric benign and malignant tissues.

Characteristic 𝑛 KIF2A− (%) KIF2A+ (%) Pearson 𝜒2 𝑝

Total 658 271 (41.19) 387 (58.81) 42.4355 <0.001∗

Chronic gastritis 18 13 (72.22) 5 (27.78)
Intestinal metaplasia 15 4 (26.67) 11 (73.33)
Low-grade intraepithelial neoplasia 37 21 (56.76) 16 (43.24)
High-grade intraepithelial neoplasia 62 25 (40.32) 37 (59.68)
Cancer 461 162 (35.14) 299 (64.86)
Surgical margin 65 46 (70.77) 19 (29.23)

∗
𝑝 < 0.05; KIF2A+ represents high KIF2A expression; KIF2A− represents low KIF2A expression.
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Figure 2: KIF2AmRNA levels in gastric cancer and paired adjacent
tissues determined by real-time polymerase chain reaction. KIF2A
expression was significantly higher in the cancerous tissue than in
their paired peritumoral counterparts (∗𝑝 < 0.0001).

age (𝑝 = 0.021), tumor histology (𝑝 = 0.039), TNM stage
(𝑝 = 0.008), and lymph node metastasis (𝑝 = 0.009). The
proportion of tumors with high KIF2A expression increased
with the degree of lymph node metastasis (N0, 56.25%; N1,
65.17%; N2, 69.15%; and N3, 75.49%) (Table 2). These results
suggested that GCs with high cytoplasmic KIF2A expression
are prone to progress to a more advanced stage and lymph
node metastasis than those with low KIF2A expression.

3.3. Prognostic Value of KIF2A Expression in Gastric Cancer.
The X-tile-based TMA data analysis indicated a significant
cutoff point for OS of GC patients. For KIF2A, the cutoff
selected was 130 (i.e., a score of from 0 to 130 represented a
low rate of expression [KIF2A-low] and a score of from 131
to 300 represented a high rate of expression [KIF2A-high]).
The univariate analysis revealed that KIF2A-high correlated
significantly with a poor OS (hazard ratio [HR]: 0.334; 95%
confidence interval [CI]: 0.246–0.453; 𝑝 < 0.001) and with
previously reported prognostic markers, including differen-
tiation (HR: 1.38; 95% CI: 1.146–1.661; 𝑝 = 0.001), TNM
stage (HR: 1.563; 95% CI: 1.444–1.691; 𝑝 < 0.001), lymph
node metastasis (HR: 1.648; 95% CI: 1.483–1.833; 𝑝 < 0.001),
and distant metastasis (HR: 3.167; 95% CI: 2.518–4.646; 𝑝 <
0.001) (Table 3). Individual clinicopathological features that
demonstrated significance in the univariate analysis were
adopted as covariates in a multivariate Cox proportional

hazards model and were further analyzed. Multivariate Cox
proportional hazards analysis also revealed that KIF2A was
an independent prognostic marker associated with OS (HR:
0.366; 95% CI: 0.268–0.5; 𝑝 < 0.001), as well as with tumor
differentiation (HR: 1.229; 95% CI: 1.004–1.505; 𝑝 = 0.046)
and advanced tumor stage (HR: 1.324; 95% CI: 1.113–1.575;
𝑝 = 0.002) (Table 3). Kaplan-Meier survival analysis showed
that GCwith KIF2A-high had a significantly worse prognosis
than that with KIF2A-low (𝑝 < 0.001) (Figure 3). Likewise,
tumorTNMstage also influenced the survival of patientswith
early TNM stage predicting a favorable prognosis.

4. Discussion

In this study, we found that KIF2A mRNA and protein
levels in GC tissue were highly expressed compared to
that in adjacent normal tissue. We further confirmed the
increased prevalence of high KIF2A expression in cancerous
tissues (low- and high-grade intraepithelial neoplasia) as
compared to noncancerous tissues (chronic gastritis). The
increase in KIF2A expression was associated with a decrease
in patient survival time, indicating that KIF2A is a potential
new biomarker in the prognosis for GC patients. We also
demonstrated that patients with lymph node metastasis had
a high frequency of KIF2A overexpression.

MTs, as the vital components of the cytoskeleton, play
important roles in mitosis, cell migration, cell signaling, and
trafficking. As a member of the kinesin-13 family, KIF2A
is responsible for the assembly of bipolar spindles, which
are crucial for normal mitosis and chromosome segregation
of cells [21]. According to recent studies, KIF2A is present
throughout the cell and might accelerate MT turnover,
resulting in an increase in cancer cell motility [8, 22]. This
result might partially explain the finding of higher rates of
lymphatic invasion and metastasis and a poorer prognosis
in cancer patients with high levels of KIF2A. Moreover, in
our results, clinicopathological analysis revealed thatGCwith
high KIF2A expression was associated with histological type,
advanced TNM stage, and lymph node metastasis. Although
few investigations have explored the role of KIF2A in cancers,
there are some published findings in accordance with our
results. Studies found that knockdown of KIF2A suppressed
the proliferation, migration, and invasion of breast cancer
cell line MDA-MB-231 cells and SCCT cell line Tca8113 cells
[18, 23]. And KIF2A expression in breast cancer tissue with
lymph node metastasis and HER2 positive cancer was higher
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Table 2: Association of high expression of KIF2A with clinicopathological characteristics in gastric cancer patients.

Characteristic 𝑛 KIF2A− KIF2A+ Pearson 𝜒2 𝑝

Total 461
Gender 1.1992 0.273

Male 344 116 (33.72) 228 (66.28)
Female 117 46 (39.32) 71 (60.28)

Age 5.3135 0.021∗

<60 156 66 (42.31) 90 (57.69)
≧60 305 96 (31.48) 209 (68.52)

Histological type 10.0769 0.039∗

Tubular 384 128 (33.38) 256 (66.67)
Mixed (tubular and mucinous) 17 6 (35.29) 11 (64.71)
Mucinous 25 10 (40.00) 15 (60.00)
Signet ring cell 15 11 (73.33) 4 (26.67)
Othersa 20 8 (40.00) 12 (60.00)

Differentiation 1.8888 0.169
Well and middle 143 43 (30.07) 100 (69.93)
Poor 280 103 (36.79) 177 (63.21)
Othersb 38 16 22

TNM stage 17.5014 0.008∗

Ia 37 21 (56.76) 16 (43.24)
Ib 52 21 (40.38) 31 (59.62)
IIa 102 43 (42.16) 59 (57.84)
IIb 67 22 (32.84) 45 (67.16)
IIIa 83 26 (31.33) 57 (68.67)
IIIb 77 18 (23.38) 59 (76.62)
IIIc + IV 43 11 (25.58) 32 (74.42)

T 5.7839 0.123
Tis 9 6 (66.67) 3 (33.33)
T1 41 20 (48.78) 21 (51.22)
T2 94 32 (34.04) 62 (65.96)
T3 + T4 317 117 (36.91) 200 (63.09)

N 11.5439 0.009∗

N0 176 77 (43.75) 99 (56.25)
N1 89 31 (34.83) 58 (65.17)
N2 94 29 (30.85) 65 (69.15)
N3 102 25 (24.51) 77 (75.49)

M 2.5075 0.113
M0 426 154 (36.15) 272 (63.85)
M1 35 8 (22.86) 27 (77.14)

Preoperative CEA, ng/mL 2.6563 0.103
≦5 185 73 (39.46) 112 (60.54)
>5 61 17 (27.87) 44 (72.13)
Unknown 215 72 143

Preoperative CA199, U/mL 0.1195 0.730
≦37 200 74 (37.00) 126 (63.00)
>37 41 14 (34.15) 27 (65.85)
Unknown 220 74 146

∗
𝑝 < 0.05; aothers: papillary adenocarcinoma, 3 cases; adenosquamous carcinoma, 3 cases; squamous cell carcinoma, 3 cases; undifferentiated carcinoma, 1

case; small cell malignant tumor, 8 cases; carcinoid, 1 case; focal cancer, 1 case.
bothers: besides tubular and papillary adenocarcinoma.
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Figure 3: Kaplan-Meier survival curves for gastric cancer, with comparisons evaluated using the log-rank test. (a) Overall survival curves of
a high rate of expression of kinesin family protein 2A (KIF2A) and a low rate of expression of KIF2A; (b) overall survival curves by tumor
status, lymph node metastasis, and distant metastasis (TNM) stage.

than that in cancer tissuewithout. Similarly, a high expression
of KIF2A was more frequently detected in SCCT than in the
corresponding adjacent tissues and was correlated with the
progressive phenotype of the disease [16, 23]. KIF2A expres-
sion in colorectal cancer exceeded that in normal adjacent
tissues and negatively correlated with OS of colorectal cancer
patients [17]. It was recently demonstrated that expression
levels of KIF2A were significantly higher in grades III-IV
glioma tissues compared with those in grades I-II glioma
tissues [24].

Unfortunately, the underlying mechanism by which
overexpression of KIF2A contributes to cancer progression
remains unclear; therefore the identification of KIF2A’s reg-
ulation of the MT network of cells, especially tumor cells,
could lead to a better understanding of the regulation of
tumor progression and will be helpful in improving cancer
therapy. It was recently determined that KIF2A and MCAK
were upregulated in KRAS-dependent transformed human
bronchial epithelial cells (HBECs). Knocking down either
KIF2AorMCAK reduced the ability of KRASG12V-expressing
transformed HBECs to migrate and invade, suggesting that
aberrant expression of these proteins during transformation
can contribute to the migratory potential of cancer cells
[25, 26]. These findings suggest that targeting the Ras-
mediated pathways that promote different aspects of can-
cer biology could be a therapeutic advantage. In addition,
the extracellular signal-regulated kinase (ERK)1/2 pathway
was presumed as a major Ras effector that controls the
expression of these kinesins [25, 26]. The Raf/ERK1/2 and

phosphatidylinositol-3-kinase (PI3K) pathways are major
effectors of Ras transformation and have powerful actions
on the cytoskeleton [27, 28]. Interestingly, it was recently
reported that silencing siRNA-mediated KIF2A inhibited the
PI3K/protein kinase B (AKT) pathway in Tca8113 cells and
led to cell apoptosis [29]. Once stimulated, PI3K sequentially
activates AKT as well as downstream signaling cascades to
regulate multiple important cellular events, such as prolifer-
ation, survival, apoptosis, and migration [30, 31]. Excessive
activity of the PI3K/AKT signaling pathway has been impli-
cated in the carcinogenesis of a variety of human cancers
[32, 33]. Collectively, these findings suggest that KIF2A
might promote tumor growth and invasion partially through
stimulating the PI3K/AKT signaling pathway. And as an end-
binding protein (EB)1/3-binding kinase, tau-tubulin kinase 2
with EB1/3 phosphorylated KIF2A and antagonized KIF2A-
induced depolymerization atMTs plus ends for cellmigration
[34].

In spite of our findings, limitations of our study need to
be addressed. We lacked in vitro data to verify our results
and although we did examine the function of KIF2A in the
GC cell lines, further studies are necessary to investigate
the underlying mechanisms by which KIF2A influences the
invasion and metastasis of cancer cells.

5. Conclusions

The expression of KIF2A in GC is upregulated when com-
pared to that in normal gastric tissue, and this overexpression
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is associated with lymph node metastasis, advanced TNM
stages, and a poor prognosis; therefore, we suggest thatKIF2A
could be a prognostic marker, even a molecular target, in GC
therapy.
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