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Ticks are important vectors of emerging zoonotic diseases affecting human and animal health worldwide. Ticks are
often found on wild birds, which have been long recognized as a potential risk factor for dissemination of ticks and
tick-borne pathogens (TBP), thus raising societal concerns and prompting research into their biology and ecology.
To fully understand the role of birds in disseminating some ticks species and TBP, it is important to consider the
evolutionary relationships between birds, ticks and transmitted pathogens. In this paper we reviewed the possible
role of birds in the dissemination of TBP as a result of the evolution of host-tick-pathogen associations. Birds are
central elements in the ecological networks of ticks, hosts and TBP. The study of host-tick-pathogen associations
reveals a prominent role for birds in the dissemination of Borrelia spp. and Anaplasma phagocytophilum, with little
contribution to the possible dissemination of other TBP. Birds have played a major role during tick evolution, which
explains why they are by far the most important hosts supporting the ecological networks of ticks and several TBP.
The immune response of birds to ticks and TBP has been largely overlooked. To implement effective measures for
the control of tick-borne diseases, it is necessary to study bird-tick and bird-pathogen molecular interactions
including the immune response of birds to tick infestation and pathogen infection.

Introduction

Birds and risks of dissemination of tick-borne diseases
Vector-borne diseases are a growing problem for human
and animal health worldwide [1]. Ticks are important
vectors of emerging zoonotic diseases and both adult
and immature stages are often found on wild birds [2].
Birds have been long recognized as a potential risk factor
for dissemination of ticks and tick-borne diseases, thus
raising societal concerns and prompting research into
their biology and ecology. Birds can potentially transport
tick-borne pathogens (TBP) that cause disease in
humans and animals such as A. phagocytophilum
(human and animal granulocytic anaplasmosis and tick-
borne fever in ruminants), Rickettsia spp. (human and
animal rickettsiosis), Borrelia spp. (human and animal
borreliosis) by different means including transportation
of ticks, infection with TBP and transmission to feeding
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ticks [3—10]. Therefore, although it has never been dem-
onstrated that ticks or TBP have been established in a
new locality after being transported by birds, evidence
strongly suggests that this event may be possible [8].

To address the possible risks for dissemination of tick-
borne infectious diseases by birds, it is important to
understand the evolution of bird-tick-pathogen interac-
tions and the ecologic and genetic drivers of these asso-
ciations. Furthermore, understanding how birds respond
to tick infestations and pathogen infection may provide
new interventions for reducing the risks for spreading of
ticks and transmitted pathogens by birds. Recent reviews
have addressed some of these questions [2, 8, 11], but in
this paper we reviewed the possible role of birds in the
dissemination of tick-borne diseases as a result of the
evolution of host-tick-pathogen associations.

To review the possible role of birds in the dissemin-
ation of tick-borne diseases as a result of the evolution
of host-tick-pathogen associations, we focused as a
model on bacterial pathogens of the genera Borrelia,
Rickettsia, Anaplasma, Ehrlichia and Neoehrlichia.
Viruses and protozoan pathogens and Relapsing fever
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Borrelia spp. were excluded from the analysis because
certain tick-bird-pathogen associations such as those for
Babesia, Theileria and viruses are difficult to support
with current reports from the literature. Additionally,
host-tick-pathogen networks were calculated from the
compilation of published data spanning the period
1990-2014 by focusing as an example on taxonomic as-
sociations among these organisms in the western
Palearctic only. The western Palearctic was defined as
countries included within the borders marked by
Scandinavia in the north, the Azores in the Atlantic,
North African countries in the south, and the Ural
Mountains and Turkey in the east. Therefore, some of
the pathogens such as Relapsing fever Borrelia spp. were
excluded from the analysis because they are poorly re-
ported in the target region thus providing limited evi-
dence for tick-host-pathogen association for these
species. We explicitly excluded the records on domestic
animals and the Anaplasma spp. such as A. marginale
and A. ovis that primarily infest domestic animals, because
it has been demonstrated that this data distorts the actual
ecological structure underlying the “natural” network (see
Additional file 1). Pathogen positive ticks and hosts con-
sidered in the analysis included both infected and patho-
gen DNA-positive records in published data.

Review

Historical perspective

The Ancient Egyptians and Greeks were aware of ticks.
Tick fever is referred to in an Egyptian papyrus dated
1550 BC and in the Odyssey (850 BC) Homer wrote,
“there lays Argos, the dog, full of dog flies” (kynoraistes,
believed to be ticks) [12, 13]. In Egyptian hieroglyphs,

“Sparrow” % was used as a determinative for “com-

mon” and “small” but also for “bad” [14] for birds be-
coming a pest but perhaps also for carrying ectoparasites
such as ticks. Since then ticks have been recognized as
dangerous for human and animal health.

Fossil ticks are difficult to find but the record supports
tick-bird co-evolution [15]. Fossil ticks that have birds as
possible hosts range from 90-94 Mya (Cretaceous) to
15-40 Mya (Tertiary) [15]. These species include Carios
jerseyi, Ixodes succineus, I tertiarius, Amblyomma near
testudinis, unclassified Ixodes, Hyalomma, Amblyomma
species, and Ornithodoros antiquus [15]. Interestingly,
the oldest fossil corresponds to C. jersey (90-94 Mya) with
the hypothesis that the tick fed on sea-faring birds to ex-
plain how it was found in New Jersey amber [16]. Recently,
Borrelia-like spirochetes were found in fossil Amblyomma
sp. in Dominican amber [17], providing the first record of
spirochete-like cells associated with fossil ticks and provid-
ing additional support for the possible role of birds in dis-
seminating this pathogen. Additionally, a tick discovered in
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prehistoric Arizona coprolite of human origin supports the
hypothesis that ticks were a potential source of disease and
that ancient people ate ectoparasites [18].

The role of birds in disseminating ectoparasites and in-
fectious diseases have raised societal concerns and
prompted interest into the study of their biology and ecol-
ogy (Fig. 1). However, when the terms “tick” AND “bird”
were used to search PubMed (http://www.ncbi.nlm.nih.-
gov/pubmed/) only 1343 publications were found and pat-
ents were not found on the World Intellectual Property
Organization, the United States Patent and Trademark
Office, the European Patent Office and the Free Patents
Online databases (www.biowebspin.com/) on August 28,
2015. These findings indicated that despite the role of
birds as a potential risk factor for dissemination of ticks
and tick-borne diseases, more research is needed to better
understand bird-tick-pathogen interactions and to develop
strategies for the control of tick infestations and TBP in
these species.

Evolutionary considerations of bird-tick-pathogen
associations

Birds are important components of the ecological net-
works between ticks, hosts and pathogens. The centrality
of birds in the network of TBP transmission is consist-
ent with the diversity of birds that host ticks and TBP
(Fig. 2a) (see Additional file 1). Birds alone account for
approx. 50 % of animals that host ticks and TBP.

The evolutionary relationships between birds, ticks
and transmitted pathogens are important to understand
the role of birds in disseminating ticks and TBP. Bird
species that support ticks and TBP are older (37.68 +
19.08 Mya) than Eutherian (mammals) (18.27 +15.22
Mya) species (Fig. 2b), suggesting that the evolutionary
associations between ticks, pathogens and birds may
precede that of ticks, pathogens and mammals.

To explore this hypothesis, we reconstructed and over-
lapped the history of the evolution of birds, mammals,
ticks and TBP (Fig. 3). The molecular clock analysis po-
sitioned the origin of Ixodida in the late Carboniferous
approx. 319 Mya [19]. This period was characterized by
a rapid extinction of amphibian species after the rainfor-
est collapse event 305 Mya [20]. This event also trig-
gered an evolutionary burst among reptiles being
ecologically adapted to the drier conditions that followed
[20]. Thus, inadvertently, the rainforest collapse paved
the way for the rise of dinosaurs, which started to diver-
sify approx. 250 Mya [21], and is considered to be the
ancestors of extant Archosaurs (group of amniotes
whose living representatives consist of birds and croco-
dilians) [22-24] (Fig. 3). Mapping the main evolutionary
diversifications between Ixodida showed that indeed they
overlap with the major transitions in bird evolution
(Fig. 3). The two main groups of hard ticks (Postriata
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Fig. 1 Artist interest in birds natural history. This piece by Ricardo Brey (http://www.ricardobrey.com) illustrates societal concerns about the risks
associated with the possible role of birds in disseminating ectoparasites and infectious diseases. Form the series “Clados”. Mixed media on paper,
2009 (50 x 65 cm). Courtesy KGJ Collection, Spain. Photo: Isabel Brey
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Fig. 2 Diversity of vertebrate hosts for ticks and TBP. a Tree of the major vertebrate hosts for ticks and TBP was reconstructed using cytochrome
b(Cytb) nucleotide sequences from 265 vertebrates (see Additional file 1). Amphibians were not included in the analysis because only one
amphibian (Bufo marinus) is considered to be regularly infested by ticks, Amblyomma rotundatum [43]. b Divergence times for major hosts for
ticks and TBP: Birds (Average 37.68 £ 19.08 Mya), Mammals (Average 18.27 + 15.22 Mya) and Reptiles (Average 57.93 +45.85 Mya). Asterisks
indicate levels of significance in the differences between groups tested by Kruskal-Wallis test post hoc Dunn’s multiple comparison test

and Metastriata) split approx. 250 Mya coinciding with
the rise of Avemetatarsalia (group of Archosaurs that are
closer to birds than to crocodiles) [21]. Non-Australian
Ixodida and Metastriata split 124 Mya, coinciding with
the split of Neognathae (a clade that includes virtually
all living birds except the tinamous and the flightless rat-
ites) and Palaeognathae (the clade that includes the tina-
mous and the flightless ratites) birds (approx. 100—110
Mya) [25]. The radiation of the tick genera Amblyomma
(approx. 70 Mya), Bothriocroton (approx. 73 Mya),
Dermacentor (60 Mya) and Haemaphysalis (approx. 62

Mya) concurred with the rapid radiation (within 10 to 15
Mya) of Neoaves (a clade that includes all modern birds
with the exception of Paleognathae and Galloanserae) that
took place approx. 65 Mya [25]. The diversification of
Rhipicephalus (approx. 28.56 Mya) concurred with the
point at which the major Passeriformes were established
approx. 25 Mya [25].

Despite radiations of non-Australian Ixodida and
Metastriata, Neognathae and Palaeognathae birds and
mammals (Rodentia, Carnivora and Artiodactyla) con-
curred approx. 100 Mya, it is interesting to note that the
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Fig. 3 Estimated dates of divergence for ticks, Anaplasma, Ehrlichia and birds. The maximum likelihood tree of the genera Anaplasma and
Ehrlichia was constructed using 165 rRNA nucleotide sequences (see Additional file 1). Molecular clock analyses were performed for major tick
lineages using CYTB amino acid sequences and for Anaplasma and Ehrlichia using 165 rRNA nucleotide sequences (see Additional file 1).
Divergence times of Sauropsida [44], Dinosaurs [21] and birds [24, 25], including Passeriformes birds [25], are shown. *Diversification of Ixodes,

divergence of Rodentia (approx. 91.8 Mya), Carnivora
(approx. 84.9 Mya) and Artiodactyla (approx. 87.3 Mya)
[26], which are important components of extant tick-
host networks (Fig. 2a), occurred before the radiation of
abundant tick genera (5, 6 and 7 in Fig. 3). However, as
mentioned before, molecular clock analysis of divergence
times for host species showed that mammals (including
Rodentia, Carnivora and Artiodactyla) to which ticks and
transmitted pathogens are associated with are relatively
younger than birds (p < 0.0001) (Fig. 2b). Altogether, these
facts suggest that tick-bird associations are provably older
than tick-mammal associations.

Regarding TBP, the results suggest that the associ-
ation between ticks and birds are probably recent
when compared to that of ticks and TBP (i.e. family

Anaplasmataceae). The common ancestor of Rickettsia
was a free-living bacterium that adapted to intracellu-
lar endosymbiosis with protists approx. 525-775 Mya
[27, 28]. The transition to infecting arthropods oc-
curred approx. 425-525 Mya, around the Cambrian
explosion, when most metazoan phyla appeared [27].
Our molecular clock analysis is consistent with this
hypothesis about the origin of Rickettsia and placed
the divergence of Anaplasma and Ehrlichia approx.
150 Mya (Fig. 3), which is consistent with the diver-
gence of the ancestor of the Rickettsia group (includ-
ing groups hydra, torix and rhizobius) [27]. Several
Rickettsia, mainly of the Spotted Fever Group, are
associated to and transmitted by ticks [29]. Interest-
ingly, the radiation of Rickettsia approx. 50 Mya



de la Fuente et al. Parasites & Vectors (2015) 8:538

concurred with the radiation of Anaplasma (approx.
61.32 Mya), Ehrlichia (approx. 41.51 Mya) and that of
tick genera Amblyomma (approx. 70 Mya), Bothrio-
croton (approx. 73 Mya), Dermacentor (approx. 60
Mya) and Haemaphysalis (approx. 62 Mya).

Taken together, these results support the hypothesis that
bird-tick-pathogen associations evolved in the Cretaceous
approx.125 Mya, thus suggesting that ticks adapted to feed
on birds, the likely host for early Anaplasma and Ehrlichia
species long before mammalian hosts appeared on Earth.
Consequently, birds likely played an important role in the
dissemination of ticks and TBP to mammals.

Bird-tick-pathogen ecological and phylogenetic
associations

Network analysis (see Additional file 1) illustrates the
complex relationship and the high number of taxa
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involved in the resilience of tick-host-pathogen associa-
tions in nature [30] (Fig. 4). A total of 13 clusters were de-
tected in the network. Six of these clusters are groups of
monoxenous ticks of vertebrate hosts, which are thus sep-
arated from the rest of the network. The network has 322
unique associations of tick species or tick-transmitted
pathogens in which the Phylum Aves is involved (Fig. 4).
In comparison, the Rodentia and Artiodactyla, which are
considered some of the most important tick hosts and res-
ervoirs of TBP [31, 32], were recorded in only 176 and
115 unique associations, respectively. Other than for the
few species of monoxenous ticks of vertebrate hosts (bat
ticks Ixodes simplex and I vespertilionis, 1. lividuson
Riparia, Haemaphysalis erinacei, Argas reflexus, Ornitho-
doros tholozani and I uriae.), a complete segregation of
the hosts and ticks into unique and closed groups was not
found. Seven clusters are interconnected by several tick
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species, which are shared by various vertebrate hosts in
the clusters (Fig. 4). Ticks are not ectoparasites of groups
of phylogenetically related vertebrate hosts, but tend to be
environmentally related with them [30]. Therefore, many
species of vertebrates share tick species from different
clusters because they share the same environmental niche
and not because of a particular preference of the tick for a
group of vertebrate hosts.

Birds are hosts of 22 species of ticks and have been re-
corded as reservoirs for a total of 10 species of TBP of
the genera Anaplasma, Borrelia and Rickettsia. The rela-
tionships of ticks and TBP of the genera Borrelia,
Rickettsia, Anaplasma, Ehrlichia and Neoehrlichia with
birds in the network was explored to capture the eco-
logical and phylogenetic signatures of the clusters in the
network and to understand how birds can contribute to
support the circulation of these pathogens. It is well
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segregate according to the phylogenetic group of the res-
ervoir host [33]. Mammals, reptiles and birds support
different Borrelia spp., all of them linked to the group of
ticks belonging to the cluster of L ricinus [34]. The
genus Borrelia circulates through a heterogeneous as-
semblage of ticks and reservoir hosts (Fig. 5a). Reservoir
hosts include 17 families of birds, 8 families of mammals
and 1 family of reptiles from 7 different clusters of the
network. Most prominent in this cluster are the rodents
and birds associated with L ricinus and ticks from other
clusters such as I frontalis and I arboricola. Ticks and
birds of the I frontalis group play a prominent role in
the circulation of Borrelia spp. and the results support
the hypothesis that the contribution of birds to the re-
silience of Borrelia spp. in nature is almost twice that of
rodents (Fig. 5b). This is a novel result because although
Borrelia spp. are phylogenetically associated with groups

known that bacteria of the genus Borrelia tend to of certain reservoir hosts [33], network analysis
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Fig. 5 Host-Borrelia-tick associations. a Network of vertebrate hosts, tick vectors and Borrelia spp. The original coloring and symbol sizes of Fig. 3
were retained to show the involvement of taxa from different clusters in the resilience of Borrelia spp. in nature. b Comparison of the weighted
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suggested that the relevance of each vertebrate host in
supporting the circulation of ticks is different.

The rickettsiae of the genera Rickettsia, Ehrlichia,
Anaplasma and Neoehrlichia are a group of pathogens
that circulate between many species of ticks and verte-
brate hosts [35]. Anaplasma marginale and A. ovis were
not considered because they primarily infest domestic
animals that were excluded from the analysis. The path-
ogens of the genus Rickettsia are widely segregated
among the clusters of the network (Fig. 6a). Rickettsia
slovaca, R. heilonjgianjensis and R. monacensis are re-
stricted to rodents related to the cluster of I ricinus.
However, R.helvetica circulates between both rodents
and birds associated with L ricinus, and with the birds
associated to I frontalis and I arboricola. Therefore, in
terms of associations, rodents support a higher variety of
tick vectors therefore having a higher reservoir potential
for Rickettsia spp. (Fig. 6b and c). Rickettsia raoulti and
R. slovaca are associated to the tick D. marginatus,
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Rickettsia spp. such as R. mongolotimonae and R. aes-
chlimanii have been recorded only in the ticks Hya-
lomma excavatum and Hyalomma wmarginatum or
Haemaphysalis inermis, respectively. Therefore, the dif-
ferent role of the vertebrates in the circulation of these
two rickettsiae is currently unknown. There is yet an-
other interesting finding regarding the rickettsiae of the
species R. conorii and R. massiliae. While they have been
reported on domestic carnivores, records from wild ani-
mals suggest that they have been recorded only in ticks
of the genus Rhipicephalus (Fig. 6d). In summary, the
organisms of the genus Rickettsia have a well defined as-
sociation with different clusters of either ticks or verte-
brates. Birds are poor contributors to the circulation of
these pathogens except for R. helvetica. One hypothesis
to explain these results is that these organisms have an
ecological association to these clusters, i.e. Rickettsia oc-
cupies different ecological niches following the environ-
mental preferences of the ticks, therefore “filling”

whose immature stages parasitize rodents. Other different niches as a result of speciation. The alternative
p
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hypothesis is that Rickettsia are phylogenetically tied to
their reservoirs, therefore segregating into different clus-
ters because of phylogenetic relationships between reser-
voir hosts. The first hypothesis is well supported by our
data because birds in which no other Rickettsia but R.
helvetica have been recorded, share only two species of
ticks with rodents, in which four species of Rickettsia
have been recorded. All Ixodes spp. prefer humid and cold
environments, which are clearly different to the steppe hab-
itats characteristics of Hyalomma spp. and of the Mediter-
ranean habitat preferred by Rhipicephalus spp. In fact, the
radiation of rickettsiae around 50 Mya concurred with radi-
ation of vertebrate and tick species other than Ixodes spp.
The case of Anaplasma phagocytophilum is different
(Fig. 7a). This rickettsia circulates through a large num-
ber of ticks and vertebrates in 7 clusters of the network.
Up to ten families of reservoir hosts have been recorded
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for this rickettsia, of which the members of the family
Turdidae are the only birds involved in its circulation.
However, it is interesting to note that birds have a prom-
inent contribution to the circulation of A. phagocytophi-
lum in nature (Fig. 7b) which is similar to the reservoir
potential of Bovidae, classically considered as some of
the most prominent reservoirs of this rickettsia in nature
[36]. It is not clear if strains of the pathogen are tied to
specific groups of tick and/or vertebrate hosts. Recent
evidence suggests that molecular data support the circu-
lation of different strains of A. phagocytophilum in na-
ture [37]. Whether these strains are phylogenetically tied
to specific clusters of the network remains unsolved be-
cause lack of data for this bacterium. A similar situation
exists in the case of Ehrlichia canis, which is tied to sev-
eral tick species in four different clusters but has never
been reported in wild animals. However, other Ehrlichia
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Fig. 7 Host-A. phagocytophilum-tick and host-Neoehrlichia-E. canis-tick associations. a Network of vertebrate hosts, tick vectors and A.
phagocytophilum-tick, Neoehrlichia and E. canis. The original coloring and symbol sizes of Fig. 3 were retained to show the involvement of taxa
from different clusters in the resilience of A. phagocytophilum in nature. b Values of PageRank for the different species of vertebrates included in
this sub-network, supporting the circulation of Values of PageRank for the different species of ticks and pathogens included in this cluster. ¢ The
network of vertebrates and ticks involved in the sub-network. The original coloring and size of symbols of Fig. 3 were retained to show the
involvement of taxa from different clusters in the resilience of £. canis and N. mikurensis in nature
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spp. such as E. walkeri and Neoehrlichia mikurensis are
linked to only one cluster of ticks and reservoir hosts
(Rodentia and Insectivora).

In summary, the study of host-tick-pathogen associa-
tions revealed a prominent role for birds in the dissem-
ination of Borrelia spp. and A. phagocytophilum, with
little contribution to the possible dissemination of other
rickettsiae.

Bird response to tick infestations and pathogen infection
and possibilities for control of vector-borne diseases
Little information is available on the avian immune re-
sponse to tick infestations and pathogen infection, which
are a fundamental component of host-tick-pathogen in-
teractions [2]. Ectoparasite-specific antibody response
and non-specific antibody titers positively correlate with
tick infestations in chicken and sand martin, respectively
[2]. Furthermore, although selection on birds has favored
a variety of possible adaptations for dealing with ecto-
parasites [11], genetic traits associated with tick resist-
ance in birds have not been defined [2]. It has been
suggested that the prevalence of ticks on different bird
species depends mainly on the degree of feeding on the
ground [8]. However, Clayton et al. [2] provide a number
of adaptation mechanisms by which birds combat ecto-
parasite infestations. Recently, Benson et al. [38] demon-
strated links between the predominantly extinct deep
time adaptive radiation of non-avian dinosaurs and the
phenomenal diversification of birds, via continuing rapid
rates of evolution along the phylogenetic stem lineage.
Furthermore, recent analyses revealed that pan-avian
genomic diversity covaries with adaptations to different
lifestyles and convergent evolution of traits [39]. Some
of these mechanisms may be related to the adaptation to
combat tick infestations and selection of genetic traits
for tick resistance.

These results suggest that it is necessary to characterize
bird response to tick infestations and pathogen infection
using Next Generation Sequence (immunogenomics, tran-
scriptomics, proteomics, and other omics) technologies and
bioinformatics to identify genetic markers and mechanisms
associated with tick infestations. As shown in other host
species, these results together with the characterization of
bird response to vaccination with ectoparasite-derived anti-
gens may result in new interventions to control tick infesta-
tions and pathogen infection in birds [40-42], thus
reducing the risks for spreading ticks and TBP.

Conclusions

Birds are central elements in the ecological networks of
ticks, hosts and TBP. To fully understand the role of
birds in disseminating some ticks species and TBP, it is
important to consider the evolutionary relationships be-
tween birds, ticks and transmitted pathogens. The study
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of host-tick-pathogen associations reveals a prominent
role for birds in the dissemination of Borrelia spp. and
A. phagocytophilum, with little contribution to the pos-
sible dissemination of other TBP. The implementation
of effective measures to control tick-borne diseases is as-
sociated with the understanding of ecological factors af-
fecting the dynamics of TBP transmission and biological
mechanisms such as immune responses resulting from
the interaction between ticks, reservoir hosts and patho-
gens. The immune response of birds to ticks and TBP
has been largely overlooked. Birds have played a major
role during tick evolution, which explains why they are
by far the most important hosts supporting the eco-
logical networks of ticks and several TBP. To implement
effective measures for the control of tick-borne diseases,
it is necessary to study bird-tick and bird-pathogen mo-
lecular interactions including the immune response of
birds to tick infestation and pathogen infection.
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