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Abstract: Lipid mediators have been suggested to have a role in pain sensitivity and response;
however, longitudinal data on lipid metabolites and persistent multisite musculoskeletal pain (MSMP)
are lacking. This study was to identify lipid metabolic markers for persistent MSMP. Lipidomic
profiling of 807 lipid species was performed on serum samples of 536 participants from a cohort study.
MSMP was measured by a questionnaire and defined as painful sites ≥4. Persistent MSMP was
defined as having MSMP at every visit. Logistic regression was used with adjustment for potential
confounders. The Benjamini–Hochberg method was used to control for multiple testing. A total of
530 samples with 807 lipid metabolites passed quality control. Mean age at baseline was 61.54 ± 6.57
years and 50% were females. In total, 112 (21%) of the participants had persistent MSMP. Persistent
MSMP was significantly associated with lower levels of monohexosylceramide (HexCer)(d18:1/22:0
and d18:1/24:0), acylcarnitine (AC)(26:0) and lysophosphatidylcholine (LPC)(18:1 [sn1], 18:2 [sn1],
18:2 [sn2], and 15-MHDA[sn1] [104_sn1]) after controlling for multiple testing. After adjustment for
age, sex, body mass index, comorbidities, and physical activity, HexCer(d18:1/22:0 and d18:1/24:0)
and LPC(15-MHDA [sn1] [104_sn1]) were significantly associated with persistent MSMP [Odds Ratio
(OR) ranging from 0.25–0.36]. Two lipid classes—HexCer and LPC—were negatively associated
with persistent MSMP after adjustment for covariates (OR = 0.22 and 0.27, respectively). This study
identified three novel lipid signatures of persistent MSMP, suggesting that lipid metabolism is
involved in the pathogenesis of persistent pain.

Keywords: persistent multisite musculoskeletal pain; lipidomics; biomarker; lipid species; lipid classes

1. Introduction

Musculoskeletal pain is the most common complaint in the general population and
the leading cause of years lost to disability [1,2]. An estimated prevalence of 20% to 40%
was reported globally with foreseen increasing individual and societal burden in the next
decades [3,4]. A clinically relevant entity of multisite musculoskeletal pain (MSMP) has
been defined, as musculoskeletal pain rarely occurs at single site [5]. More detrimental
health outcomes associated with MSMP have been reported, such as health-related quality
of life, fractures and sleep disturbance [6–10]. However, the initiation and persistence of
MSMP is far from being fully understood.

Alteration of metabolic pathways has been suggested to be involved in the patho-
genesis of musculoskeletal pain [11,12]. Metabolites are intermediates and end products
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of cellular regulatory processes and have critical roles in metabolic pathway regulation
and signal transductions [11,13,14]. Metabolomics analysis has been used to identify and
quantify metabolites, some of which are found to be implicated in the pathogenesis of
musculoskeletal pain [15].

It has been suggested that endogenous lipid species as mediators have essential roles
in pain severity and response [16–20]. Our recent study identified and replicated one lipid
(i.e., sphingomyelin (SM) C18:1) associated with the presence of MSMP in two independent
cohorts [21]. In addition, two proinflammatory lipid compounds in association with the
presence of MSMP were also identified [22]. This may reflect that dysfunction in lipid
metabolism is involved in the MSMP initiation. However, no longitudinal study has
examined the roles of lipid mediators in MSMP persistence. Therefore, this study aimed to
identify lipid signatures associated with persistent MSMP by using lipidomics.

2. Results

Among the 536 serum samples profiled, 530 passed quality control (QC) and were
included in the subsequent analyses. There were 195, 201 and 215 participants reporting
MSMP at 2.6-year (37%), 5.1-year (38%) and 10.7-year (41%) follow-ups, respectively. In
total, 112 participants had persistent MSMP (21%) and 418 had non-persistent MSMP (79%).
The persistent MSMP group had more females (67% vs. 46%), and was less physically active
(7234.72 ± 3009.63 vs. 8034.60 ± 3299.35 steps per day) (Table 1) than the non-persistent
MSMP group. The persistent MSMP group had higher prevalence of osteoarthritis (OA)
(65% vs. 30%) and emphysema (7% vs. 2%) than the non-persistent MSMP group. There
was no difference in age, body mass index (BMI), and presence of rheumatoid arthritis (RA)
or diabetes between the two groups (Table 1).

Table 1. Participants’ characteristics *.

Total
(n = 530)

Persistent MSMP
(n = 112)

Non-Persistent MSMP
(n = 418) p Value

Age (years) 61.54 ± 6.57 61.71 ± 6.65 61.49 ± 6.56 0.80
BMI (kg/m2) 27.73 ± 4.54 28.13 ± 4.73 27.62 ± 4.48 0.31
Females (%) 50 67 46 <0.001

Physical activity (steps per day) 7865.21 ± 3253.78 7234.72 ± 3009.63 8034.60 ± 3299.35 0.04
Comorbidities (%) 40 70 31 <0.001

OA (%) 37 65 30 <0.001
RA (%) 3 5 3 0.23

Emphysema (%) 3 7 2 0.01
Diabetes (%) 2 4 1 0.23

MSMP: multisite musculoskeletal pain; BMI: body mass index; OA: osteoarthritis; RA: rheumatoid arthritis.
* Values are the mean ± SD unless indicated otherwise. p values were obtained by Mann–Whitney U test,
Chi-squared test or Fisher’s exact test wherever appropriate.

2.1. Lipid Markers and MSMP

In total, 850 ‘lipid measures’ representing 807 lipid species from 49 classes were quan-
tified in all 530 serum samples and passed QC. A total of 53 lipid species and 5 lipid classes
were found to be associated with MSMP with p < 0.05 (Supplementary Tables S1 and S2).
Lipid species including SM(38:3) (a), SM(40:4), monohexosylceramide (HexCer) (d18:1/24:0)
and acylcarnitine (AC) (26:0) were significantly associated with MSMP at 2.6-year follow-
up after controlling multiple testing, but these associations became non-significant after
adjusting for confounding factors (Table 2). The HexCer class was significantly associ-
ated with MSMP at 2.6-year follow-up, but this significant association did not hold after
adjusting for confounding factors (Table 2). The ratio of lysophosphatidylcholine (LPC)
to phosphatidylcholine (PC) was negatively associated with MSMP at 2.6-year follow-up
(odds ratio (OR) = 0.33, 95% confidence interval (CI): 0.13, 0.85), but this association became
non-significant after adjustment for confounding factors (OR = 0.74, 95%CI: 0.22, 2.45).
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Table 2. Lipid species and class associated with MSMP at 2.6-year follow-up.

Univariable Multivariable *

p Value OR 2.5% CI 97.5% CI p Value OR 2.5% CI 97.5% CI

Lipid species
SM(38:3) (a) 3.30 × 10−4 4.45 1.99 10.19 6.12 × 10−2 2.61 0.96 7.23

HexCer(d18:1/24:0) 3.60 × 10−3 0.38 0.20 0.73 7.50 × 10−2 0.51 0.25 1.07
SM(40:4) 3.91 × 10−3 4.79 1.67 14.04 1.59 × 10−1 2.55 0.70 9.44
AC(26:0) 5.27 × 10−3 0.42 0.23 0.77 6.84 × 10−1 0.86 0.41 1.80

Lipid class
HexCer 2.21 × 10−2 0.44 0.21 0.88 1.21 × 10−1 0.53 0.24 1.18

MSMP: multisite musculoskeletal pain; OR: odds ratio; CI: confidence interval; HexCer: monohexosylceramide;
SM: sphingomyelin; AC: acylcarnitine. p values were obtained by univariable or multivariable logistic regression.
* Adjusted for age, sex, body mass index, physical activity and presence of at least one of the four comorbidities.

2.2. Lipid Markers for Persistent MSMP

In total, 107 lipid species were found to be associated with persistent MSMP with
p < 0.05 (Supplementary Table S3). After controlling multiple testing, 7 lipid species, i.e.,
HexCer (d18:1/22:0 and d18:1/24:0), AC 26:0 and LPC (18:1 [sn1], 18:2 [sn1], 18:2 [sn2] and
15-MHDA [sn1] [104_sn1]), were found to be negatively associated with persistent MSMP,
that is, participants with persistent MSMP had lower levels of these lipid species compared
to those without persistent MSMP (Figure 1). Per log nM decrease in these lipid species
was associated with a higher risk of persistent MSMP (Table 3). The significances remained
for HexCer d18:1/22:0 and d18:1/24:0 and LPC 15-MHDA [sn1] [104_sn1] after adjustment
for age, sex, BMI, physical activity and presence of any comorbidities (OR ranged from 0.25
to 0.36, Table 3). Seven lipid classes were associated with persistent MSMP with p < 0.05
(Supplementary Table S4). After controlling multiple testing, 3 lipid classes, HexCer, LPC,
and lysoalkylphosphatidylcholine (LPC(O)), were negatively associated with persistent
MSMP (Figure 2). Per log nM decrease in these lipid classes was also associated with a
higher risk of persistent MSMP (Table 4). The significances remained for HexCer and LPC
after adjustment for confounding factors (OR = 0.22 and 0.27, respectively, Table 4). The
ratio of LPC to PC was negatively associated with persistent MSMP (OR = 0.14, 95%CI: 0.05,
0.44), but this association became non-significant after adjustment for confounding factors
(OR = 0.32, 95%CI: 0.08, 1.30).

Table 3. Lipid species associated with persistent MSMP.

Univariable Multivariable *

p Value OR 2.5% CI 97.5% CI p Value OR 2.5% CI 97.5% CI

HexCer(d18:1/22:0) 3.46 × 10−4 0.26 0.12 0.54 7.71 × 10−3 0.33 0.14 0.74
HexCer(d18:1/24:0) 4.55 × 10−5 0.20 0.09 0.43 2.15 × 10−3 0.25 0.10 0.60

LPC(18:1) [sn1] 6.60 × 10−4 0.23 0.09 0.53 1.46 × 10−2 0.31 0.12 0.78
LPC(15-MHDA) [sn1]

[104_sn1] 6.48 × 10−4 0.32 0.16 0.61 7.95 × 10−3 0.36 0.17 0.76

LPC(18:2) [sn1] 6.53 × 10−4 0.28 0.13 0.58 4.70 × 10−2 0.41 0.17 0.98
LPC(18:2) [sn2] 4.06 × 10−4 0.21 0.09 0.50 1.91 × 10−2 0.30 0.11 0.82

AC(26:0) 2.19 × 10−4 0.25 0.12 0.52 5.01 × 10−2 0.41 0.17 0.99

MSMP: multisite musculoskeletal pain; OR: odds ratio; CI: confidence interval; HexCer: monohexosylceramide;
LPC: lysophosphatidylcholine; MHDA: methylhexadecanoic acid; AC: acylcarnitine. p values were obtained by
univariable or multivariable logistic regression. * Adjusted for age, sex, body mass index, physical activity and
presence of at least one of the four comorbidities.
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AC(26:0) 2.19 × 10−4 0.25 0.12 0.52 5.01 × 10−2 0.41 0.17 0.99 

Figure 1. The original concentrations of serum lipid species in persistent MSMP and non-persistent
MSMP groups. MSMP: multisite musculoskeletal pain; HexCer: monohexosylceramide; AC: acylcar-
nitine; LPC: lysophosphatidylcholine; MHDA: methylhexadecanoic acid. p values were obtained by
independent sample Student’s t-test.

Table 4. Lipid classes associated with persistent MSMP.

Univariable Multivariable *

p Value OR 2.5% CI 97.5% CI p Value OR 2.5% CI 97.5% CI

HexCer 2.23 × 10−4 0.20 0.08 0.46 2.02 × 10−3 0.22 0.08 0.57
LPC 1.02 × 10−3 0.18 0.06 0.49 2.50 × 10−2 0.27 0.08 0.84

LPC(O) 2.35 × 10−3 0.22 0.08 0.58 6.88 × 10−2 0.36 0.12 1.07

MSMP: multisite musculoskeletal pain; OR: odds ratio; CI: confidence interval; HexCer: monohexosylceramide;
LPC: lysophosphatidylcholine; LPC(O): lysoalkylphosphatidylcholine. p values were obtained by univariable or
multivariable logistic regression. * Adjusted for age, sex, body mass index, physical activity and presence of at
least one of the four comorbidities.
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Figure 2. The original concentrations of lipid classes in persistent MSMP and non-MSMP groups.
MSMP: multisite musculoskeletal pain; HexCer: monohexosylceramide; LPC: lysophosphatidyl-
choline; LPC(O): lysoalkylphosphatidylcholine. p values were obtained by independent sample
Student’s t-test.

3. Discussion

This study is the first to identify that circulating serum levels of lipid markers are
associated with persistent multisite musculoskeletal pain using lipidomics. We found that
participants with persistent MSMP had lower levels of HexCer (d18:1/24:0 and d18:1/22:0),
AC (26:0) and LPC (18:2 [sn2], 18:2 [sn1], 18:1 [sn1] and 15-MHDA [sn1] [104_sn1] compared
to those with non-persistent MSMP. Decreased levels of three of these lipid species (i.e.,
HexCer d18:1/24:0 and d18:1/22:0, and LPC 15-MHDA [sn1] [104_sn1]) were significantly
associated with a higher risk of persistent MSMP after controlling covariates and multiple
testing. Furthermore, decreased levels of two lipid classes, HexCer and LPC, were signifi-
cantly associated with a higher risk of persistent MSMP after controlling covariates and
multiple testing. These results suggest that dysregulation of lipid metabolism is implicated
in the persistence of pain.

Lipid mediators have been revealed to play bilateral roles in metabolic pathways and
signaling transduction of pain [16]. However, only a few metabolomic profiling studies
on musculoskeletal pain have been performed, all of which have been cross-sectional.
Livshits et al. [23] identified that epiandrosterone sulfate was inversely associated with
chronic widespread musculoskeletal pain in two cohorts, but the association did not hold
after adjustment for fat mass index. In a case-control study including 22 fibromyalgia
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patients and 21 healthy controls, Caboni et al. [24] found an over-representation of LPC
(14:0/0:0) and LPC (16:0/0:0) compounds in the group of fibromyalgia. There are, to date,
two studies from our group identifying MSMP-associated metabolites. We found that
two bioactive proinflammatory lipid compounds, LPC (26:0 and 28:1), were positively
associated with MSMP using the extreme phenotype sampling strategy [22]. More recently,
we identified and replicated the association between an elevated SM C18:1 level and the
presence of MSMP in two independent cohorts using different criteria of MSMP [21]. In the
current study, we observed that lipid species and class including SM(38:3) (a), SM(40:4),
HexCer(d18:1/24:0) and AC(26:0) and the HexCer class were significantly associated with
MSMP at 2.6-year follow-up after controlling multiple testing, but these associations became
non-significant after adjusting for confounding factors. The discrepancy might be attributed
to differences in studied population, MSMP definition and number of lipids included. The
current study extended prior studies from cross-sectional to longitudinal analyses and
found that the decreased serum levels of predominant lipid species (i.e., HexCer d18:1/22:0
and d18:1/24:0, and LPC 15-MHDA [sn1] [104_sn1]) and two lipid classes (i.e., HexCer and
LPC) were associated with increased risk of persistent MSMP. Collectively, our findings
together with previous studies indicate that dysfunction in lipid metabolism is not only
implicated in the initiation of MSMP but also its persistence. However, differences in
cross-sectional and longitudinal findings in this study suggest that lipids involved in the
initiation and persistence of MSMP are different.

There are very limited studies that have examined the species and class of HexCex in
pain conditions. Our finding that the level of HexCex was decreased in persistent MSMP is
supported by a preclinical study [25] which reported a decreased level of HexCer in cancer-
induced bone pain, which was characterized by the formation of peripheral neuropathic
features at the site of bone tumor, and central neuropathic pathology in the dorsal horn
and spinal glia. The HexCer class is one of the complex glycosphingolipids and abundant
in biological membranes, particularly in the central nervous system. HexCer is generated
from the central metabolite of sphingolipid metabolism (i.e., ceramide) by glycosylated
synthase, and plays roles in bioactive pathways and signaling transductions [26]. The
HexCer class includes glucosylceramide (GlcCer) and galactosylceramide (GalCer), which
serve as precursors for the biosynthesis of more complex glycosphingolipids, such as
gangliosides [27,28]. Gangliosides have roles in transferring nociceptive information from
the periphery to the central nervous system (central sensitization) through the activation of
neurotransmitter receptors or ion channels, such as transient receptor potential vanilloid
type 1 (TRPV1) [29]. In addition, sphingosine synthesized from ceramide by ceramidase is
a bioactive precursor of sphingosine 1-phosphate (S1P) [30,31], and the dysregulation of
S1P pathway contributes to the establishment of central sensitization, which is a key step
of developing chronic pain [32]. Although speculative, it is possible that the overactivation
of ganglioside and S1P pathways might be implicated in persistent MSMP. The decreased
level of the HexCer class in persistent MSMP may be directly due to the overactivation of
the ganglioside pathway, resulting in overproduction of gangliosides. Alternatively, the
overactivation of S1P pathway results in overproduction of sphingosine from ceramide,
which may indirectly reduce the synthesis of HexCer.

The current study found that a lower level of LPC 15-MHDA [sn1] [104_sn1] was
associated with persistent MSMP, which was contrary to prior studies on fibromyalgia
and neuropathic pain. Hung et al. [33] reported that an increased level of LPC 16:0 in
fibromyalgia patients modestly correlated with pain symptoms, and hyperalgesia in the
mouse model. Rimola et al. [34] also reported elevated levels of LPC 16:0 and 18:1 in
oxaliplatin-induced acute peripheral pain. This discrepancy may reflect different roles of
lipid mediators in pain induction and maintenance, as numerous lipid mediators, including
LPC, are second messengers and intermediates in lipid metabolism and have various
roles in pathways of pain induction and maintenance [16,35,36]. LPC is a subgroup of the
lysophospholipid family and mainly derived from PC by phospholipase A2 (PLA2) [37].
LPC, as a proalgesic mediator, induces pain by increasing nitric oxide synthase in dorsal
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root ganglion (DRG) or activating the acid-sensing ion channel 3 [33,38]. LPC can also be
hydrolyzed by autotaxin (ATX), a secreted exoenzyme with lysophospholipase D activity,
to generate LPA, a compound that has been reported to be profoundly involved in the
initiation and maintenance of chronic pain [17,39]. LPA mediates the activation of ion
channels such as TRPV1 in DRG neurons to induce central sensitization [40]. Through the
activation of G protein-coupled receptors, LPA also mediates the demyelination of central
neurons, which is associated with the development of chronic pain [41,42]. The activation
of ATX-LPA axis signaling pathway is likely involved in the maintenance of pain, which
could have led to the decreased level of LPC class in persistent MSMP patients observed
in our study. Future studies on serum LPA level and ATX activity in persistent MSMP are
needed to provide more information.

The ratio of LPC to PC has been reported to be associated with inflammation in severe
OA and RA [43,44]. Consistent with one previous cross-sectional study [22], no association
between the ratio of LPC to PC and MSMP was observed in the current study. Furthermore,
our longitudinal analysis found no associations between ratio of LPC to PC and persistent
MSMP. On the contrary, Zhang et al. [45] reported the increased ratio of LPC to PC, driven
by significantly higher LPC and lower PC levels in knee OA patients than in healthy
controls, as an important marker for predicting advanced knee OA. This may suggest that
persistent MSMP may be largely driven by central sensitization other than inflammation.

There are several limitations in this study. First, the majority of lipid species were in-
termediate metabolites. The key downstream products, such as LPA, were not quantified in
this study. However, this study is the first to explore lipidomic profiles in persistent MSMP.
The identified lipid signatures of persistent MSMP shed light on underlying pathogenesis
of persistent MSMP and provide robust data for future studies on its biological pathways.
Second, lipidomics was only performed on serum samples at a 2.6-year follow-up, so we are
unable to examine whether variations of lipid species from 2.6 to 10.7 years are associated
with persistent MSMP. Third, this study included 536 subsamples with MSMP data at each
follow-up time-point and blood samples available from the Tasmanian Older Adult Cohort
study (TASOAC) cohort. However, there were no differences in the characteristics between
those included in this study and the whole cohort, suggesting minimization of the bias.
Fourth, pain was assessed via a simple questionnaire (yes/no); therefore, we are unable to
investigate whether lipids are associated with other pain features such as pain duration
and frequency in this study. Fifth, given the nature of observational study, we are unable
to determine whether the way to modify lipids level by diet, hormonal regulation and
exercise management can affect MSMP; thus, future trials are needed to examine whether
interventions to modify lipid levels can affect MSMP.

4. Materials and Methods
4.1. Study Participants

The study participants were derived from the TASOAC, which is a prospective,
population-based cohort study. The TASOAC study recruited 1100 participants aged
50–80 years who were randomly selected from the electoral roll in southern Tasmania
(population n = 229,000), Australia, between 2002–2004. A total of 1099 participants had
their baseline examinations including questionnaire, general interview, clinical assessment
and blood tests. Participants were subsequently followed up at 2.6, 5.1 and 10.7 years.
Fasting blood samples collected at the 2.6-year follow-up were used for the lipidomics
assay due to depletion of baseline blood samples. A total of 536 participants with MSMP
data at each follow-up time point and blood samples available were included in the study.
The TASOAC study was approved by the Southern Tasmanian Health and Medical Human
Research Ethics Committee (Ref. no: H0006488) and written informed consent was obtained
from all participants.
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4.2. Demographic and Medical Information Collection

Date of birth and sex were self-reported and age at the recruitment was calculated.
Height and weight were measured at 2.6-year follow-up and BMI (kg/m2) was calculated.
Physical activity at 2.6-year follow-up was measured by steps per day for 7 consecutive
days using a pedometer (Omron HJ-003 and HJ-102; Omron Healthcare, Kyoto, Japan).
Comorbidities including diabetes, heart attack, hypertension, thrombosis, asthma, bron-
chitis/emphysema, hyperthyroidism, hypothyroidism and RA at 2.6-year follow-up were
self-reported. OA in the neck, back, hands, shoulders, hips, knees and feet at 2.6-year
follow-up was diagnosed by physicians.

4.3. MSMP Assessment

Pain at any of the seven anatomical sites including neck, shoulder, hand, back, hip,
knee and foot was self-reported using a pain questionnaire, and total number of painful
sites was calculated. In accordance with the 2016 widespread pain definition (WP2016) [46],
MSMP was defined as having ≥4 painful sites. Persistent MSMP was then defined as
having MSMP at 2.6-, 5.1- and 10.7-year follow-up, and non-persistent MSMP was defined
as not having MSMP during at least one of the follow-ups [47].

4.4. Lipidomic Profiling

Blood samples were collected after at least 8 h fasting using the white top Greiner
tubes with gel and left at room temperature for 10 min. The tubes were inverted a few
times by hand to help activate the clotting process. Then, blood samples were centrifuged
at 2500 rpm for 5 min, and the serum was then transferred into microcentrifuge tubes
and stored at −80 ◦C until analysis. Serum samples were randomized, and lipids were
extracted using the butanol/methanol method as described previously [48]. Targeted
lipidomic analysis was performed on an Agilent 6495C QQQ mass spectrometer coupled
with an Agilent 1290 series HPLC system and a ZORBAX eclipse plus C18 column (Agilent,
Santa Clara, CA, USA) in positive and negative ion mode as described previously [48].
Technical quality controls (TQCs) and pooled serum QCs (PQCs) were used to monitor
the overall performance of the liquid chromatography-tandem mass spectrometry (LC-
MS/MS) analysis and experimental issues during lipid extraction. NIST1950 samples
representing the “population” lipidomic profile were used to facilitate future alignment
with other studies. Chromatographic peaks for each lipid were integrated based on dynamic
multiple reaction monitoring (dMRM) ion pairs and retention time using the MassHunter
software (Agilent). Lipid concentrations were calculated by relating the area under the
chromatogram for each lipid species to the corresponding internal standard. Correction
factors were applied to adjust for different response factors where these were known. Mean
and median coefficients of variation (CVs) of all QCs were ≤11.7%, and those of PQCs were
9.4% and 7.6%, respectively.

4.5. Statistical Analysis

Normality of distribution was tested with the Shapiro–Wilk test. Age, BMI, steps per
day were compared with the Mann–Whitney U test. All lipid and lipid class concentrations
were natural log transformed for normalization and compared with independent sample
Student’s t-test. The ratio of LPC to PC was calculated using original concentrations of
LPC and PC classes and then natural log transformed. Sex distribution and prevalence
of comorbidities were compared with Chi-squared test or Fisher’s exact test wherever
appropriate. The covariates included in multivariable analyses were age, sex, BMI, physical
activity and presence of any comorbidities (OA, RA, emphysema, and diabetes). Age, sex,
BMI and physical activity were correlated with MSMP or lipidomic metabolites, or both,
based on pervious literature [48–50]. OA is the most common cause of musculoskeletal
pain [51]. We also compared the difference in all 10 comorbidities between the MSMP
and non-MSMP group, and found the prevalence of OA, RA, emphysema and diabetes
was higher in the MSMP group. These four comorbidities have also been reported to be
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associated with lipids in the existing literature [52–55]. Therefore, the presence of any
of these four comorbidities was included as a covariate in the multivariable analyses.
Logistic regression was utilized to identify lipid species and classes associated with MSMP
at 2.6-year follow-up and those associated with persistent MSMP, with adjustment for
potential confounders including age, sex, BMI, physical activity and presence of any
comorbidities. The Benjamini–Hochberg method [56] was used to control multiple testing
for lipid and lipid class concentrations. For all other variables, the significance level
was defined at α ≤ 0.05. All analyses were performed in R Studio with R version 3.6.3.
Visualizations of the results were done with ggplot2 R package.

5. Conclusions

This study identified three novel lipid signatures of persistent MSMP, suggesting that
lipid metabolism is involved in the pathogenesis of persistent pain.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/metabo12030206/s1, Table S1: Serum lipid species associated with
MSMP at 2.6-year follow-up, Table S2: Serum lipid classes associated with MSMP at 2.6-year follow-
up, Table S3: Serum lipid species associated with persistent MSMP, Table S4: Serum lipid classes
associated with persistent MSMP.
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