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Monitoring schistosomiasis risk 
in East China over space and time 
using a Bayesian hierarchical 
modeling approach
Yi Hu1,2,3,4, Michael P. Ward5, Congcong Xia1,2,3, Rui Li1,2,3, Liqian Sun1,2,3, Henry Lynn1,2,3,4, 
Fenghua Gao6, Qizhi Wang6, Shiqing Zhang6, Chenglong Xiong1,2,4, Zhijie Zhang1,2,3,4 & 
Qingwu Jiang1,2,3,4

Schistosomiasis remains a major public health problem and causes substantial economic impact in east 
China, particularly along the Yangtze River Basin. Disease forecasting and surveillance can assist in the 
development and implementation of more effective intervention measures to control disease. In this 
study, we applied a Bayesian hierarchical spatio-temporal model to describe trends in schistosomiasis 
risk in Anhui Province, China, using annual parasitological and environmental data for the period 
1997–2010. A computationally efficient approach–Integrated Nested Laplace Approximation–was 
used for model inference. A zero-inflated, negative binomial model best described the spatio-temporal 
dynamics of schistosomiasis risk. It predicted that the disease risk would generally be low and stable 
except for some specific, local areas during the period 2011–2014. High-risk counties were identified 
in the forecasting maps: three in which the risk remained high, and two in which risk would become 
high. The results indicated that schistosomiasis risk has been reduced to consistently low levels 
throughout much of this region of China; however, some counties were identified in which progress 
in schistosomiasis control was less than satisfactory. Whilst maintaining overall control, specific 
interventions in the future should focus on these refractive counties as part of a strategy to eliminate 
schistosomiasis from this region.

Schistosomiasis, caused by parasitic blood flukes in the Schistosoma genus1, is a zoonotic disease. It remains a seri-
ous public health problem worldwide, being endemic mainly in developing countries located in tropical and sub-
tropical regions2. According to the World Health Organization, as of 2012 there were at least 249 million people  
infected and more than 700 million people at risk3. The global burden of schistosomiasis has been estimated to 
be 3.31 (95% confidence interval 1.70–6.26) million disability-adjusted life years (DALYs)4. In China, schistoso-
miasis japonica is responsible for human and animal infections5. The disease has a documented history of over 
2,100 years along the Yangtze River Basin6 and is still regarded as an important parasitic disease. A recent study 
estimated that there were approximately 185,000 schistosomiasis japonica cases nationwide7.

With the implementation of a wide range of schistosomiasis control programs, schistosomiasis prevalence has 
been greatly reduced8 and is currently at a low infection level9. However, challenges to control remain and many 
factors could lead to a resurgence of schistosomiasis, including changes in patient susceptibility to infection and 
re-infection, effects of global warming, increasing population mobility, and changes in snail habitat and distri-
bution via ecosystem changes as a result of human activities (e.g., the Three Gorges Dams and the South–North 
Water Conversion Project)10,11. To eliminate schistosomiasis has proven to be a tough task. National and local 
surveillance systems have played an important role in schistosomiasis control and elimination12,13. However, the 
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current surveillance systems predominantly focus on parasitological data collection, such as case reports col-
lected at local anti-schistosomiasis stations (e.g., township) and data aggregated at higher administrative units 
(e.g., county)14,15; these data are considered to be inefficient for surveillance. An efficient and timely surveillance 
system integrating early warning and multi-data streams is needed to improve the implementation and evaluation 
of targeted control strategies16.

Forecasting, as a means of surveillance and early detection, can facilitate the formulation of effective con-
trol strategies for schistosomiasis. Time series analysis17–19 and its derivatives20 are currently the predominant 
approaches. Although these approaches consider the temporal dimension they neglect the geographical clustering 
characteristic of schistosomiasis. Some researchers21 in China have forecasted the risk of S. japonicum infection 
by modeling the temporal and spatial dimensions separately, ignoring the spatio-temporal interaction dimension. 
In contrast, in the current study we built a hierarchical Bayesian (HB) spatio-temporal model to investigate the 
dynamic pattern of human schistosomiasis risk in Anhui Province, East China, a typical schistosomiasis-endemic 
area along the Yangtze River Basin. First, we described schistosomiasis risk in Anhui using annual county-level 
parasitological data for the period 1997–2010, and briefly discuss the HB spatio-temporal model and modeling 
approaches. We then used the best predictive model to forecast schistosomiasis risk for the period 2011–2014. In 
closing, we discuss the potential implications of our findings for schistosomiasis control.

Results
Figure 1 shows the endemic area of schistosomiasis japonica within our study region. Figure 2 depicts the 
change in annual prevalence of schistosomiasis risk during the study period. The median prevalence showed an 

Figure 1. Endemic area of schistosomiasis japonica in Anhui Province, People’s Republic of China. The 
river in the north is the Huaihe River and the one in the south is the Yangtze River. The number appearing in the 
map is the county ID. The map was created using ArcGIS software (version 10.0, ESRI Inc. Redlands, CA).

Figure 2. Prevalence of S. japonicum infection for endemic counties in Anhui Province, China, from 1997 
to 2010. The red vertical lines denote interquartile range and the blue circles denote the median.
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increasing trend from 0.016% in 1997 to 0.115% in 2002; it then decreased gradually to 0.019% in 2010. There was 
a resurgence in prevalence (0.142%) in 2005. A higher prevalence was accompanied by a wider interquartile range 
(IQR). Overall, the schistosomiasis risk fluctuated through the study period.

Figure 3 is a map of observed relative risk (RR) of schistosomiasis during the period 1997–2010. The spatial 
pattern of the disease risk was different across the study years. High levels of schistosomiasis risk (i.e., RR > 1) 
were observed mainly in areas along the Yangtze River; areas of low levels of disease risk were located away from 
the river, mainly in the south and east parts of the study region. Some counties presented high and increasing 
risks during the study period, such as county 21 (county IDs are shown in Fig. 1) with RRs between 1 and 3 dur-
ing 1997–2004 and rising to > 3 there afterwards. Other counties–for example county 8–showed a fluctuating 
risk during 1997–2006 and then maintained a high relative risk during the remaining years. Geographically, the 
spatial extent of high risk decreased and became focal during the study period.

We used a dynamical spatio-temporal model (denoted as m1) to study the trends in schistosomiasis risk in 
the study region. For a comparison, we also specified a non-dynamical spatio-temporal model (denoted as m2), 
a spatial model (denoted as m3), and a temporal model (denoted as m4). In addition, we evaluated these models’ 
zero-inflated version. For model selection, all the models were fit to RRs of schistosomiasis for the period 1997–2008  
(T =  12). A comparison was made between observed RR values of the last two years (2009 and 2010) and RRs 
predicted by the models at T +  1 and T +  2. For each of these evaluations, we calculated the mean squared pre-
dictive errors (MSPEs), which measure model accuracy. In addition, the deviance information criterion (DIC)22 
was considered.

The MSPE and DIC results of all models are presented in Table 1. As indicated by MSPEs, the zero-inflated 
models performed better than their ordinary model counterparts. With the zero-inflated negative binomial (NB) 
likelihood, the dynamical spatio-temporal model (m1) outperformed other models, with the smallest MSPEs of 
3.96 in 2009 and 0.85 in 2010. Hence, model m1 with a zero-inflated NB likelihood was selected as the best pre-
dictive model (BPM) for forecasting. Interestingly, this model also fitted the data best as indicated by the smallest 
DIC.

Table 2 shows the results of the BPM using data for the period 1997–2010. Temperature and rainfall were not 
significantly associated with risk. Distance to the Yangtze River was negatively correlated with schistosomiasis 
risk. The schistosomiasis risk decreased over time but this change was not statistically significant. The posterior 
mean of the overdispersion parameter (r) was 2.56 and the 95% credible interval (CI) was 1.86 to 3.43, namely the 

Figure 3. Annual observed relative risk (RR) of schistosomiasis in Anhui Province, China, from 1997 to 
2010. The maps were created using ArcGIS software (version 10.0, ESRI Inc. Redlands, CA).
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overdispersion parameter was significantly greater than zero. The posterior mean of the zero-inflated parameter 
α was also significantly different from zero (posterior mean 2.36, 95% CI 1.59 to 3.35). The posterior mean of the 
transition parameter ρ was 0.91 (95% CI 0.86 to 0.95), indicating a stationary temporal process. The posterior 
mean of the variance parameter κ2 was 0.24 (95% CI, 0.15, 0.36).

Figure 4 displays the annual map of predicted RRs of schistosomiasis for the period 2011–2014. Most of the 
endemic counties had RRs < 1, indicating relatively low schistosomiasis risk. Counties 21 and 12 had the highest 
risk (RR > 3) and counties 8, 10, and 2 were also high-risk areas (RR ranging from 1 and 3). Figure 5 presents 
corresponding coefficients of variation (CV) of the forecasting. As expected, the maps present a rising trend over 
time: a higher level of uncertainty in forecasting occurs over time.

Discussion
The purpose of this study was to explore the spatio-temporal dynamics of schistosomiasis risk in Anhui Province, 
China, and then to forecast risk using a Bayesian spatio-temporal model with a computationally efficient and 
statistically powerful inference approach. In this approach, it is assumed that observations are determined by a 
hidden latent process, which is important for understanding the etiology of a phenomenon23. Our results identi-
fied the spatio-temporal pattern of schistosomiasis risk after adjusting for some important environmental factors 
and the forecasting risk maps provided useful information for future schistosomiasis monitoring and control.

The spatial variation of schistosomiasis risk and the association between environmental factors and the 
disease can be explained by the known biology of schistosoma and freshwater snails (i.e., O.hupensis). Higher 
temperature and more rainfall are conducive to the parasite’s life cycle and formation of snail habitat. However, 
abnormal weather conditions can have negative effects on both the parasite and the snail24,25. During 1997–2010, 
temperature in the region was very low in 2005 and rainfall was extremely heavy in 2009. This might explain 
why temperature and rainfall were not significantly positively associated with schistosomiasis risk in our anal-
ysis. We found that distance to the Yangtze River was significantly negatively correlated with disease risk, likely 
because of an increased risk of contacting infected water via swimming, fishing and agricultural activities. Of 
note, there was some spatio-temporal random effect (ηit in formula [3]) that could not be explained by the fixed 
variables. The estimate of transition parameter ρ shows that formula 3 is stationary, indicating that the small-scale 
spatio-temporal variation of schistosomiasis risk was stable over time, i.e. it was not explosive or decaying.

Schistosomiasis disease risk tended to decrease over time but the change was not statistically significant. The 
study area was subject to two important, national schistosomiasis control programs during the period 1997–2010. 
The first one was a 10-year World Bank Loan Project (WBLP) launched in 1992, largely based on large-scale 
chemotherapy. The second was a revised control strategy which was initiated in 2005, using integrated meas-
ures and an emphasis on controlling the source of infection. In addition, each county used available funds to 
undertake individual control strategies14. As the drug-based strategy is a host-targeted treatment, it can only 

Data level Process level MSPE1 MSPE2 DIC

NB

m1 7.104 1.654 2827.525

m2 172.616 2.228 3126.857

m3 130.846 1.655 2984.216

m4 173.343 2.228 3126.893

Zero-inflated NB

m1 3.964 0.853 2812.538

m2 68.279 2.178 3006.359

m3 24.484 1.644 2906.787

m4 122.009 2.212 3055.228

Table 1.  Mean squared predictive error (MSPE) and deviance information criterion (DIC) values for 
all models of schistosomiasis in Anhui Province, China, 1997 to 2010, tested. NB: negative binomial 
distribution; MSPE1: mean squared predictive error at 2009; MSPE2: mean squared predictive error at 2010.

Parameters Mean Q0.025 Q0.975 Median

Temperature 0.4e-03 − 3.5e-03 4.3e-03 0.4e-03

Rainfall 0.1e-03 − 0.1e-03 0.2e-03 0.1e-03

The Yangtze River − 0.023 − 0.037 − 0.010 − 0.023

Time − 0.027 − 0.055 0.001 − 0.026

r 2.562 1.857 3.432 2.533

α 2.355 1.587 3.348 2.316

ρ 0.913 0.863 0.950 0.915

κ2 0.237 0.148 0.357 0.232

Table 2. Posterior estimates (mean, 95% credible interval, and median) of model parameters with zero-
inflated negative binomial distribution of a model of schistosomiasis risk in Anhui Province, China, 1997 
to 2010. r: overdispersion parameter in the negative binomial distribution; α: the zero-inflated parameter; ρ: the 
transition parameter; κ2: the variance parameter in the instantaneous spatial effect.
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control the disease to a certain extent. Studies26,27 have shown that schistosomiasis risk rebounded shortly after 
the WBLP was completed in 2001. Our study shows that the median prevalence reached a peak in 2002 (Fig. 2). 
The revised strategy focused largely on interrupting the life cycle of the parasite28,29. An important measure was to 
replace water buffalo (a prevalent infection source in the lake and marshland area) with agricultural machinery. 
A reduced median prevalence with narrowed IQR after 2005–demonstrated in our results (Fig. 2)–suggests that 
the latter program was likely more effective. A limitation of the revised control strategy is that the intervention 
measures cannot completely block the life cycle of the parasite since more than 40 species of mammals30 can 
serve as potential zoonotic reservoirs, in addition to water buffalo and humans. Infected O. hupensis snails were 
still found in certain locations along the Yangtze River31. These two features might prevent further reduction of 
schistosomiasis risk.

Figure 4. Annual predicted relative risk (RR) of schistosomiasis in Anhui Province, China, from 2011 to 
2014. The maps were created using ArcGIS software (version 10.0, ESRI Inc. Redlands, CA).

Figure 5. Annual coefficient of variation of predicted relative risk (RR) for schistosomiasis in Anhui Province, 
China, from 2011 to 2014. The maps were created using ArcGIS software (version 10.0, ESRI Inc. Redlands, CA).
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The focus of our study was to forecast schistosomiasis risk. As shown in Fig. 4, the risk for some counties 
remained elevated (i.e., RR > 1; for example, counties 21, 12 and 8); these should be priority areas for the imple-
mentation of control measure. Unexpectedly, historically low-risk counties (counties 10 and 2 in this study) 
became high risk counties; these require close monitoring in a disease control program. The rising uncertainties 
in the forecasting of disease risk over time (Fig. 5) indicates that the accuracy of risk prediction may be reliable 
for a short-term forecast but not for a long-term forecast, which may limit its utility for decision-making in some 
circumstances. Such uncertainties need to be carefully assessed when interpreting maps for disease control32.

We included the spatio-temporal dependence in formula 3 that shows how the current value ηit behaves given 
the behavior of “nearby” current ηjt (j are spatial neighborhoods of i) and the most recent past values ηi,t − 1. 
This model characterizes the evolution of schistosomiasis risk over space and time. Another way to model the 
spatio-temporal dependence is to build a moment-based model (e.g., Kriging approach) and it has been used 
in some previous schistosomiasis risk studies33,34. The latter approach ignores the directionality of time and 
specifies only the first and second moments of ηit in the temporal domain of interest. It can ignore the genesis 
of the temporal dependence and generally performs much worse in forecasting35. We also made a comparison 
with a non-dynamical spatio-temporal model, a purely spatial model, and purely temporal model. MSPE results 
justified our adoption of the dynamical spatio-temporal model. DIC results also indicated that the dynamical 
spatio-temporal model is the best fitting model.

The spatio-temporal model accounted for overdispersion to a large extent, which has seldom been considered 
in previous studies of schistosomiasis risk forecasting. Instead of the standard Poisson distribution to model the 
potential extra-Poisson variation we assumed the number of infected individuals in each county follows a NB 
distribution. Additionally, a large proportion of individuals were considered to be non-infected due to heteroge-
neities in environmental exposure36 and imperfect diagnostic approaches for schistosomiasis37 (see Fig. 2). The 
zero-inflated parameter of the zero-inflated NB model (α =  2.36, 95% CI 1.59 to 3.35) was significantly different 
from zero suggesting that there were a significant number of zeros in the observed data that could not be included 
in the NB distribution. Besides the statistical consideration, the zero-inflation model is epidemiologically used for 
better understanding the presence and absence of infection in the study area and the count process accounts for 
the level (or strength) of the risk of infection. The MSPE and DIC (Table 1) results indicated that the zero-inflated 
NB model improved the performance for both data fitting and risk forecasting.

Some limitations of this study deserve discussion. First, only a few environmental factors (i.e., temperature, 
rainfall, and the Yangtze River) were included in our study, whilst socio-economic and socio-behavioral indica-
tors–which might have an important impact on schistosomiasis risk as well as the effectiveness of targeted con-
trol measures–were absent. Second, the specificity of serological assays and the sensitivity of stool examination 
tests are not perfect38 and this uncertainty was not considered in our modeling. Modeling with diagnostic errors 
should be considered in future studies. Finally, we were not able to directly attribute the spatio-temporal changes 
in schistosomiasis risk to the two national control strategies and the environmental factors in the current analysis. 
Further studies are needed to understand the observed trend in disease risk.

In summary, we proposed a dynamical spatio-temporal model based on a hierarchy approach to forecast 
schistosomiasis risk in this study. Our model disclosed the spatio-temporal dynamics of schistosomiasis risk 
and the forecasting results identified three stable high-risk counties and two potential high-risk counties, which 
should be the priority areas for targeted interventions. The forecasting maps provide an empirical basis for mon-
itoring schistosomiasis risk in the study area.

Methods
Study area. Anhui Province, located across the basins of the Huaihe River (in the North) and the Yangtze 
River (in the South), spans approximately 139,600 km2 in east China and has a population of 60.83 million (2014). 
The province is characterized by a range of landscapes: plains in the northern and north-central parts and moun-
tains and a series of hills in the south-western and south-eastern parts. The province has a subtropical humid 
monsoon climate and “plum” rains occur in June and July and may cause flooding, which is conducive to growth 
of Oncomelania hupensis, the intermediate host of schistosomiasis japonica.

Parasitological data. The county-level schistosomiasis data were obtained from cross-sectional surveys 
conducted by the health professionals of the Anhui Institute of Parasitic Diseases repeated annually between 
1997 and 2010. For each year, parasitological data were originally collected through village-based field surveys 
of randomly selected villages, using a two-pronged diagnostic approach (all residents aged 5 to 65 years were 
screened by a serological test and then confirmed by a fecal parasitological test [Kato-Katz technique]39, then 
were reported to township and finally to county. During our study period, the yearly numbers of sample villages 
and individual participants ranged between 1,610 and 2,000, and 1,045,708 and 1,575,012, respectively. For our 
analysis, we removed counties that had no infected individuals during the study period. Thirty-one counties were 
included in this study (Fig. 1).

Environmental data. Schistosomiasis is a well-known environment-related disease, the transmission of 
which is strongly associated with temperature, rainfall and access to water40–42. In our study, environmental data 
included rainfall, temperature and distance to the Yangtze River. Monthly rainfall and temperature data during 
the period 1997–2010 were obtained from the China Meteorological Data Sharing Service System (http://cdc.
cma.gov.cn/home.do). With available data at 756 meteorological stations in China, inverse distance weighting 
(IDW) interpolation was used to derive estimates within the study area. ArcGIS software (version 10.0, ESRI Inc.; 
Redlands, CA, USA) was used to extract monthly-average rainfall and temperature for each county. Data on the 
Yangtze River were downloaded from Conservation Science Data Sets of World Wildlife Foundation at http://

http://cdc.cma.gov.cn/home.do
http://cdc.cma.gov.cn/home.do
http://worldwildlife.org
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worldwildlife.org. For each county, the Euclidian distance from the centroid of the county to the Yangtze River 
was calculated using ArcGIS software.

Ethical statement. Approval for oral consent and other aspects of the surveys were granted by the Ethics 
Committee of Fudan University (ID: IRB#2011-03-0295). Written informed consent was also obtained from all 
participants.

Statistical analysis. Hierarchical spatio-temporal model structure. Assume that there is a true unobserved 
spatio-temporal process hidden behind the yearly counts of schistosomiasis cases, which is incorporated into 
the framework of an HB statistical model. The spatial domain is discrete and consists of the 31 counties in the 
study area. Consequently, the size of count data we model is fixed at 31. The basic representation of the HB model 
is typically composed of three levels23, namely the data level (whose conditional probability distribution given 
processes and parameters is independent), the process level (which determines change of data level given param-
eters), and the parameter level (which exists in the previous levels).

Data level. Let Zit denotes the number of infected individuals at time t, in county i, where i =  31 and t =  14. 
Specifically, the data level is assumed to be a product of independent negative binomial (NB) distributions con-
sidering the possible overdispersion in the observed counts. That is,

λ λ.~Z ind nbinom E r( , ) (1)it it it it

where Zit and Eit are the observed number of schistosomiasis cases and the expected number of schistosomiasis 
cases in the county i at time t, respectively, and r is the overdispersion parameter. Zit approaches a Poisson dis-
tribution as r approaches zero. Although NB models may be ideal for over-dispersion, they may not be suitable 
when the data include too many zero values43. Since the schistosomiasis data in our analysis are counts character-
ized by many zeros, we evaluated the NB distribution as well as its zero-inflated version. λit is the underlying RR 
at county i and time t, and it is the hidden process of interest. The conditional distribution of λit given parameters, 
i.e. the process level, is where the spatio-temporal dependence can be modeled.

Process model. The process model is:

∑λ β β η= + +
=

X tlog
(2)it

k
k itk it

1

3

4

where Xitk are fixed covariates that are specified as the environmental factors and βk are corresponding coeffi-
cients; time t (and its corresponding coefficient β4) is used as an ordinal variable. Xitk and t capture the large-scale 
spatio-temporal variation of schistosomiasis risk while ηit captures the small-scale variation which explains any 
spatio-temporal statistical dependence. The marginal spatial dependence is modeled according to an intrinsic 
conditional autoregressive (CAR) model44 and the temporal dependence is modeled as a Gaussian first-order 
autoregressive (i.e., AR(1)) process45:

η ρη ε= + = …− t T; 2, , (3)it i t it, 1

where ρ is the transition parameter with |ρ| <  1 in case of stationarity and the instantaneous spatial correlation, 
εit, is independent from ηi,t − 1 and is distributed according to the Gaussian Markov random field,

ε κ~ MVN (0, ) (4)it
2

∑ ∑ε ε ε κ| ∈
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where κ2 is the variance parameter at time t, N(i) denotes spatial neighborhoods of county i (here we assume that 
the neighborhood structure does not change over time), and w(i, j) is a weights matrix element and w*(i, j) is a 
standardized form of a weights matrix, defining the relationship between county i and its neighbor county j. The 
weight is defined simply as w(i, j) =  1 if the two counties are adjacent (i.e., share a common border) and w(i, j) =  0 
otherwise. As formula 3 shows how the current value ηit is related mechanistically to its past value and its current 
spatial neighbors, we call it a dynamical spatio-temporal model.

Parameter level. At this level, we specify the joint prior distribution for the parameters in data level and 
process level to complete the HB model. The parameters include the overdispersion parameter {r}, the fixed-effect 
coefficients β =  (β1, β2, β3, β4), the transition parameter {ρ}, and the variance parameter {κ2}. Recall that we also 
consider a zero-inflated version of NB likelihood at the data level, hence a parameter (denoted as {α}) that deals 
with extra zeros that are not generated by the NB distribution is also included (details about α can be found in 
Appendix A). Assuming independence and using [Y] as generic notation for the density of Y, we have

α β ρ κ α κ= β ρr[ , , , , ] [r][ ][ ][ ][ ] (6)2 2

where the prior distributions of individual parameters are specified as follows:

http://worldwildlife.org


www.nature.com/scientificreports/

8Scientific RepoRts | 6:24173 | DOI: 10.1038/srep24173

~r gammalog( ) log (1, 1)

α ~ Nlog( ) (0, 1)

β . =~ N p(0, 1/0 01); 1, 2, 3, 4p

ρ .~ N (0, 0 1)

κ





 .~ gammalog 1 log (1, 0 0005)2

Note that α is excluded from (6) for a NB likelihood.

Model inference. Instead of using Markov Chain Monte Carlo (MCMC) methods, which are traditionally 
relied on in Bayesian computation, we employ the integrated nested laplace approximation (INLA) approach as 
the model inference method. Proposed by Rue and Martino46, INLA is an approach to perform fast and efficient 
Bayesian inference through the accurate approximation to the marginal posterior densities of (hyper) param-
eters and latent variables in latent Gaussian models. The advantage of INLA over MCMC is that INLA uses an 
approximation for inference and hence avoids the intense computational demands, convergence, and mixing 
problems sometimes encountered by MCMC algorithms46. More details about this approach and its applications 
can be found elsewhere46–48. All model fitting was performed using R software (R Development Core Team 2013), 
specifically the R-INLA package.

The methods were carried out in accordance with the approved guidelines in this journal.
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