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Abstract

Background: The intra- and inter-species genetic diversity of bacteria and the absence of ‘reference’, or the most
representative, sequences of individual species present a significant challenge for sequence-based identification. The aims
of this study were to determine the utility, and compare the performance of several clustering and classification algorithms
to identify the species of 364 sequences of 16S rRNA gene with a defined species in GenBank, and 110 sequences of 16S
rRNA gene with no defined species, all within the genus Nocardia.

Methods: A total of 364 16S rRNA gene sequences of Nocardia species were studied. In addition, 110 16S rRNA gene
sequences assigned only to the Nocardia genus level at the time of submission to GenBank were used for machine learning
classification experiments. Different clustering algorithms were compared with a novel algorithm or the linear mapping (LM)
of the distance matrix. Principal Components Analysis was used for the dimensionality reduction and visualization.

Results: The LM algorithm achieved the highest performance and classified the set of 364 16S rRNA sequences into 80
clusters, the majority of which (83.52%) corresponded with the original species. The most representative 16S rRNA
sequences for individual Nocardia species have been identified as ‘centroids’ in respective clusters from which the distances
to all other sequences were minimized; 110 16S rRNA gene sequences with identifications recorded only at the genus level
were classified using machine learning methods. Simple kNN machine learning demonstrated the highest performance and
classified Nocardia species sequences with an accuracy of 92.7% and a mean frequency of 0.578.

Conclusion: The identification of centroids of 16S rRNA gene sequence clusters using novel distance matrix clustering
enables the identification of the most representative sequences for each individual species of Nocardia and allows the
quantitation of inter- and intra-species variability.
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Introduction

Sequence-based identification of bacteria relies on the postulate

that two strains with matching sequences of house-keeping genes,

such as the 16S rRNA gene, are likely to belong to the same

species of bacteria. However, if their sequences are different, then

the interpretation depends on the magnitude of the difference:

minor variations may still represent strains that are closely related

taxonomically but more significant differences suggest that the

strains might belong to evolutionary related but distinct species of

bacteria. The quality of sequence-based identification depends on

the representativeness of sequence libraries and the reliability of

species definitions, both of which continue to pose challenges

[1,2,3]. To improve sequence-based species identification, there

has been strong impetus on developing standardised sequences,

including nucleotide polymorphisms for a particular species. This

process requires the establishment of ‘‘reference sequences’’ or

‘‘DNA barcodes’’ for species identification and recognition of

intra-species sequence polymorphisms or ‘‘sequence types’’ [1,2].

Evidence suggests that such a process of curation, in which the

designated most representative sequence of a species (or the

‘‘centroid’’ sequence) is derived from discrete ‘‘species groups’’ of

sequences, can be automated (e.g., Integrated Database Network

System SmartGene), and improves the species-level identification

of clinically relevant Nocardia isolates [3]. Both major sources of

genotypic variation – vertical and horizontal gene tranfer [4] –

should be considered when the target sequences for sequence-

based identification are selected.
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A large number of sequences from different microbial species

have been accumulated in public databases. The task of their

classification in a diagnostic laboratory has been complicated by

the variability in sequences within a species and the absence of

‘reference sequences’ or the most representative sequences for that

species [5,6]. To this end, significant advances have been made in

gene annotation and similarity/dissimilarity assessments [7,8] and

in the use of different distance metrics [8–10]. Multiple sequence

alignment (MSA) methods [11–14] have been proposed as

clustering methods, since they arrange sequences according to

similarity.

Bacteria of the genus Nocardia cause a range of infectious

diseases including localised lung and skin infections and dissem-

inated disease [15]. The accurate identification of clinical isolates

is critical for diagnosis, prediction of antimicrobial susceptibility

and for epidemiological tracking of isolates. Since standard

phenotypic identification methods are time-consuming and

imprecise [16], nucleic acid-amplification tools targeting con-

served gene regions have been developed to facilitate accurate

species determination. Of these, 16S rDNA sequence analysis is

the most frequently used method for the definitive species

identification of Nocardiae [16,17]. These methods have led to

substantial species re-assignment within the genus, especially

among ‘‘Nocardia asteroides’’ and ‘‘Nocardia transvalensis’’ isolates. For

example, two distinct new species, Nocardia wallacei and Nocardia

blacklockiae, have recently been proposed to replace previous N.

asteroides drug pattern IV and N. transvalensis new taxon 1,

respectively [18]. Distinct species formerly classified within ‘‘N.

asteroides’’ include Nocardia cyriacigeorgica and Nocardia abscessus [16].

Over 80 species have now been described, (http://www.ncbi.nlm.

nih.gov/Taxonomy/; http://www.bacterio.cict.fr/n/nocardia.html)

[16]. Although numerous Nocardia 16S rDNA sequences have been

deposited in public gene databases such as DDBJ/EMBL/GenBank

consortium, a substantial proportion of bacterial 16S rRNA gene

sequences represents inaccurate entries [19,20]. Further, sequence-

based analyses are complicated by the lack of consensus regarding the

degree of sequence similarity required for the species definition of

Nocardia [7,21].

The aim of this study was to numerically redefine the species

memberships and to identify the most representative 16S rRNA

gene sequences for each Nocardia species and to compare the

performance of clustering algorithms in this classification task. We

also aimed to assign Nocardia 16S rRNA gene sequences, deposited

in the DDBJ/EMBL/GenBank consortium but not fully identified

at the time of submission, to individual species using our

classification algorithms.

Results

Interspecies sequence similarity among Nocardia
Assuming that the assignment of sequences to species is correct

and the successful numerical clustering needs to match the species

identity as determined by GenBank-comparisons as much as

possible, the accepted clustering results of the 364 sequences of

16S rRNA genes produced 80 clusters (for the full list of clusters,

refer to Table S1). This was produced by the linear mapping of the

alignment distance matrix (LM) algorithm. The majority of the

clusters were relatively small in size: only 23 clusters contained five

or more sequences of 16S rRNA genes and only two clusters (N.

cyriacigeorgica and N. farcinica) had more than 20 sequences

(Figure 1). The LM algorithm had two sensitivity parameters:

the number of indices to map to, and the number of indices to

include in each cluster. The accepted 80 clusters were achieved

when the first parameter was 128 indices, with only one index per

cluster. Different sensitivity parameters produced a wide range of

potential clusters (Table S2). Table 1 specifies the top twenty seven

clusters at the accepted sensitivity level, their sizes and their

reference sequence species and corresponding GenBank accession

numbers assigned to those sequences. It also shows the proportion

of the misclassified sequences, i.e. those whose identification (at the

time of initial submission to GenBank) did not match the

predominant Nocardia species in the cluster. Some of 16S rRNA

gene sequences of seventeen Nocardia species were co-clustered

with other species (Table 2). The high-level ‘heatmap’ of the

distance matrix indicating rectangles around all of the clustering

parameters is shown in the electronic supplements (Figure S1).

The alignment of 16S rRNA gene sequences identified hyper-

variable regions surrounding V2, V4 and V6 that corresponded to

the first 250 base pairs of the 16S rRNA gene, and about 500 and

650-bp, respectively (Figure 2). When principal component

analysis (PCA) was applied to separate individual species by these

discriminatory structures in the 16S rRNA gene, the first principal

component represented 97.11% of the structure in the distance

matrix. The second and the third components represented 1.61%

and 0.44% of the data structure, respectively. The two-

dimensional plot of the 1st and 2nd PCA (as shown in Figure 3-A

to visually identify the clusters) was not informative. However, the

combination of the 1st and 2nd PCA with the 2nd and 3rd PCA

allowed the allocation of sequences into 80 clusters (Figure 3-B).

When the 1st and 2nd PCA scores were used as the dataset for

linear mapping clustering with a Euclidian distance measure, 67

clusters were identified. K-means method produced the highest

accuracy when k was between 27–36 clusters, but we used 77

distinct clusters to match the known GenBank submitted species

names.

The relationships between Nocardia species clusters were also

visualised using a ‘‘mountain view’’ (Figure 4), where each cluster

was represented as a peak in the three dimensional terrain. The

Cluto algorithm identified ten ‘mountain peaks’ for the optimal 10

clusters. The clusters with the highest sequence similarity were

ones consisting of N. asteroides complex sequences (Figure 4; red

peaks such as AF430025, AF430026, X84850, X80606, Z36934,

AF430019, and DQ659898), and the other neighbouring clusters.

Other Nocardia species were represented as less homogenous

clusters with more diverse sequences of the 16S rRNA gene. Such

representation illustrates the relative distance between species

highlighting, for example, the uniqueness of two sequences of N.

seriolae (Accession Numbers AB060281 and AB060282) which

appeared as outliers to the rest of the data set (the PCA plots in

Figure 3 and the mountain view in Figure 4).

Performance of clustering algorithms
The linear mapping (LM) achieved the highest performance to

128 indices, and only one index per cluster. This algorithm

classified the set of 16S rDNA sequences into 80 clusters, the

majority of which corresponded well with the original GenBank

species; 304 sequences out of the 364 sequences (83.52%) were

clustered with sequences sharing the same species name. When

partial matching was taken into account (clusters containing equal

numbers of sequences of originally different species names), the

classification performance improved further to 93.13%. The LM

algorithm outperformed both Cluto and hierarchical clustering

over 77 clusters (Table 3 and Table S4). The k-means algorithm

with k = 77 produced eight clusters with negative silhouette values

(a measure of cluster coherency), indicating the presence of

misclassified outliers, while the majority of clusters demonstrated

silhouette values higher than 0.4, suggesting clusters sufficiently

separated from their neighbours (Figure S2). The average
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Figure 1. Clusters of different Nocardia species determined by MSA comparisons.
doi:10.1371/journal.pone.0019517.g001

Table 1. Nocardia species clusters and their reference sequences*.

Cluster name
Number of sequences
in the cluster*

Reference
Sequence Name

GenBank
Accession Number

Proportion of other Nocardia
species assigned to the cluster, %

N. cyriacigeorgica Cluster 1 40 N. cyriacigeorgica AJ508414 5.00

N. farcinica 21 N. farcinica X80595 9.52

N. abscessus 18 N. abscessus AB212947 11.11

N. nova 18 N. nova X80593 0.0

N. beijingensis
Cluster 1

17 N. beijingensis DQ659901 0.0

N. seriolae 17 N. seriolae X80592 0.0

N. asiatica 12 N. asiatica DQ659897 0.0

N. wallacei 9 N. wallacei Z82229 44.44

N. veterana 9 N. veterana AF278572 22.22

N. elegans 8 N. elegans DQ659905 50.0

N. otitidiscaviarum 8 N. otitidiscaviarum X80599 0.0

N. pseudobrasiliensis 8 N. pseudobrasiliensis DQ659914 0.0

N. brasiliensis 7 N. brasiliensis X80591 14.29

N. transvalensis Cluster 1 7 N. transvalensis X80598 0.00

N. carnea 6 N. carnea AF430035 0.00

N. asteroides 6 N. asteroides DQ659898 16.67

N. beijingensis
Cluster 2

6 N. asteroides*** Z82228 16.67

N. cyriacigeorgica Cluster 2 5 N. cyriacigeorgica Z82218 40.0

N. arthritidis 5 N. arthritidis DQ659896 40.0

N. vaccinii 5 N. vaccinii AF430045 0.0

N. aobensis 5 N. aobensis AB126876 0.0

N. niigatensis 5 N. niigatensis AB092563 0.00

N. transvalensis Cluster 2 5 N. otitidiscaviarum** AB201303 60.0

N. brevicatena 4 N. brevicatena AF430040 0.0

N. paucivorans 4 N. paucivorans AF430041 0.0

N. puris 4 N. puris AB097455 0.0

N. vinacea 4 N. vinacea AB162802 25.0

Note: Rows of Nocardia species assigned to more than 1 cluster are highlighted in grey.
*Only clusters with more than three 16S rRNA gene sequences are shown. For the full list refer to Table S3.
**One N. otitidiscaviarum 16S rRNA gene sequence in a cluster of five, suggestive of misclassification in the original submission.
***One N. asteroides 16S rRNA gene sequence in a cluster of six, other five sequences belong to N. beijingensis. Suggestive of misclassification in the original submission.
doi:10.1371/journal.pone.0019517.t001
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Table 2. Species names of 16S rRNA gene sequences that were co-clustered with other species.

Nocardia Species Names and GenBank Accession Number(s) Co-Clustered with Nocardia species

N. caishijiensis (AF459443) N. mexicana (AY555577 and AY560655)

N. sienata (AB121770) N. testacea (AB121769 and AB192415)

N. pseudovaccinii (AF430046) N. vinaceae (AB162802 and AB024312)

N. jinanensis (DQ462650) N. asteroides (Z82231) and N. speluncae (AM422449)

N. lijiangensis (AY779043) N. xishanensis (AY333115) and N. polyresistens (AY626158)

N. araoensis (AB108779) N. arthritidis (AB212949 and AB108781)

N. alba (EU249584) N. jejuensis (AY964666)

N. alba (AY222321) N. ninae (DQ235687)

N. jiangxiensis (AY639902, DQ840027) N. nova (DQ840028 and DQ840029)

N. coubleaea (DQ235688) N. soli (AF277223)

N. cummidelens (AF277202) N. soli (AF277199 and AF430051)

N. altamirensis (EU006090) N. tenerifensis (AJ556157)

N. iowensis (DQ925490) N. brasiliensis (X80591, AY245543 and AF430038)

N. neocaledoniensis (AY282603) N. thailandica (AB126874)

N. wallacei (EU099357) N. transvalensis (AB 084444, AB08445 and AB084446)

N. kruczakiae (AY441974, DQ659909) N. veterana (AF278572, DQ659918 and AY191253)

N. africana (AF277198, AF430054, AF302232, AY089701) N. elegans (AJ854057, DQ659905 and AB237142)

doi:10.1371/journal.pone.0019517.t002

Figure 2. Relative variability of different regions of the 16S rRNA gene sequence of Nocardia species. Distance matrix generated with a
sliding window of 200 nt. Peaks indicate highly variable regions of the gene.
doi:10.1371/journal.pone.0019517.g002
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Figure 3. Principal component analysis (PCA) clustering using the Linear Mapping algorithm over the Euclidian distance of the PCA
1 (x-axis) and PCA 2 (y-axis) scores. (A) and PCA 2 (x-axis) and PCA 3 (y-axis) scores (B).
doi:10.1371/journal.pone.0019517.g003
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silhouette values for sets of 27, 36 and 77 clusters were 0.509,

0.460, and 0.438, respectively.

The LM clustering identified three Nocardia asteroides clusters

ranging from 9 sequences per cluster down to two sequences per

cluster. The method produced five clusters for N. transvalensis, four

clusters for N. seriolae, three clusters for N. cyriacigeorgica and N.

otitidiscaviarum, and two clusters for the N. beijingensis, N. concava, N.

farcinica, N. nova, N. pseudobrasiliensis, N. soli, and N. veterana species.

Results for clusters with three or more sequences are shown in

Table 1, highlighting the clusters with species name of the

reference sequence (or the cluster centroid). One cluster of N.

beijingensis 16S rRNA gene sequences contained one, probably

misclassified, sequence submitted to GenBank in 1996 under the

name of N. asteroides (Z82228) which was selected as the cluster’s

centroid (N. beijingensis Cluster 2 in Table 1).

A number of clusters contained multiple sequences derived from

the same strain, usually a reference strain in a curated culture

Figure 4. ‘Mountain’ view of Nocardia species classification where clusters are represented as peaks on the 3D terrain, with the
cluster number (starting from 0) pointing to the corresponding mountain peak. The shape of each peak is a Gaussian curve, which is a
rough estimate of the distribution of the data within each cluster. The volume of a peak is proportional to the number of strains contained within the
cluster. The height of each peak is proportional to the cluster’s internal similarity. The colour of a peak reflects the cluster’s internal deviation, where
red indicates low deviation where as blue indicates high deviation. Only the colour at the tip of a peak is significant, whereas all other areas colour is
determined by blending to create a smooth transition. The numbers indicate the number of a cluster in the experiment (See Supplemental material
for details).
doi:10.1371/journal.pone.0019517.g004

Table 3. Comparative performance of clustering algorithms.

Clustering algorithm Exact match (%)* Partial match (%)**

Linear Mapping 304 (83.52) 339 (93.13)

Cluto 304 (83.52) 332 (91.21)

Hierarchical Clustering 294 (80.77) 320 (87.91)

k-means 258+/20.091 (70.88) 309 (84.89)

PCA 291 (79.95) 326 (89.56)

*Confidence Intervals can be calculated only for k-means.
**Partial match was defined as assignment of a sequence to a cluster which
contains sequences of Nocardia species that match this sequence along with
other species.
doi:10.1371/journal.pone.0019517.t003
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collection. For example, in a cluster of six 16S rRNA gene

sequences of N. asteroides only the sequences of three reference

strains were represented. Specifically, sequences of different length

(accession numbers Z36934, X84850 and DQ659898) were

reportedly obtained from ATCC 19247T reference strain and

submitted to the GenBank by research groups from the UK in

1994, France in 1995 and the USA in 2006, respectively.

Similarly, within this cluster there were two sequences from N.

asteroides DSM 43757T (X80606 and AF430019) and one sequence

from N. asteroides GTC 861. 16S rRNA gene sequences in one of

the N. transvalensis clusters of seven sequences were obtained from

four strains (X80609, AF430047 and Z36928 from the strain

DSM43405T, X80598 and DQ659916 from ATCC6865T, and

Z882232 and Z82249 from N1045 and N630, respectively).

Identification of reference sequences
The most representative 16S rRNA gene sequences for

individual Nocardia species that have been identified as ‘centroids’

in respective clusters, are listed in Table 1. While most of the

reference sequences appeared to be the type strains of those species

(18 of 27, or 67%), a third (33%) of clusters were assigned with

new reference sequences. Of note, certain Nocardia species were

classified into more than one cluster, and appeared to have more

than one reference sequence - for example, for the three N.

asteroides clusters, the LM clustering method identified the

following reference sequences-centroids (Table 1): Z82229 for

the largest nine-sequence cluster, and AF163818 and AF430025

for two remaining clusters of two sequences (specified in

Supplementary Material).

Classification of unknown Nocardia 16S rRNA gene
sequences

16S rRNA gene sequences with identifications only at the genus

level were classified using machine learning algorithms. Two

methods were employed from the MATLAB toolboxes (naı̈ve

Bayes and k-Nearest Neighbour (kNN) classifiers) and six methods

were used from Weka (naı̈ve Bayes, kNN, Boosted Decision Trees,

Linear Support Vector Machine (SVM), Cubic SVM, and

Quadratic SVM classifiers). Initially, 40 sequences were selected

from the centroids of the highly populated clusters, as the

validation sequences for the classification algorithms. All methods

correctly identified all 40 sequences (see Table S3 for details of the

validation). The classification algorithms were then applied to 110

16S rRNA gene sequences of Nocardia that had been submitted to

the public databases without speciation. The consensus of all

classification algorithms was identified, and each method was

given a performance score measuring its concordance with the

consensus. These scores for the highest scoring methods are shown

in Table 4, indicating that the in-house implementation of the k-

nearest neighbour method, labelled as simple kNN, scored the

highest, followed by the MATLAB implementations of naı̈ve

Bayes and kNN classifiers. The expected frequency of species

predicted by the classification algorithms for each of the 110

sequences is also shown in Table 4. This value obtained its

maximum of 1.0 when all M algorithms predicted the same species

for each sequence, and its minimum of 1/M when every algorithm

predicted a different species. Simple kNN machine learning

classified Nocardia species sequences with an accuracy of 92.7%

and a mean frequency of 0.578 (Table 4). Simple kNN, the

MATLAB naı̈ve Bayes and kNN classifiers demonstrated the

highest frequency of prediction to be greater than 0.6, indicating

that the species predicted by these methods will be predicted by

almost two-thirds of all methods, averaged over all 110 sequences.

In contrast, the lowest expected frequency was for WEKA NBayes

and kNN at 0.458 and 0.475, respectively, meaning that almost

half of the methods agreed on the naming of individual species

(Table 4). Even when the classification algorithms predicted

different clusters for the same sequence, distances between the

centroids of these clusters remained small. Only three sequences

were classified to clusters with far-away centroids: AB243007,

AF227864, and AJ971864. Unclassified sequences from the

GenBank with the results of all classification algorithms and their

consensus classification results are listed in Table S4.

Discussion

We have developed and tested a method for the identification of

the most representative sequences from the sets of sequences

submitted to public databases. Such sequences may be used as

reference sequences to assist the rapid identification in a diagnostic

laboratory [4]. This numeric method successfully classified 16S

rRNA gene sequences into clusters and identified centroids of the

clusters. The clustering of the 364 sequences of 16S rRNA genes of

Nocardia species revealed the highly homogenous sequence

structure of this almost certainly over-classified microbial genus.

The high level of similarity of sequences in the Nocardia genus

explains the relatively narrow range of expected frequencies

reached by the majority of machine learning methods. These

findings provide a quantitative view of the Nocardia genus space

with intra- and inter-species variation being captured using

similarity and clustering techniques, and confirm the suggestion

that genome space is not uniformly filled by a seamless spectrum of

intergrading types [22,23]. The recent changes in Nocardia

taxonomy have provided an indirect validation of our approach

and have made our observations even more interesting. For

example, a cluster of nine 16S rRNA gene sequences were

submitted to the GenBank between 1996 and 2007 by microbi-

ologists from Europe, the USA and Japan under different species

names, such as N. asteroides (Z82220, Z82221, Z82229, AY191251,

DQ659899), N. transvalensis (AB084445, AB084446, AB084444)

and N. wallacei (EU099357). Our algorithm has selected the

sequence DQ659899 at the ‘centroid’ of this cluster. Significantly,

the GenBank submission from 2006 was recently changed from N.

asteroides into N. wallacei by its authors, as was the GenBank

submission AY191251, making this cluster representative of N.

wallacei 16S rRNA sequences.

Table 4. Performance of classification algorithms against the
consensus.

Method
Agreement with
consensus, (%)

Expected frequency of
predicted species

Simple k-Nearest
Neighbour

92.73 0.669

Matlab NBayes 88.18 0.647

Matlab kNN 87.27 0.627

Alignment 77.27 0.592

WEKA NBayes 57.27 0.475

WEKA kNN 52.72 0.458

Note: The first column presents the accuracy of each method compared to the
consensus of all methods used (i.e., the percentage of predictions made by
each method that agree with the majority prediction by all methods). The
second column shows the expected frequency of the classification made by
each method (i.e., the mean frequency of the species predicted by each
method, taken over all 110 sequences).
doi:10.1371/journal.pone.0019517.t004
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There has been a consensus that assignments to species should

be made primarily on the basis of overall sequence similarity,

although phenotypic difference should also play a role in fine-scale

differentiation [23]. Assignment of a new sequence to a given

species is usually done using the sequences of type strains (when

available). However, type strains are often defined by the first

isolate described for a new species. As a result, historical type

strains (for a species) as well as type species (for a genus) may be

defined from a clone which is somehow atypical within its clade

(see for example the successive redescriptions necessary for many

genera). We argue that automated classification process which is

based on the sequence of centroids can be more efficient and

relevant, even if the centroid sequence is not the sequence of the

type strain or type species.

In this context, defining consensus reference sequences for

target genes has become a priority for diagnostic laboratories [24].

The finding that most of the reference sequences (66%) appeared

to be the type strains of those species reconfirms the validity of our

approach. Importantly, a third (34%) of clusters was assigned with

new reference sequences. Our study offers new insights into ways

in which such reference sequences can be identified. Specifically, it

suggests that the LM method might assist best with this task as it

performed better than the alternative techniques studied and

correctly identified the most representative or reference sequences

for each cluster. The LM algorithm also suggested the optimal

number of clusters based on given sensitivity parameters, while all

other methods required a fixed number of clusters or a fixed

distance between clusters to be identified as input. Interestingly,

deterministic methods like the LM and Cluto outperformed

techniques based on randomization (e.g., k-means and hierarchical

clustering). This is important as the deterministic methods are

required for clustering sequences based on the distance measures

produced from multiple sequence alignments.

This study contributes to the debate about the measurement of

similarity between sequences [25]. The choice of the most optimal

methods of alignment and distance measurement remains

controversial [25]. Our experience indicates that progressive

MSA based on pair-wise alignments is more suitable for large

numbers of phylogenetically-related sequences [26] while long

sequences from unrelated organisms could be better compared by

more computationally expensive pair-wise alignments [27].

Therefore, this study employed Muscle, a progressive MSA

method, for its speed and relative accuracy [25]. Muscle was

considered the method of choice for our data sets, which consisted

of 364 potentially closely related but not very long sequences.

Importantly, our classification algorithms have been able to

assign species names to sequences of Nocardia species submitted to

the GenBank without proper speciation, and have also been able

to identify 16S rRNA gene sequences that have been misclassified.

N. asteroides sequences were correctly clustered in three different

clusters (with the majority of the sequences in the cluster to be

identified in GenBank as N. asteroides). On the other hand, N.

asteroides (Z82228) appeared among a cluster of sequences

identified by GenBank to be N. beijingensis.

The recent advances in computational platforms for microbi-

ologists [3,28–31] have encouraged the development of new tools

for the comparative genomics of bacteria. The emergence of

high-throughput molecular testing has enabled the potentially

more discriminatory and informative ‘polyphasic’ identification

and typing of pathogens that relies on several rather than on only

one of target genes, some of which may significantly differ in their

speed of evolution [32]. The simultaneous assessment of similarity

between multiple genes or loci from sets of microbial genomes

within the same or different species has become a new

requirement for bioinformatics analyses. For example, in a recent

study [33] Nocardia speciation was achieved through multilocus

sequence analysis (MLSA) of gyrase B the b-subunit of DNA

topoisomerase (gyrB), 16S rRNA (16S), subunit A of SecA

preprotein translocase (secA1), 65 kDa heat shock protein

(hsp65), and RNA polymerase (rpoB). Interestingly, three-

(gyrB+16S+secA1) locus MLSA was nearly as reliable as five loci

MLSA [33]. While approaches developed in this study should be

generalizable to other gene targets and indeed other bacterial

species, the sampling bias may add artificial gaps that disrupt any

perceived seamless spectrum of species and therefore should be

acknowledged as a potential limitation of this study. It also

remains to be confirmed whether techniques that have been

successful on the clonal microorganism like Nocardia would work

equally well with other microorganisms, especially with bacteria

that are more prone to the lateral gene transfer. Care should be

also taken when analysing the diversity of gene sequences

submitted to DDBJ/EMBL/GenBank prior to 1995, when

automated sequencing technologies with higher fidelity first

became available. The quality and length of sequences are

important consideration since 16S rRNA based identification

techniques may often suffer from a lack of phylogenetic

information hitherto retrievable from the short 16S rRNA gene

sequences [34]. We also tested other sequences clustering tools

such as CD-hit [35] and CLANS (CLuster ANalysis of

Sequences) [36], The first produced two clusters separating the

unique N. seriolae (AB060281 & AB060282, represented by

AB060281) from the rest of the sequences represented by N.

cyriacigeorgica AB094565. This occurred because the Cd-hit

employs a high sequence identity threshold. CLANS uses a

version of the Fruchterman–Reingold graph layout algorithm to

visualize pair-wise sequence similarities in either two-dimensional

or three-dimensional space and couldn’t cluster the 364

sequences of average length 1442-bp due to the size of the

dataset.

Our method requires neither the number of clusters nor the

distances between clusters as input, as these would be difficult to

derive for a set of unknown sequences. The method uses two

sensitivity parameters: the number of hash codes to map to, and

the number of codes to include in one cluster before starting the

cut-off. Based on the sensitivity parameters, the number of clusters

is produced, and after increasing the parameters to the saturation

of the numeric differences in the distance matrix, a maximum

number of clusters that can be numerically produced from any

given dataset is reached. Similarly, the minimum number of

clusters is defined. This feature is potentially very useful for the

over- and under-classified datasets of highly clonal microorgan-

isms. Another feature of the method is the identification of the sub-

matrices of the distance matrix corresponding to the clusters

produced. These sub-matrices can point to the sequence that is the

closest to all other sequences in the same cluster to be selected as a

centroid.

Two potential limitations of the study should be acknowledged.

First, our approach focuses in vertical gene transfer while ignoring

the potential impact of lateral gene transfer (LGT). However, the

conserved nature of the 16S rRNA gene sequence makes it an

unlikely candidate for LGT. Furthermore, some recent evidence

indicates the low impact of LGT on 16S rRNA genes (often multi-

copy genes with e-values for sequences ,10e-80) in contrast to

protein-coding genes in a large selection of bacterial genomes [5].

Second, some of the clusters identified in the study had several

sequences derived from the same strains and submitted (sometimes

by different groups of investigators) to the GenBank over the last

two decades. As these GenBank submissions range widely in time,
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sequence length and potential quality, one would argue that our

unsupervised clustering approach should be sufficiently robust to

resist the data noise that multiple submissions from the same

reference genomes might occasionally introduce. Our study has

identified several sequences which were likely misclassified at the

time of their submission or which classification had not kept up

with changes in Nocardia taxonomy. Our study is not a descriptive

account on the changing Nocardia taxonomy but a proof-of-concept

experiment involving mathematically explicit study of sequence

similarities with a machine learning component. While filtering for

multiple sequences from the same original strains or potentially

misclassified sequences has some appeal, this procedure can lead

to considerable selection bias.

In conclusion, the identification of centroids of 16S rRNA gene

sequence clusters using novel distance matrix clustering enables

the identification of the most representative sequences for each

individual species of Nocardia and allows the quantitation of inter-

and intra-species variability. The LM mapping algorithms based

on multiple sequence alignments have demonstrated the important

capacity to classify 16S rRNA gene sequences according to

microbial species. Our findings have opened new opportunities in

the optimisation of bacterial sequence-based species identification

by applying sequence alignment and similarity assessments.

Materials and Methods

Datasets
The dataset was assembled containing 364 sequences of the 16S

rRNA gene of Nocardia species deposited in the GenBank [37,38].

The dataset represented 77 different Nocardia species whose

identification was concordant with the List of Prokaryotic names

with Standing in Nomenclature [39]. In addition, 110 16S rRNA

gene sequences deposited in DDBJ/EMBL/GenBank but identi-

fied only to the Nocardia genus level at the time of submission were

used for machine learning experiments.

Clustering of sequences
The distance matrix was calculated for the dataset following the

alignment of sequences using the Muscle algorithm [40]. The

columns and the rows in this matrix were symmetric, and the

distance on the main first diagonal was zero as it matched the

same sequence to itself (Figure S1). The second diagonal

(connecting the first column with the second row, the second

column with the third row, and so forth) represented the distance

between a sequence and the most similar sequence.

Four clustering methods were contrasted in the study. First,

deterministic clustering was conducted using Cluto [44] with the

partitional default functions, as deterministic methods are more

relevant in the context of a dataset without missing values and

allow the optimisation of clustering functions. The mountain

view (Figure 4) produced by the Cluto [44] package was

generated by applying Multidimensional Scaling to each of the

cluster mid-points, preserving the distances between vertices as

they were mapped from a high dimensional space down to a

lower dimensional space. Second and third, commonly utilised

non-deterministic hierarchical and k-means clustering methods

[42] were implemented in MATLABH [43]. Last, a novel in-

house algorithm [45] was compared with the above methods.

The latter was based on the linear mapping of the distance

matrix diagonal values. The similarity between sequences was

represented as a ‘heat map’ with rectangular shapes. The

shapes’ colours reflected the distance between sequences. The

darkest blue shades were congregated along the diagonal as the

boundaries around which the natural selection of a cluster

should be identified (Figure S1). The process of identifying these

boundaries was based on the linear mapping of the second

diagonal values to a normalized index value. These index values

were then used to detect the break points that separated the

clusters.

Clustering trees were constructed using distance measures from

multiple sequence alignments [41]. Principal Components Anal-

ysis (PCA) was used for the dimensionality reduction of the

clustering structure [46]. Two-dimensional plots were constructed

for the highest scoring principal components.

Identification of Reference Sequences
The most representative sequence for each cluster or reference

sequence was defined as a ‘centroid’ of a cluster, from which the

distances to all other points (sequences) were minimized. In other

words, the reference sequences were ones that were the closest to

all other sequences within the same cluster. This was done by

identifying the sub-matrices that encapsulated each cluster

sequence’s pair-wise distances, calculating the total distances from

each sequence to all other sequences in the cluster, and identifying

the sequence with the minimum total distance as the reference

sequence.

Classification Methods
Naı̈ve Bayes classification and k-nearest neighbour (kNN)

algorithms were implemented in MATLABH (www.mathworks.

com). Methods from the Waikato Environment for Knowledge

Analysis (WEKA) version 3.6.2 [46] were used to explore

predictive models, including boosted decision trees (J48), support

vector machines (SVM) with linear, quadratic and cubic kernels,

naı̈ve Bayes (NB) classification and kNN. The NB) classifiers that

assume Gaussian distributions and utilise the ‘diaglinear’

discriminant function (similar to the ‘‘linear’’ discriminant

function, but with a diagonal covariance matrix estimate) were

applied. kNN utilised a default Euclidean distance measure

between the variables. The distance matrix was employed as a

training dataset, considering each column (distances from the

column corresponding sequence to all rows’ sequences in the

dataset) as one variable (parameter). Then, all 16S rRNA

sequences from fully identified isolates and the sequences from

isolates identified only to a genus level were aligned in one dataset

and another distance matrix was generated. This new distance

matrix was reorganized so that only the unknown sequences

remained in the rows, and only the known sequences remained in

the columns. The new 3646110 matrix captured the distances

between the unknown sequences and the known sequences, and

was used as the testing dataset.

Method validation and statistical analyses
The random sampling method was used in the K-means

algorithm in MATLABH. The accuracy of the clustering was

estimated by the mean value of the silhouette values for each

cluster as follows:

S ið Þ~ min b i, :ð Þ,2ð Þ - a ið Þð Þ:=max a ið Þ,min b i, :ð Þ,2ð Þð Þ,

where a(i) was the average distance from the ith point to the other

points in its cluster, and b(i,k) was the average distance from the ith

point to points in another cluster k. This value measured the

similarity of sequences in one cluster compared to sequences in

other clusters, and ranged from 21 to +1. The generalisation

performance of machine learning classifiers was evaluated by using

10-fold cross-validation in the testing [47].
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Supporting Information

Figure S1 Heat map of the Nocardia distance matrix
based on the Muscle alignment, showing rectangles
around potential clusters identified by the Linear
Mapping with different sensitivity parameters.
(TIF)

Figure S2 Silhouette values for 77 clusters defined by
k-means clustering.
(TIF)

Table S1 Total numbers of clusters generated by the
linear mapping algorithms using different parameters.
(DOC)

Table S2 Linear mapping clustering using different
colour map sizes and up to 4 colours per cluster for each
map size.
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Table S3 Nocardia clustering results for k-means,
hierarchical clustering algorithms, Cluto software, and
PCA scores, clustered on the Euclidean distance for the
first two principal components using the linear mapping
clustering algorithm.
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Table S4 Classification of Nocardia species using
different machine learning methods.
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