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Abstract

Background: Despite the high sustained virological response rates achieved with current directly-acting antiviral
agents (DAAs) against hepatitis C virus (HCV), around 5-10% of treated patients do not respond to current antiviral
therapies, and basal resistance to DAAs is increasingly detected among treatment-naive infected individuals.
Identification of amino acid substitutions (including those in minority variants) associated with treatment failure
requires analytical designs that take into account the high diversification of HCV in more than 86 subtypes
according to the ICTV website (June 2017).

Methods: The methodology has involved five sequential steps: (i) to design 280 oligonucleotide primers (some
including a maximum of three degenerate positions), and of which 120 were tested to amplify NS3, NS5A-, and
NS5B-coding regions in a subtype-specific manner, (ii) to define a reference sequence for each subtype, (iii) to
perform experimental controls to define a cut-off value for detection of minority amino acids, (iv) to establish
bioinformatics’ tools to quantify amino acid replacements, and (v) to validate the procedure with patient samples.

Results: A robust ultra-deep sequencing procedure to analyze HCV circulating in serum samples from patients
infected with virus that belongs to the ten most prevalent subtypes worldwide: 1a, 1b, 2a, 2b, 2¢, 2j, 33, 4d, 4e, 4f
has been developed. Oligonucleotide primers are subtype-specific. A cut-off value of 1% mutant frequency has
been established for individual mutations and haplotypes.

Conclusion: The methodological pipeline described here is adequate to characterize in-depth mutant spectra of
HCV populations, and it provides a tool to understand HCV diversification and treatment failures. The pipeline can
be periodically extended in the event of HCV diversification into new genotypes or subtypes, and provides a
framework applicable to other RNA viral pathogens, with potential to couple detection of drug-resistant mutations
with treatment planning.
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Background

Hepatitis C virus (HCV) circulates in nature as complex
distributions of mutants known as viral quasispecies [1,
2], and currently chronically infects around 71 million
people worldwide [3]. HCV is divided into seven major
genotypes, and 86 confirmed subtypes (according to
ICTV website https://talk.ictvonline.org/ictv_wikis/flavi-
viridae/w/sg_flavi/56/hcv-classification, June 2017), be-
ing genotype 1 the most prevalent worldwide, followed
by genotype 3 [4, 5]. Although direct-acting antiviral
agents (DAAs) against NS3-4A, NS5A, and NS5B have
significantly increased the sustained virological response
(SVR) rates, few treatment regimens are effective against
all major genotypes [6, 7]. A recent global epidemio-
logical survey of HCV subtypes evidenced the complex-
ity of accurate subtype determination, and variations in
regional subtype prevalence [8]. In addition to the viral
genotype and subtype, other factors, including the de-
gree of fibrosis, baseline viral load and mutational
spectrum of the resident virus influence the efficacy of
anti-DAA combinations. An additional issue, which is
inherent to quasispecies dynamics, is the selection of
DAA-resistant mutants, a significant problem in the
control of HCV infections [9—14]. DAA-resistance muta-
tions are detected in the HCV of an increasing number
of treatment-naive patients [15-17], and current evi-
dence suggests that they can be selected upon treatment
with DAAs (reviewed in [18, 19]).

Despite DAAs offering a high genetic barrier to resist-
ance, especially NS5B nucleos(t)ide inhibitors, there is an
increasing list of mutations which are related to resistance
to DAAs in clinical use, including sofosbuvir [9, 10, 14,
20-24]. Current recommendations of baseline HCV
resistance testing, according to AASLD/IDSA and EASL
guidelines 2016, are mainly aimed at treatment
optimization to determine dosage regimen, treatment dur-
ation and the need to include ribavirin. NS5A-resistance
analyses are recommended prior to the initial treatment
with elbasvir/grazoprevir in Gla HCV-infected patients
[25], and detection of Q80K polymorphism is advised
before sofosbuvir/simeprevir therapy in infections with
Gla HCV. In the re-treatment of patients who failed
previous anti-HCV therapies, baseline resistance is recom-
mended prior to combinations that include sofosbuvir/
velpatasvir for G3, sofosbuvir/daclatasvir for Gs 1la and
3, sofosbuvir/ledipasvir for Gla, and elbasvir/grazopre-
vir and sofosbuvir/simeprevir for Gla and G1b [6].
These recommendations can be summarized as the
need to determine HCV mutational spectra in patients
requiring salvage treatments [26].

Several tools to analyze drug resistance in preclinical
and clinical studies are available [27]. The potential of
deep-sequencing to routinely analyze minority variants
containing resistance-associated substitutions (RAS) has
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several drawbacks. First, HCV intrapopulation dynamics,
and rates of evolution reaching 1072 to 10~ substitu-
tions per site per year may decrease the efficacy of some
oligonucleotide primers [2]. Second, deep sequencing re-
quires prior control experiments to ensure experimental
conditions and bioinformatic processing that minimize
the scoring of sequencing errors inherent to the method-
ology, as well as recombination during PCR amplifica-
tion [28-30]. An analysis of HCV resistance should
ideally include standardized protocols that encompass
the RNA amplification steps and the bioinformatics
pipeline, to enable the determination of a reliable cut-off
value for mutation frequency. Here we describe the de-
sign of subtype-specific oligonucleotides, followed by the
amplification of HCV RNA from infected patients, and
ultra-deep sequencing analysis with controls for reliable
detection of amino acid subtitutions and RAS. The ra-
tionale to design subtype-specific primers is to avoid bias
in the PCR amplification, because the genomic regions
of interest whose proteins are targeted by the antiviral
agents display an important degree of variation among
subtypes. We further describe bioinformatic procedures
to filter variants that result from technical errors, and the
comparison with a reference sequence defined for each
subtype. Finally, tests are validated with HCV samples
from infected patients, and mutations that have been pre-
viously classified as RAS are reported. The proposed
methodological pipeline can be adapted to new HCV
genotypes or subtypes, and extended to other rapidly
evolving RNA viral pathogens.

Methods

HCV database and primer design

The subtype-specific oligonucleotides were designed
based on HCV sequence alignments from Los Alamos
HCV database (https://hcv.lanl.gov/content/sequence/
HCV/ToolsOutline.html). The sequences were retrieved
with the inclusion criteria of belonging to full genome
sequences (confirmed non-recombinant genomes), being
devoid of large insertions/deletions, and corresponding
to Gs 1a, 1b, 2a, 2b, 2c, 2j, 3a, 4a, 4d, and 4 f. Subtypes
la and 1b were chosen due to their worldwide prevalence
[5], and the other subtypes were included based on the
availability of samples in our patient’s cohort. The acces-
sion numbers of the collected sequences are provided as
suplementary material (Additional file 1: Table S1).

Production of a triple HCV mutant

The c¢DNA that expresses wild-type HCV [plasmid
Je1FLAG2(p7-nsGluc2A)] [31] was used as the genomic
backbone for the construction of the infectious clone
encoding NS5A with replacements N248H, E269K and
A346V by overlap extension PCRs. Three overlapping
PCR fragments (B1, B2, and B3) were assembled.
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Oligonucleotide primers used to synthesize PCR
fragment Bl were: Jc1-NS5A-F2 and Bch-0-3; for PCR
fragment B2 the primers were: Bch-0-4, and Bch-0-21;
for PCR fragment B3 the primers were: Bch-0-6, and
Jc1-NS5B-R1 (primer sequence and location are given in
Additional file 2: Table S2). The fusion PCR products
were then cloned into full-length HCV plasmid using
SanD1 and BsrGI (New England Biolabs), and sequenced
to confirm that no unwanted mutations had been intro-
duced. Since primer JcINS5AM13d7131 excluded muta-
tion A346V from the amplification product, mutations
N248H and E269K remained as marker for recombin-
ation. The RNA transcript was produced as previously
described [32], using T7 RiboMAX Express Large Scale
RNA Production system Catalog (Promega). Quantita-
tive real-time PCR (qRT-PCR) of HCV RNA was carried
out in triplicate using a light Cycler RNA Master SYBR
green I kit (Roche), as described previously [33]. The 5’
untranslated region (5-UTR) of the HCV genome was
amplified with oligonucleotides HCV-5UTR-F2, and
HCV-5UTR-R2 as primers (Additional file 2: Table S2).
Quantification was relative to a standard curve obtained
with known amounts of HCV RNA synthesized by in
vitro transcription of HCV ¢cDNA (plasmid GNN) [31].
The specificity of the reaction was monitored by deter-
mining the denaturation curve of the amplified DNAs.
Negative controls were run in parallel with each amplifi-
cation reaction to ascertain the absence of contamin-
ation with undesired templates.

Control of basal nucleotide sequencing error

To determine the basal error of the process that leads to
mutant spectrum characterization, 100,000 DNA mole-
cules of the infectious clone encoding NS5A with
replacements N248H, E269K and A346V were used to
perform external, internal and Multiplex IDentifier
(MID) PCRs (the latter when applied). The first external
PCR was carried out using Transcriptor One Step
RT-PCR kit (Roche Applied Science). To perform the
external PCR, 100,000 DNA molecules were mixed with
10 pl of 5x buffer [including Tris, MgCl,, sodium salts
of ANTPs (1.5 mM each) and additives for hot start
PCR], and 0.4 pM of Fw and Rv primers. The reaction
parameters were an initial denaturing step at 94 °C for
7 min, followed by 35 cycles of a denaturing step at 94 °
C for 10 s, an anneling step at 55 °C for 30 s, an exten-
sion step at 68 °C for 40 s, and then a final extension at
68 °C for 7 min. The external PCR was performed with
the oligonucleotides JcINS5Au6521 and JcINS5Ad7211
to generate an amplicon size of 691 bp (Additional file 2:
Table S2). Since DNA was the starting material, no RT
step was included. The products of the first round PCR
were then subjected to an internal PCR using FastStart
Taq DNA polymerase (Roche Applied Science). To
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perform the internal PCR, 5 ul DNA from the first
round PCR was mixed with 5 pl of 10x buffer, 0.8 mM
of dNTPs, and 0.4 uM of Fw and Rv PCR primers. The
reaction parameters were an initial denaturing step at
94 °C for 4 min, followed by 30 cycles of a denaturing
step at 94 °C for 30 s, an anneling step at 55 °C for 30 s,
an extension step at 72 °C for 40 s, and then a final
extension at 72 °C for 7 min. The internal PCR was
performed with the oligonucleotides JcINS5AM13u6693
and JcINS5AM13d7131 to generate an amplicon size of
439 bp (Additional file 2: Table S2).

PCR products were then subjected to a MID PCR
using FastStart Taqg DNA polymerase (Roche Applied
Science) only when the 454 GS-Junior platform was
used. The oligonucleotides were composed of a comple-
mentary universal M13 primer (either upstream or
downstream) and a Roche’s Validated MID, with oligo-
nucleotide A or B at the 5’ or 3" end of the upstream or
downstream primer, respectively. To perform the MID
PCR, 5 ul from the internal PCR solution were mixed
with 5 ul of 10x buffer, 0.8 mM of dNTPs, and 0.4 uM
of Fw and Rv PCR primers. The reaction parameters were
an initial denaturing step at 94 °C for 4 min, followed by
15 cycles of a denaturing step at 94 °C for 30 s, an annel-
ing step at 60 °C for 30 s, an extension step at 72 °C for
40 s, and a final extension at 72 °C for 7 min. The final
MID amplification yielded 549 bp fragments.

For the theoretical approach, sampling molecules of N
types independently corresponds to sampling a multi-
nomial distribution with N categories Multi(N; 1y, 105,. ..,
1. ., Tiy). Each category individually behaves as a bino-
mial with p =m;, conditional on the others. To find the
minimum coverage to reliably detect haplotype mutants
at 1% abundance, with a noise level at 0.5%, we based
the computations on two binomial distributions,
Binom(N,p), with p; at 1% and p, at 0.5% and found the
confidence interval at different levels of confidence
(95%, 99%, 99.5% and 99.9%) for different coverages (N)
in the range 500—10,000 reads.

Control of PCR recombination

To determine the frequency of PCR recombination in
the course of the amplification steps, 100,000 total DNA
molecules comprised of wt and mutant (infectious clone
encoding NS5A with replacements N248H, E269K and
A346V) clones were mixed at a 90:10 ratio. This mixture
was subjected to four amplification protocols. Protocol 1
consisted in three PCRs (external PCR, internal PCR,
and MID PCR), as previously described for determin-
ation of the basal error. Protocol 2 included also three
PCRs but the oligonucleotide concentration and the
elongation time were increased from 0.4 to 1 pM and
from 40 to 60 s, respectively, and the number of cycles
was decreased from 80 to 60 (30 cycles for external
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PCR, 20 cycles for internal PCR, and 10 cycles for MID
PCR). Protocols 3 and 4 consisted in two PCRs (external
PCR, and MID PCR); the internal PCR was eliminated.
For the external PCR the oligonucleotides that included
M13 were JcINS5AM13u6693 and Jc1INS5AM13d7131,
previously described (Additional file 2: Table S2). In
terms of oligonucleotide concentration, elongation time
and number of cycles of protocols 3 and 4 were similar
to protocols 1 and 2, respectively. The experiments with
the four protocols were performed in duplicate.

Deep-sequencing amplification (NGS)
Amplification products were analyzed by 2% agarose gel
electrophoresis using GeneRuler 1 kb Plus DNA Ladder
(Thermo Scientific) as the molar mass standard, and
purified using QIAquick gel extraction kit (Qiagen).
Negative controls (amplifications in the absence of
RNA) were included in parallel to ascertain absence of
contamination by template nucleic acids. DNA quan-
tifications were performed using the PicoGreen assay
(Invitrogen), or the Qubit dsDNA Assay kit (Thermo-
Fisher Scientific). Amplicon quality was analyzed using a
BioAnalyzer DNA 1000 LabChip (Agilent) prior to se-
quencing using 454 GS-Junior or Illumina MiSeq plat-
forms. A description of the viral samples sequenced by
both platforms is recopilated in Additional file 3: Table S3.
Sequencing using 454 GS-Junior has been previously
described [34]. For the sequencing using MiSeq Illumina,
amplification products of the NS3, NS5A and NS5B
DNAs were adjusted to the same concentration and
pooled. The amplicon pools were purified using Ampure
Beads Agentcourt AMPure XP (Beckman Coulter Inc.,
Danvers, MA, USA), or Kapa Pure Beads (Kapabiosys-
tems, Roche) to remove primers, nucleotides, salts and
enzymes. The purified product was quantified using Qubit
as previously described, before generating sSDNA pools of
100-250 ng. Purified pools were processed following the
DNA library preparation kit Kapa Hyper Prep kit (Roche),
during which each pool was indexed using SeqCap
Adapter Kit A/B (Nimblegen) (24 Index). Each DNA pool
was ajusted to 4 nM concentration and appropriate
volumes of each pool were added to the final library,
which was quantified by LightCycler 480 (Kapa Library
Quantification kit), and sequenced using MiSeq sequen-
cing platform with MiSeq Reagent kit v3 (2 x 300 bp mode
with the 600 cycle kit) (Illumina, San Diego, CA). Each
run may include as a maximum 24 pools, being the total
number of amplicons approximately 96.

Amplification of HCV RNA from patient samples

Viral RNAs from four HCV-infected patients at DAA
treatment failure, corresponding to Gla, G1b, G3a, and
G4d were selected. HCV genotype assignment had been
previously performed with the high resolution subtyping

Page 4 of 15

using UDPS [34]. Only samples previously subtyped by
ultra-deep pyrosequencing were used. HCV RNA was
extracted from 140 pl of plasma/serum of patient samples
by manual RNA extraction, using the Qiagen Total RNA
extraction kit (Qiagen, Hilden, Germany), as specified by
the manufacturer. The measures to prevent contamination
suggested by Kwok and Higuchi were strictly applied [35].

Amplifications of NS3-, NS5A-, and NS5B-coding
regions were performed using a RT-PCR, followed by an
internal PCR with specific primers covering the three
regions of interest (NS3, NS5A and NS5B) (Add-
itional files 4: Figure S1, Additional file 5: Figure S2 and
Additional file 6: Figure S3, and primer sequence and
location are given in Additional file 7: Table S4, Add-
itional file 8: Table S5 and Additional file 9: Table S6).
Each target region was amplified from 5 to 10 pl of the
purified RNA solution by an RT-PCR for each target
region using Transcriptor One Step RT-PCR kit (Roche
Applied Science). To perform the RT-PCR, 5-10 ul
RNA was mixed with 10 pl of 5x buffer, 0.4 uM of Fw
and Rv PCR primers (0.6 pM if degenerate primers were
used). The reaction parameters were 50 °C for 30 min
for the reverse transcription, an initial denaturing step at
94 °C for 7 min, followed by 35 cycles of a denaturing
step at 94 °C for 10 s, an anneling step at 50-55 °C for
30 s, an extension step at 68 °C for 40 s, and then a final
extension at 68 °C for 7 min.

The products of the first round PCR were then
subjected to an internal PCR using FastStart Taq DNA
polymerase (Roche Applied Science). To perform the
nested PCR, 5-10 pl of the solution from the first round
PCR was mixed with 5 pl of 10x buffer, 0.8 mM of dNTPs,
0.4 pM of Fw and Rv PCR primers (0.6 uM if degenerate
primers were used). The reaction parameters were an
initial denaturing step at 94 °C for 4 min, followed by
30 cycles of a denaturing step at 94 °C for 30 s, an annel-
ing step at 45-55 °C for 30 s, an extension step at 72 °C
for 40 s, and then a final extension at 72 °C for 7 min.

Comparative analysis using inter- and intra- sequencing
platforms

Although it is often assumed that the major source of
variability is a feature of the amplicon preparation steps,
erroneous variations might also originate from the DNA
sequencing procedure itself. To establish the reproduci-
bility of the entire process, amplicons were divided in
two aliquots and processed in parallel either on different
platforms (454 GS-Junior and Illumina MiSeq) (inter--
platform comparison), or on different runs in the same
platform (Illumina MiSeq) (intra-platform comparison).
Inter- and intra-platforms reproducibility was assessed
for four independent amplicons of two patient samples.
Percentages of variation were highly reproducible in
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parallel experiments, as evidenced by the scatter plots
(Pearson correlation >0.90) (Additional file 10: Figure S4).

Nucleotide sequence accession numbers

Ultra deep sequencing data from HCV-infected patient
samples have been deposited in GenBank under accession
numbers SAMNO08741670 to SAMNO08741677 (SRA
accession: SRP136087 and Bioproject ID: PRJNA439187).

Results

Validation of subtype-specific oligonucleotide primers

To design subtype-specific oligonucleotide primers span-
ning HCV NS3-, NS5A- and NS5B-coding regions, a
total of 1,182 sequences from Los Alamos HCV database
(553, 427, 33, 79, 7, 5, 49, 18, 5, and 6 sequences from
genotypes la, 1b, 2a, 2b, 2¢, 2j, 3a, 4a, 4d, and 4f,
respectively) entered the study. They were analyzed
phylogenetically to confirm that they belong to the
assigned subtypes. Nucleotide composition was analyzed
from position 3368 to 3530 and 3910 to 4010 to design
forward (Fw) and reverse (Rv) oligonucleotide primers,
respectively, to amplify the NS3-coding region (residue
numbering according to the reference strain AF009606).
Likewise, position 6150 to 6330; 6710 to 6740, and 6770
to 6970 were examined to design Fw and Rv oligonucle-
otides to amplify the NS5A-coding region, and positions
7550 to 7650; 7940 to 8080; 8130 to 8250; 8360 to 8400;
8494 to 8514; 8550 to 8660; 8750 to 8880; 9000 to 9199
and 9327 to 9420 were examined to design Fw and Rv
primers to amplify the NS5B-coding region. Fasta files
with the sequence alignment for each subtype were used
to determine the frequency of each nucleotide at each
position (Excel files including all comparisons are avail-
able upon request). Comparison of the sequences that
belong to the same subtype (intra-subtype comparison)
(Fig. la) assigned each nucleotide position to one of
three categories: 1) “conserved” (in red), when all
sequences contain the same nucleotide at that position;
2) “partially conserved” (in orange), when a position can
have more than one nucleotide type but only one of them
at a frequency above 20% of the total number of
sequences, and 3) “variable” (in green), when two nucleo-
tide types have a frequency above 20% of the total number
of sequences. To design oligonucleotide primers, “partially
conserved” positions were represented by the most
frequent nucleotide, and “variable” positions were degen-
erated. With these criteria, a total of 1,936,116 nucleotides
from sequences at 1,638 positions belonging to the ten
HCV subtypes under study were analyzed.

The inter-subtype comparison defined positions that
were discriminatory for a specific subtype (Fig. 1b). The
regions chosen preferentially for primer design were
those that include several subtype-specific positions
(Additional file 4: Figure S1, Additional file 5: Figure S2
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and Additional file 6: Figure S3). A total of 280 oligonucle-
otides (60 for NS3-, 60 for NS5A-, and 160 for
NS5B-coding region), with a length range between 18 and
30 nucleotides, a maximum of three degenerate positions
per oligonucleotide, and melting temperatures ranging
from 47.7 °C to 66.1 °C were designed (Additional files 7:
Table S4, Additional file 8: Table S5 and Additional file 9:
Table S6, and Additional files 4: Figure S1, Additional file
5: Figure S2 and Additional file 6: Figure S3). These oligo-
nucleotides were used to amplify the NS3, NS5A, and
NS5B-coding regions with several external and nested
PCRs (Fig. 2).

As a proof-of-concept that the oligonucleotide design
resulted in subtype-specific amplifications, viral RNAs
from infected patients belonging to each of the subtypes
(assigned by ultra-deep sequencing [34]) were used to
perform amplifications within the NS3-, NS5A-, and
NS5B-coding regions [external RT-PCRs 1, 2 y 4, and
nested PCRs 1.2, 2.2 and 4.1 (Fig. 2)]. Each RNA was
confronted with all oligonucleotide pairs. Amplifications
were positive only when the HCV subtype of the viral
RNA corresponded with the subtype for which the oligo-
nucleotides were devised (Fig. 3). This result validates
the procedure used to design oligonucleotides to amplify
HCYV genomes in a subtype-specific manner.

Limit of detection of individual amino acid substitutions:
Experimental and theoretical approaches

Previous studies from our group have defined a se-
quence depth of at least 10,000 reads per DNA strand to
achieve a 0.5% cut-off value for mutant frequency at the
nucleotide level using the 454 pyrosequencing system
(Roche) [36]. Here we have performed again the main
controls of the whole process for three main reasons: 1)
the enzymes chosen for the amplification steps were
different from those previously used (see Materials and
Methods); 2) the bioinformatics procedures were modi-
fied for amino acid rather than nucleotide analyses; and
3) we have compared a previous platform 454 GS-Junior
(Roche) with MiSeq (Illumina) that we subsequently
implemented. The first control was the determination of
the basal error of the entire process which includes the
amplification steps and sequencing. To this aim, a
full-length HCV DNA encoding NS5A with amino acid
substitutions N248H, E269K, and A346V (associated with
IFN-« resistance [32]) was used as template. Only the
genomic region corresponding to N248H and E269K was
amplified in this control. Triplicate amplifications of the
NS5A-coding region and sequencing were performed with
platforms 454 GS-Junior and MiSeq (Additional file 11:
Figure S5). Mutations other than those leading to N248 K
and E269K were considered artifacts introduced during
amplicon synthesis and/or sequencing. Erroneous individ-
ual amino acid substitutions were found at a maximum
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Fig. 1 Design of subtype-specific oligonucleotides. A total of 1,936,116 nucleotides at 1,638 positions along the HCV genome belonging to the
ten HCV subtypes under study were analyzed. a Example of an intra-subtype comparison from position 3392 to position 3406 within the NS2-
coding region (sequence in gray at the top) for HCV subtype 1b. The nucleotide numbering is based on the sequence of HCV strain H77
(GenBank accession AF009606). Numbers in boxes represent the number of sequences that for each position have the nucleotides written on the
left grey column. Positions have been defined as conserved (in red) when they contain a single nucleotide type, partially conserved (in orange)
when they contain at least two nucleotides (but only one of them with a frequency above 20% of the total number of sequences), and variable
(in green) when two nucleotide types have a frequency above 20% of the total number of sequences. Only in variable positions a mixture of two
nucleotides is considered to define the column (see the bottom raw termed “Final sequence”). b Example of an inter-subtype comparison from
position 3392 to position 3406 within the NS2-coding region (sequence in gray at the top). Final sequences —defined as described in (A) for the
HCV subtypes 1a, 1b, 23, 2b, 2¢, 2j, 33, 4a, 4d, and 4f— were compared to define positions that are discriminatory for a specific subtype and/or
genotype (color codes given in the bottom box). Red circles highlight the nucleotides specific for a defined subtype and/or genotype. Excel file
including all comparisons will be made available upon request

frequency of 0.50+0.05%, and 0.63+0.1% for 454
GS-Junior and MiSeq platforms, respectively. Similar error
frequency (0.89 + 0.24) was obtained using RNA as start-
ing material. These results established a conservative limit
of detection for individual amino acid substitutions at 1%
frequency.

An important question in the mutant spectrum ana-
lyses by ultra-deep sequencing refers to the coverage
(e.g. minimum number of reads) needed to ensure that a
mutant at 1% or above is reliably detected. To address
this question, we performed two theoretical studies. In
the first one, we envisaged a huge repository of mutants
at different frequencies (mimicking a viral quasispecies),
and asked which was the range of frequencies at which a
mutant (theoretically present at 1%) would be detected
when the coverage varied between 500 and 10,000 reads

(Additional file 12: Figure S6A). With a coverage of 500
reads, mutants present at 1% were sampled at quite
variable frequencies (a range between no detection and up
to 2.5%, depending on the confidence interval). An in-
crease from 500 to 10,000 reads narrowed the varibility of
mutant detection to around 1%. In a second experiment,
we devised a huge repository of mutants at different fre-
quencies including those expected to be artifacts, present
at <0.5%. We asked which was the range of frequencies at
which mutants at 1% and mutant artifacts at 0.5% were
found with four sample sizes (1,000, 3,000, 6,000, and
10,000 reads), and at four confidence intervals (95%, 99%,
99.5% and 99.9%) (Additional file 12: Figure S6B). Cover-
ages of 1,000 and 3,000 reads resulted in overlaps of the
frequency range at which real mutants at 1% and artifact
mutants at 0.5% were detected at all confidence intervals
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Fig. 2 Scheme of the RT-PCRs and PCRs designed to amplify HCV NS3-, NS5A, and NS5B-coding regions. Top: Scheme of the HCV genome with
indication of nucleotide numbering (above the genome), and amino acid numbering for individual proteins (below the genome); numbering is
defined according to [49]. Regions chosen to design the oligonucleotides described in the present study were those that include several
subtype-specific positions, and that amplify regions that have been associated with DAA resistance. RT-PCRs labeled 1, 2 correspond to NS3-,
NS5A- coding region, respectively, and 3, 4 and 5 to NS5B-coding region (numbers in black rectangles above the identified RT-PCR). Internal PCRs
with different sizes can interrogate different positions in the HCV genome, and can be chosen according to the amplicon size restrictions
imposed by the sequencing platform (several possibilities are depicted with identification numbers in white rectangles). Numbering at the
beginning and at the end of each PCR (columns with colored numbers; color codes in the bottom box) correspond to the first and last amino
acid of the amplicon, excluding oligonucleotides. When the number of the first amino acid is higher than the number corresponding to the
reverse oligonucleotide means that the forward oligonucleotide is located in the gene upstream from the region to be amplified. Relative sizes of
standard and internal PCRs for NS3, NS5A and NS5B are depicted comparatively in the white large boxes

tested. However, when the number of reads was 10,000 no
overlap between real and artifactual mutants was detected
at confidence intervals from 95 to 99.5%. Thus, we define
10,000 as the minimum number of reads to detect mu-
tants present at >1% in a reliable manner when the noise
level is at 0.5%.

Limit of detection of combined amino acid substitutions
Subsequent experiments were designed to control the
sensitivity of mutant detection, and the degree of

recombination during PCR amplifications. In order to
mimic the presence of a minority mutant observed in
natural samples, we mixed the reference (wt) viral HCV
DNA and HCV DNA including mutations A7010C and
G7073A (corresponding to amino acid substitutions
N248H and E269K) at a 90:10 ratio. This mixture was
subjected to four amplification protocols that compared
different number of PCRs, and amplification conditions
(Additional file 13: Figure S7). Each assay was performed
in duplicate. Protocol 1 consisted in three PCRs
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NS5A

NS5B
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1a 1b 2a 2b 2c 2j 3a 4a 4d 4f 1a 1b 2a 2b 2c 2" 3a 4a 4d 4f 1a 1b 2a 2b 2c 2j 3a 4a 4d 4f

Fig. 3 Specific amplification with subtype-specific oligonucleotides in patient samples infected with HCV. Ten viral RNAs that correspond to
subtypes 1a, 1b, 23, 2b, 2¢, 2j, 33, 4a, 4d, 4f (left colum) isolated from HCV-infected patients were subtyped using next-generation sequencing
[34], and used to amplify NS3-, NS5A-, and NS5B-coding regions with subtype-specific oligonucleotides. Viral RNA of each subtype was
confronted with oligonucleotide pairs of the subtypes under study (listed at the top, below the genomic region). A total of 120 oligonucleotide
primers out of 280 were tested. Amplifications correspond to RT-PCR 1 and PCR 1.2 in the NS3-coding region, RT-PCR 2 and PCR 2.2 in the NS5A-
coding region, and RT-PCR 4 and PCR 4.1 in the NS5B-coding region, as depicted in Fig. 2. C-, negative control, amplification without RNA.

Conditions of amplifications are detailed in Materials and Methods

(external PCR, internal PCR, and MID PCR) in which
the concentration of the oligonucleotides was 0.4 uM, the
elongation time 40 s, and the number of cycles 80. Proto-
col 2 included also three PCRs but the oligonucleotide
concentration and the elongation time were increased to
1 uM and 60 s, respectively, and the number of cycles was
decreased to 60. Protocols 3 and 4 consisted in two PCRs
(external PCR, and MID), with PCR amplification condi-
tions of protocol 1 and 2, respectively. Four types of mole-
cules were expected in the sequence analysis: wt without
mutations, a mutant clone encoding substitutions N248H
and E269K, and two recombinant molecules N248H/wt,
and wt/E269K. The four amplification products were
sequenced using the platform 454-GS Junior, and the
products of protocols 3 and 4 also with MiSeq. Protocols
1 and 2 resulted in the detection of recombinant genomes
at a frequency of 3.55% for N248H/wt, and 2.44% for wt/
E269K in protocol 1, and 3.71% for N248H/wt, and 2.04%
for wt/E269K in protocol 2 (all values are the average of
the two replicates). Protocols 3 and 4 (that included two

PCRs) resulted in the detection of N248H/wt recombinant
genomes at frequencies of 0.68% and 0.69% for protocols
3 and 4, respectively. Samples amplified using protocols 3
and 4 (including two PCRs) were also sequenced with
MiSeq (Illumina). Recombinant genomes were detected at
a frequency of 0.58% for N248H/wt, and 0.56% for wt/
E269K in protocol 3, and 0.80% for N248H/wt, and 0.70%
for wt/E269K in protocol 4. Taken together, amplification
protocols based on two PCRs not only improved the
frequency at which the double mutant was detected but
also minimized the frequency of recombinant molecules
to levels below 1%. These results established a frequency
of 1% as conservative limit of haplotype detection.

Ultra-deep sequencing data management

Due to the high variability of HCV in vivo the establish-
ment of sequences that can be defined as reference se-
quences for each genotype and subtype is not trivial. Here,
we have used the HCV sequence alignments retrieved
from Los Alamos databank to define ten consensus
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sequences (one per each subtype) spanning amino acids
14 to 180 in NS3, 8 to 173 in NS5A, and 124 to 575 in
NS5B which are the longest regions covered by our PCRs
(Additional file 14: Figure S8). Each consensus sequence
was determined by the most frequent amino acid at each
position. Since previously characterized RAS are com-
prised within amino acid 36 to 175 in NS3, 24 to 93 in
NS5A, and 159 to 561 in NS5B [9, 10, 14/, their detection
is included in our analysis.

We have developed a bioinformatic haplotype-centric
procedure to exclude full reads that do not meet mini-
mum quality requirements (Fig. 4). Raw data were
obtained from GS-Junior 454 (454 fasta), and from MiSeq
(fastq). The first step includes demultiplexing by MID (in
the case of 454 GS-Junior), and the overlap of paired-end
reads using FLASH (in the case of MiSeq). The FLASH
parameters were established as a minimum overlap
between R1 and R2 of 20 bp with a maximum of 10%
differences. Reads not fulfilling this requirement were
discarded. The yield of this process ranged from 60 to
80% in all experiments. The quality profile of the over-
lapped reads was substantially better than the original
reads, with a 5% lower quantile consistently above Q30,
and just slightly below Q30 for the ~ 50 bp in the center.
A filter step on the FLASH reads was added to improve
both sensitivity and specificity, the threshold was stab-
lished by experiments with spikes and controls, finally
excluding all reads with more than 5% bp with Phred
score below Q30. The yield of this filter is very sensitive to
the general quality of the sequencing run, and has been
found to be in the range of 70-90%. The third step was a
demultiplexing by specific oligonucleotides to obtain a
fasta file by region. Reads were then collapsed into haplo-
types with corresponding frequencies. Haplotypes were
aligned with the reference sequence, and haplotypes con-
taining more than two indeterminations, three gaps or 99
differences were also discarded. Accepted indetermina-
tions and gaps were repaired as per the contents of the
dominant haplotype. The yield of this process was above
90% in all cases. Then, reads were translated to amino
acids, and the intersection between forward and reverse
haplotypes with abundances =0.2% was performed. The
yield of this process has been found to be in the range of
45-60%. Based on the controls reported in Additional file 11:
Figure S5 and Additional file 13: Figure S7, all amino acid
variants by site or haplotype at 1% or above are reported.
The global yield is 15-30% of raw reads.

Testing the pipeline: Ultra-deep sequencing of viral RNA
from HCV-infected patients

To validate the subtype-specific deep-sequencing proced-
ure described in previous sections for its application in
vivo, the NS3-, NS5A-, and NS5B-coding regions of four
patient samples (four amplicons per patient) belonging to
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Fig. 4 Bioinformatic pipeline to obtain the report of amino acid
substitutions. Massive sequencing was performed using 454/GS-
Junior (Roche), and MiSeq (lllumina) platforms. Each fasta file was
subjected to the eight sequential steps depicted in the irregular
pentagons with gray background; steps are explained in the text.
The outcome is a report of amino acid substitutions with
abundances 21% compared with the reference sequence. The
report is described in two ways: individual amino acid substitutions
present at a given frequency (filled panel at the bottom left), and
combined amino acid susbtitutions into haplotypes (each at a given
frequency) (filled panel at the bottom right)

subtypes 1a, 1b, 3a, and 4d that failed DAA-antiviral treat-
ments were sequenced using the MiSeq platform (Fig. 5).
An average 33,229, 37,204, 45,304, and 39,595 reads were
generated for NS3 1.1, NS5A 2.1, NS5B 3.1, and NS5B 3.2
amplicons, respectively. Frequencies of individual substitu-
tions ranged between 1 and 100%, and treatment failures
were explained by the presence of RAS in the genomic re-
gion encoding the protein targeted by the DAAs. Thus,
Gla, 3a, and 4d HCV-infected patients selected RAS only
in NS5A-coding regions, whereas in the G1b HCV-infected
patient RAS both in NS5A- and NS5B-coding regions were
selected. To illustrate how amino acid substitutions can be
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Fig. 5 Ultra-deep sequencing of four HCV samples derived from patients who failed directly-acting antiviral agents (DAAs) therapies. Viral RNAs
from four HCV-infected patients, corresponding to Gla, G1b, G3a, and G4d (top headings) were used to amplify NS3- [PCR 1.1 (533 bp) in Fig. 2],
NS5A- [PCR 2.1 (477 bp) in Fig. 2], and NS5B-coding regions [PCRs 3.1 (478 bp) and 3.2 (483 bp) in Fig. 2] using MiSeq platform. For each
amplicon the number of cleaned reads (given in parenthesis), the list of amino acid substitutions, and their frequencies (percentage given
following each amino acid substitution) are indicated. Failure occurred after the following treatments: ledipasvir/sofosbuvir/ribavirin (12 weeks),
ledipasvir/sofosbuvir (12 weeks), daclatasvir/sofosbuvir/ribavirin (12 weeks), ledipasvir/sofosbuvir/ribavirin (12 weeks) for G1a, 1b, 3a, and 4d HCV-
infected patients, respectively. Viral load was 6.9 x 10% IU/ml, 1.4 x 10° IU/ml, 7.6 x 10° 1U/ml, and 6.3 x 10* IU/ml for G1a, 1b, 3a, and 4d HCV-
infected patients, respectively. Substitutions written in red means that they are known to confer resistance to DAAs included in the treatment
combinations. Distribution of haplotypes in the NS5A-coding region for the G1b patient is depicted in the box at the bottom to explain the
difference between the frequency of an individual amino acid substitution (independently of the haplotypes that contain it) or the frequency of
an haplotype that includes the same substitution in its constellation of substitutions

quantified individually or combined in the same read,
ultra-deep sequencing results of NS5A of the Glb
HCV-infected patient were also analyzed by haplotypes.
Substitution L28 M was found only in one haplotype which
means that its frequency (1.02%) is similar either consid-
ered as an individual substitution or combined with other
substitutions in the same haplotype. In contrast, L31 M has
a frequency above 1% as individual RAS (the sum of

haplotypes 7 and 14 in Fig. 5), but the frequency of the in-
dividual haplotypes is below 1% (0.72% for haplotype 7, and
0.42% for haplotype 14). Thus, resistance to ledipasvir that
a priori could be assigned to replacements L31 M and
Y93H (both present in haplotype 14 in Fig. 5), in our
computation will be attributed to L31 M (that reaches a
frequency above 1% when quantitated individually), but not
to the combination of L31 M and Y93H because their
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frequency as a combination is below the cut-off value. In
the same position, L31 V was found combined with Y93H
in haplotype 2 whose frequency (2.91%) was above the limit
of detection (Fig. 5). L31 V and Y93H confer 15-, and
12-fold increased resistance to daclatasvir compared to
wild-type replicon, respectively, when they are alone, but
the mean-fold change in resistance increases to 5425 when
combined in the same amplicon [14].

To further study the dynamics of amino acid substitu-
tions in a prolonged infection with HCV, serum samples
derived from a Gla HCV-infected patient that had
undergone three sequential rounds of DAA-based treat-
ments were analyzed (Additional file 15: Figure S9). Viral
load was measured during 116 weeks. Viral RNA at four
time points (pre- and post-treatment with ledipasvir/
sofosbuvir and daclatasvir/sofosbuvir) was used to
amplify NS3-, NS5A, and NS5B-coding regions using
Gla-specific oligonucleotides. The results indicated that
viral failure upon the first treatment with ledipasvir/
sofosbuvir was accompanied with selection of substitu-
tion Y93C in NS5A, known to confer resistance to
NS5A inhibitors [9, 10, 14]. This susbtitution was main-
tained at 100% frequency before starting the second
treatment which included daclatasvir to which Y93C also
confers resistance. Interestingly, two additional RAS
M28 T and L31 M were also co-selected with Y93C
(Additional file 15: Figure S9), that may also contribute
to resistance to NS5A inhibitors. Thus, the analysis of
HCYV samples from infected patients validates the experi-
mental bioinformatic pipeline for HCV characterization.
Analysis of RAS using our subtype-specific analytical
procedure before DAA treatment onset would help to
define a salvage treatment that avoids a new failure.

Discussion

An estimate of the nucleotide sequence heterogeneity of
HCV when it circulates in infected patients can now be
approached using ultra-deep sequencing technologies
even knowing that only a part of the real mutant reper-
toire at any given time will be analyzed. We have devel-
oped a procedure for a robust HCV viral quasispecies
analysis by ultra-deep sequencing taking into account that
the degree of oligonucleotide match for hybridization to
viral RNA is limited by the high diversification of HCV
into genotypes and subtypes in clinical samples. We
propose an oligonucleotide design based on the compari-
son of ensembles of sequences representative of each
subtype. Using this approach, we defined positions that
were discriminatory for a specific subtype to generate a
total of 280 oligonucleotides for three coding regions that
have been associated with drug resistance (NS3, NS5A,
and NS5B) in ten prevalent subtypes worldwide. This
design can be extended to additional subtypes, should they
arise in the course of HCV expansions [37, 38]. Our
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sequencing strategy requires knowing the subtype (or
mixture of subtypes) present in the infected patient in
order to choose the appropriate oligonucleotide pairs.
Since current antiviral therapies are still largely genotype-
dependent, an accurate determination of the genotype and
subtype is mandatory in clinical settings for treatment
planning. Depending on the genotypic assay used, a
non-negligible percentage of patients are misclassified
regarding genotype and subtype [39—41]. High resolution
NGS technologies ensure an accurate determination of
HCYV subtypes [34, 42]. Thus, we suggest a two-step NGS
procedure based on an initial HCV subtyping coupled
with a second NS3-, NS5A-, and NS5B-coding region
RAS determination using subtype-specific oligonucleo-
tides. This approach fits EASL guidelines that recommend
retreatment of HCV-infected patients —who failed one or
more antiviral therapies— with a new DAA combination
based on RAS determination. In our view, RAS analysis
should include NS3, NS5A and NS5B, the target of most
current DAAs. Analyses of RAS at basal samples in
DAA-naive patients is not standardized yet due to the
success rates of DAA therapies. However, it would be
advisable to implement them, especially when a higher
than average NS5B RAS prevalence is present in some
treatment-naive cohorts [16].

Other approaches for general HCV sequencing have
been proposed. Hedskog et al., described a genotype-
and subtype-independent HCV amplification strategy
coupled with NGS but based on the use of random
oligonucleotides [43]. This subtype-independent method
would be especially advantageous to amplify and
sequence unknown HCV genotypes and subtypes. Bull et
al. described a near full-length amplification adequate
for the all major six genotypes [44]. A comparison of
several NGS technologies revealed their utility for diag-
nostic and clinical assessment [45]. The development of
a subtype-specific ultra-deep sequencing analysis can be
seen as a limitation due to the inherent complexity of
the oligonucleotide primer design. Also, the small num-
ber of samples analyzed here should be increased with
additional cohorts. However, the development of stan-
dardized RAS sequencing methods should be a priority
[46]. In our procedure we have designed amplifications
able to discriminate between subtypes that may disclose
hidden subpopulations that would be difficult to amplify
using suboptimal oligonucleotides. When new amplicons
or sequencing platforms are used, sources of potential
sequencing error should be controlled in order to distin-
guish genuine sequence variation from technical mis-
takes. Analyses of clonal sequences in our procedure
established that individual mutations detected at <1%
should be excluded. The need of amplifying viral RNA
molecules by RT-PCR raises also the problem of poten-
tial artificial recombinants produced during PCRs [29].
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Several factors have been described that enable a substan-
tial decrease of PCR-associated recombination, including
increases in oligonucleotide primer concentrations and
elongation times, and a reduction in the number of PCR
cycles and of initial template concentrations [28, 47].
Under our experimental conditions, only the reduction in
the number of PCRs (two instead of three) decreased the
frequency of artifactual chimeras to < 1%.

Our approach can be easily adapted to other HCV gen-
omic regions in case new DAAs with other viral target are
developed, or to additional HCV genotypes and subtypes
that are likely to arise in view of the progressive diversifi-
cation of the virus, as judged from its evolution over the
last decade (compare [4] with [48]). Our approach should
also broaden its application given the increasing evidence
of the presence of RAS in treatment-naive patients [15—
17]. Finally, an analogous pipeline of sequence-based
oligonucleotide design and deep-sequencing scrutiny of
prominent mutations can be applied to emergent viral
diseases associated with highly variable RNA viruses.

Conclusions

We have established a robust pipeline for the amplifica-
tion and next-generation sequencing of samples derived
from HCV-infected patients. This procedure is based on
the design of subtype-specific oligonucleotide primers
that amplify HCV genomic regions in a subtype-specific
manner, as validated with patient’s viral samples. Cut-off
values for reliable quantification of mutations associated
with drug resistance have been established that may
guide treatment planning. The method can also be
adapted to sequence new HCV subtypes, as they arise in
the course of HCV diversification.
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to sequence the NS5A-coding region. Residue numbering is according to
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Discriminatory positions for genotype are highlighted in pink. (PDF 1014 kb)
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Additional file 6: Figure S3. Subtype-specific oligonucleotides designed
to sequence the NS5B-coding region. Residue numbering is according to
the reference strain AF009606. Positions in red are conserved among the
different subtypes, and positions with different colors are discriminatory of a
specific subtype (color codes given in the left column at each
panel). Discriminatory positions for genotype are highlighted in
pink. (PDF 2762 kb)
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Additional file 8: Table S5. Subtype-specific oligonucleotides designed
to sequence the NS5A-coding region. (PDF 158 kb)

Additional file 9: Table S6. Subtype-specific oligonucleotides designed
to sequence the NS5B-coding region. (PDF 250 kb)

Additional file 10: Figure S4. Comparative analysis using inter- and
intra- sequencing platforms. Viral RNAs of two G1b HCV-infected patients
(termed 8101 and JRR) at treatment (simeprevir/sofosbuvir/ribavirin)
failure were used to amplify NS3- (PCR 1.1 in Fig. 2), NS5A- (PCR 2.1 in
Fig. 2), and NS5B-coding regions (PCRs 3.1 and 3.2 in Fig. 2), following
the procedure described in Materials ans Methods. Amplicons derived
from 8101 viral RNA amplifications were sequenced in parallel using MiSeq
and 454 GSJunior platforms (inter-sequencing platforms comparison).
Amplicons derived from JRR viral RNA amplifications were sequenced
twice in two different runs using MiSeq platform (MiSeq A and B)
(intra-sequencing platform comparison). Percentage of common and
unique haplotypes and reads between both runs at each comparison
are represented. Scatter plots comparing the percentage of variants
obtained according to the two runs of each amplicon are shown on
the right. (PDF 415 kb)

Additional file 11: Figure S5. Control of basal error. A full-length HCV
DNA encoding NS5A with amino acid substitutions N248 K, E269K and
A346V was used as a template to determine the basal error of the
amplification and sequencing process using 454 GS-Junior and lllumina
MiSeq platforms. Due to restriction size of amplicon length, only N248 K
and E269K were detected. Experiments were performed in triplicate.
Haplotypes obtained after amplification and sequencing are numbered on
the left of each replicate, and percentages of reads that include the
indicated substitutions are shown on the right. Artifacts means mutations
other than those encoding N248 K and E269K. Basal error average is the
mean + standard deviation of the haplotypes number 2, which are those
including artifacts found at the highest frequency. (PDF 291 kb)

Additional file 12: Figure S6. Theoretical study to define the reliable
coverage needed to detect a mutant present at 1% in a viral population.
(A) Confidence intervals (Cl) of the observed proportions (given in the
abscissa) of a variant amino acid present at 1% frequency in a viral
population, with coverages varying from 500 to 10,000 reads (given in
the ordinate) according to the binomial law. Left: 95% CI; Right: 99% Cl.
(B) Effect of the coverage at four different Cls (indicated in ordinate)
considering that true variants (in blue) are present at 1%, and artifact
variants (in pink) at 0.5%. The abscissa gives the percentage at which the
two classes of variants are observed. Note that at high read coverages
the overlap between true and artifact variants is minimal. (PDF 1158 kb)
Additional file 13: Figure S7. Control of PCR-based recombination.
A full-length reference (wt) viral HCV DNA was mixed with HCV
DNA with mutations A7010C and G7073A (corresponding to amino
acid substitutions N248 K and E269K in NS5A) at a 90:10 ratio
(depicted on the left of the top box). The total number of DNA
molecules was 100,000. The mixture was used as a template to
determine the degree of recombination after the amplification and
sequencing process, following four different protocols (termed 1 to 4), and
two next-generation sequencing platforms (454 GS-Junior and lllumina
MiSeq). Protocol conditions are described in Materials and Methods. Top
box depicts the four types of expected molecules; wt clone, mutant

N248 K/E269K, and recombinant molecules N248 K/wt and wt/E269K. Each
experiment was performed in duplicate (replicates 1 and 2), and the average
frequency (%) of both replicates is shown on the right of each molecule;
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n.d. means not detected. The percentage of reads that include the indicated
substitutions is represented for each haplotype and protocol in the three
panels at the bottom. (PDF 399 kb)

Additional file 14: Figure S8. Definition of the reference sequence for
the ten subtypes under study. Nucleotide numbering at the beginning
and at the end of NS3, NS5A and NS5B indicates the length of each
coding region. Amino acid number of each coding region is indicated
between the arrows. Positions at which resistance-associated substitutions
(RAS) have been described are shown above the coding regions, and are
included in our analyses. Alignments include a reference sequence for each
subtype (1a, 1b, 2a, 2b, 2¢, 2j, 3a, 43, 4d, 4f); amino acid numbering above
the boxes is indicated. Each reference sequence is defined as the most
frequent amino acid at each position of the sequence ensemble for each
subtype described in Table S1. Nucleotide and amino acid numbering are
based on the HCV strain H77 (GenBank accession AF009606). (PDF 849 kb)

Additional file 15: Figure S9. Ultra-deep sequencing of viral samples
from an Gla HCV-infected patient subjected to sequential DAA treatments.
First panel: Representation of the viral load [international units (IU)/ml] as a
function of time (in weeks). A yellow background indicates period in which
antiviral treatment was applied (LDV: ledipasvir; SOF: sofosbuvir; RBV:
ribavirin; DCV: daclatasvir; SMV: simeprevir). Viral relapse ocurred after
the first two treatments, and SVR (sustained virological response) was
achieved after the third treatment. Viral RNAs from four sequential
samples (termed 1 to 4, indicated with arrows) were used to amplify
NS3- (PCR 1.1 in Fig. 2), NS5A- (PCR 2.1 in Fig. 2), and NS5B-coding
regions (PCRs 3.1 and 3.2 in Fig. 2) using MiSeq platforms. Subsequent
panels: For each coding region (NS3, NS5A, NS5B) variations in mutation
frequencies (as percentage of individual mutations) are represented as
mutational waves (mutations that increase or decrease in frequency, relative
to the previous or subsequent sample analyzed), and in a heat map
of frequencies (color boxed below the graphics). Substitutions written
in red confer resistance to the DAAs included in the treatment combinations,
or are described in the literature (European Association for the Study of the
Liver. Electronic address, 2017; Sarrazin, [9]; Lontok et al, [14]). Asteriscs in the
heat map of NS5A-coding region in samples at viral relapse 2 and 4 highlight
RAS that confer resistance to ledipasvir and daclatasvir, respectively.
Haplotypes and their percentages (proportion of reads that include the
indicated substitutions) are depicted on the right of each panel. (PDF 1030 kb)
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