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Abstract: This paper deals with the estimation of the trajectory of a target in constant velocity motion
at an unknown constant depth, from measurements of conical angles supplied by a linear array.
Sound emitted by the target does not necessarily navigate along a direct path toward the antenna,
but can bounce off the sea bottom and/or off the surface. Observability is thoroughly analyzed to
identify the ghost targets before proposing an efficient way to estimate the trajectory of the target of
interest and of the ghost targets when they exist.

Keywords: target motion analysis; observability; fisher information matrix; Cramér–Rao lower
bound; conical angles; nonlinear estimation

1. Introduction

Bearings-only target motion analysis (BOTMA) is a problem that has been widely
studied and various solutions have been proposed in the literature: batch [1–5] or recursive
filter (such as extended Kalman filter [6–8], unscented Kalman filter [9], particle filter [10],
modified instrumental variable [11–13]), or a mix of recursive and batch methods [14].
Citing all the papers dealing with this topic is now a hard task. Among the abundant
literature, most papers share the same assumption: the target is moving in a straight line
with a constant speed, while the passive observer is maneuvering adequately in order to
ensure the observability of the target [15–17]. The bearings are the measurements.

In this paper, we are concerned with the same problem, except that the available
measurements are the cosine of the relative bearings, also called conical angles because the
target belongs to the cone of ambiguity whose revolution axis is the line along which the
towed array is moving (see [18] p. 39). Implicitly, we consider a target moving in 3D at a
constant and unknown depth in near field; in this case, the two more energetic rays are the
direct and the reflected paths (bottom or surface). In most cases, the sound bounces off the
sea bottom. Therefore, we extend our analysis to surface- and sea bottom-bounced rays.

Indeed, the array detects the cosine of the relative angle of the direction of arrival by
means of a suitable spatial filtering method such as beamforming, or more sophisticated
techniques (see [19]). In the near field, sound can propagate to the sensor array along the
direct path and/or the bottom-reflected path, and/or the surface-reflected path. Most of
the time, at most, two rays coming from the same target are detected [18,20].

Unlike Gong [21] and Blanc-Benon [22], who addressed the three-dimensional target
motion analysis (TMA) from a sequence of time differences of arrival (TDOA) of a signal
traveling by two different paths coupled with a sequence of azimuths, we assume in this
paper that the available measurements are the cosines of the conical angles only. In [23],
a similar problem was addressed, but observability was not studied. We will consider two
situations: the first case is devoted to TMA when sound propagates along a non-direct path
at each sampling time. This will be the topic of Section 3: we will conduct observability
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analysis and identify all the ghost targets, given a set of noise-free measurements. We will
prove that an assumption of the target’s depth makes the target’s trajectory observable,
but not estimable (in the sense that the asymptotic performance given by the Cramér–Rao
lower bound—CRLB—of the estimator of the depth is out of the physical constraints, that
is, the source is navigating between the surface and the sea bottom).

In the fourth section, we will consider scenarios in which the antenna changes its own
route. We will prove that the trajectory of the target is almost certainly observable.

In the fifth section, we will assume that sound will propagate along the direct path and
the bottom-reflected path. The two rays will be assumed as being detected. Observability
analysis will reveal that only three ghost targets at most exist without maneuvering the
antenna. We will check that, in this case, the depth is not “estimable”. We will give a
palliative, allowing us to propose an estimator which is operationally acceptable, the price
being a small bias. Convincing simulations will be given at the end of this section, proving
that, even when the duration of the scenario is short, the estimated trajectory is very close
to the true one. A conclusion ends the paper.

2. Notation and Problem Formulation

We consider two underwater vehicles moving at their own constant depth. The
first mobile is a surface vessel or a submarine towing a horizontal sensor array, and the
second one is the target of interest. Given a Cartesian coordinate system, the acoustic
center of the array is located at time t at

(
xO(t) yO(t) zO

)T . At the same time, the

target is at
(

xT(t) yT(t) zT
)T . The respective horizontal positions of the target of

interest and of the center of the array at time t are denoted by PT(t) =
(

xT(t) yT(t)
)T

and PO(t) =
(

xO(t) yO(t)
)T . The sea bottom depth (assumed to be a constant) is de-

noted as D. The source is said to be endfire to the line array if its trajectory is in the
same line as the array (which implies that the array and the source are at the same
depth, and share the same route). It is broadside to the antenna if it navigates in the
vertical plane orthogonal to the line array and passing by the acoustic center of the ar-
ray. The sensor array detects the line of sight of the target; more precisely, ad hoc array
processing (or spatial filtering) delivers at time t the cosine of the conical angle ca(t)
given by cos(ca(t)) = cos(θ(t)− h(t)) cos(φ(t)) , m(t), where θ(t) and φ(t) are, re-
spectively, the azimuth (or bearing) and the elevation of the path along which the sound
emitted by the source propagates. The angle h(t) is the heading of the sensor array.
Denoting the relative position coordinates of the source with reference to the acoustic
center of the array by xOT(t) = xT(t) − xO(t) and yOT(t) = yT(t) − yO(t), we have
θ(t) = arctan(xOT(t), yOT(t)). Figure 1 displays the different angles and the two actors
(the observer reduced to the linear array, and the target).

The ray of the sound (or signal) emitted by the source can be reflected by the bottom
and/or the surface or travels in the surface or deep channel. The sound–speed profile
makes the paths curve. In this paper, we will consider that the target is in the near field
(the distance between the source and the array is less than 20 km), and the bottom depth
is in the range 2000–5000 m. Due to the large curvature of the ray (about 80 km), we
will approximate the path of the sound as a set of zigzags defined by the reflections on
the bottom or on the surface. So, we implicitly use the Snell law widely employed in
geometrical optics. An image-source is created whose depth ζT will be called “image-
depth”. A path is then defined by the triplet (δ, nB, nS), where

• δ indicates the direction of the path of the sound emitted by the source: if the path is
toward the surface, δ = −1, otherwise δ = +1,

• nB is the number of bottom reflections, and
• nS is the number of surface reflections.
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Figure 2. Three examples of ray paths: the solid line represents the direct path (𝛿, 𝑛𝐵, 𝑛𝑆) =
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Figure 2. Three examples of ray paths: the solid line represents the direct path (δ, nB, nS) = (+1, 0, 0),
the dashed-dotted line represents the bottom reflected path (δ, nB, nS) = (+1, 1, 0), and the dashed
line represents the bottom-surface-bottom reflected path (δ, nB, nS) = (+1, 2, 1).

We have to consider the depth difference between the array and the image-source
defined by ζOT , ζT − zO if the ray has been reflected (by the sea bottom or by the surface),
or ζOT , zT − zO if the sound wave uses the direct path.

A general expression of ζOT based on the triplet (δ, nB, nS) is given by ζOT(δ, nB, nS) =
−2δnB(−1)nS+nB D− zO +(−1)nS+nB zT. Notethat,giventhepath, thelinkbetween ζOT(δ, nB, nS)
and zT is linear: ζOT(δ, nB, nS) = azT + b, the constants being a function of the triplet (δ, nB, nS), D,
and zO. Moreover, ζOT(δ, nB, nS) is null if and only if the antenna and the target are navigating at the
same depth (zT = zO), and sound is traveling in the direct path. In this case, cos(φ(t)) = 1. For the
sake of simplicity of the notations, we will simply subsequently denote ζOT instead of ζOT(δ, nB, nS).

For the above examples, we have ζOT(1, 0, 0) = zT − zO (direct path), ζOT(+1, 1, 0) =
2D − (zT + zO) (bottom-reflected path), and ζOT(+1, 2, 1) = 4D − (zT + zO) (bottom-
surface-bottom reflected path). Note that ζOT(δ, nB, nS) can be negative (the image-
source is above the surface). Consequently, the cosine of the elevation is cos(φ(t)) =√

x2
OT(t)+y2

OT(t)√
x2

OT(t)+y2
OT(t)+ζ2

OT(δ,nB ,nS)
.

Figure 3a displays the cone of ambiguity, defined by the set of sources sharing the
same cos(φ(t)). In Figure 3b, we plot a direct ray and a bottom-bounced ray, which allows
us to figure out the various angles with which we will work.
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We assume that the source is moving in constant velocity (CV) motion during the
scenario. Our challenge is to estimate its trajectory, i.e., the state vector defining it,
X ,

(
xT(t∗) yT(t∗) zT

.
xT

.
yT

)T , for a chosen t∗, from noisy measurements.
We consider two situations:

1. Only one ray is detected by the array during the scenario; in this case, we have at
each time t a measurement m(t), given the path along which the wave propagates.

2. Two rays (traveling on two different paths) arrive at the sensor’s antenna. In this case,
the available measurement at time t is a couple of measurements, say (m1(t), m2(t)),
given the two paths along which the wave propagates.

After the spatial filtering, the antenna supplies a noisy measurement of m(t) or a
noisy measurement of (m1(t), m2(t)). The noisy measurements are regularly acquired at
tk = (k− 1)∆t, k ∈ {1, . . . , N}, for a fixed sampling time ∆t.

Before attempting to estimate X, we must answer several questions:

1. Is the vector X observable from the set of measurements {m(t), t ∈ [0, T]}? Note that,
in TMA problems, observability is often analyzed in continuous time (see [15,17], for
example), even though the noisy measurements are given in discrete time.

2. If not, what are the ghost targets (those which could be detected at the same set of
measurements {m(t), t ∈ [0, T]})?

3. How do we make X observable or with which new information?
4. Is the vector X observable from the set of couples {(m1(t), m2(t)), t ∈ [0, T]}?

For the cases where X is observable, we have then to compute the asymptotical
performance of an unbiased estimator (given by the CRLB [24]), and the performance of
our estimators in terms of bias and the covariance matrix. It is worth noting that using
the FIM to prove observability can lead to a wrong conclusion [25]. This why we use an
analytic approach.

3. TMA from One Ray

In this section, we consider the case where the array collects the cosine of a coni-
cal angle, the path of the ray being known by the operator. We start by analyzing the
observability of the trajectory of the source of interest.



Sensors 2021, 21, 4797 5 of 20

3.1. Observability Analysis

Theorem 1. Let a linear antenna measure the cosine of a conical angle in the direction of a source,
both in CV motion. The path of the sound emitted by the source is known, as is also the sea
bottom depth.

1. If the target is broadside to the antenna, then the set of ghost targets is composed of virtual
sources broadside to the antenna.

2. If the target is endfire to the antenna, the set of ghost targets is composed of virtual sources
endfire to the antenna.

3. If the target has the same heading as the array (but is not endfire to it), then the set of ghost
targets is composed of virtual targets with the same heading as the antenna. More precisely,
the ghost image of each ghost target is moving on a cylinder whose axis is the antenna axis,
and whose radius is a positive scalar β. The relative ghost target velocity is equal to β times
the target’s velocity. The initial distance between the ghost image and the center of the antenna
is equal to β times the initial distance between the target-image and the center of the antenna.

4. In any other case, for a chosen image-depth ζG, the set of ghost targets is composed of virtual
targets whose motion relative to the array is defined by POG(t) = βPOT(t) or POG(t) =
βSPOT(t), where S is the 2D axial symmetry around the line of the array, and β is a positive
scalar. The scalar β is equal to |ζOG |

|ζOT |
if ζOT 6= 0. If ζOT = 0 (which can happen with a direct

path only), β can have any positive value.

Preamble: In the following proof, we choose t∗ = 0. Instead of working with the state
vector X =

(
xT(0) yT(0) zT

.
xT

.
yT

)T , we will use the relative state vector of the

image source, which is Y ,
(

x0T(0) yOT(0) ζOT
.
xOT

.
yOT

)T . The reason for this is
that we are able to recover X from Y without ambiguity.

We will prove this theorem in the special case where the heading of the antenna is
equal to 0◦, and the value yOT(t) is positive. This can be easily obtained with an ad hoc
rotation of the whole scenario. This will simplify the expression of the measurement,
without loss of generality.

Proof of Theorem 1. We are seeking the ghost target whose horizontal position at time t is(
xG(t) yG(t)

)T , detected in the same cosine of the conical angle, that is
yOT(t)√

x2
OT(t)+y2

OT(t)+ζ2
OT

= yOG(t)√
x2

OG(t)+y2
OG(t)+ζ2

OG
, with xOG(t) = xG(t) − xO(t), yOG(t) =

yG(t)− yO(t), and ζOG is the image-depth of the ghost target. This equality is equivalent to

y2
OT(t)

x2
OT(t) + y2

OT(t) + ζ2
OT

=
y2

OG(t)
x2

OG(t) + y2
OG(t) + ζ2

OG
(1)

Note that because the target is moving (as is the ghost target also), the denominators of the
left term and of the right term of (1) are two polynomial functions of degree 2.

Case 1: yOT(t) is a zero function, i.e., ∀t yOT(t) = 0.
This means the source is broadside to the antenna: YT =

(
x0T(0) 0 ζOT

.
xOT 0

)T.
In this case, yOT(t) = 0, ∀t ∈ [0, T]. Hence, the set of ghost targets is composed of the

virtual targets broadside to the antenna: YG =
(

x0G(0) 0 ζOG
.
xOG 0

)T .
Case 2: yOT(t) is not a zero function.
If

.
yOT = 0, then yOT(t) is a constant. To respect the degrees of the terms of (1), yOG(t)

is a constant too.
If

.
yOT 6= 0, then there is a root, say t̃, such as yOT

(
t̃
)
= 0, since yOT(t) is a polynomial

function of degree 1. Consequently, yOG
(
t̃
)
= 0, and ∀t 6= t̃, yOG(t) 6= 0.
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We deduce that, in both cases (
.
yOT = 0, and

.
yOT 6= 0), there exists a positive value β

such that yOG(t) = βyOT(t).

(1)⇔
{[

x2
OG(t) + y2

OG(t) + ζ2
OG
]
− β2[x2

OT(t) + y2
OT(t) + ζ2

OT
]}

y2
OT(t) = 0

⇔ x2
OG(t) + ζ2

OG = β2[x2
OT(t) + ζ2

OT
] (2)

The quantity x2
OT(t) + ζ2

OT can be equal to zero at any time, or at one time or never.
Subcase 1: ∀t, x2

OT(t) + ζ2
OT = 0.

Then, xOT(t) = 0, ∀t and ζOT = 0. Note that this case is the one when the target is
traveling in the endfire to the array and at the same depth as the antenna and the path is
the direct one. For the same reason, xOG(t) = 0, ∀t and ζOG = 0. The set of ghost targets
is hence composed of virtual targets traveling in the endfire to the array and at the same
depth as the antenna.

Subcase 2: ∃t̆ such that x2
OT
(
t̆
)
+ ζ2

OT 6= 0.
We deduce from (2) that

x2
OG(0) = β2x2

OT(0) + β2ζ2
OT − ζ2

OG (3)

xOG(0)
.
xOG = β2xOT(0)

.
xOT (4)

.
x2

OG = β2 .
x2

OT (5)

If
.
xOT = 0, then

YG =
(
±
√

β2x2
OT(0) + β2ζ2

OT − ζ2
OG βyOT(0) ζOG 0 β

.
yOT

)T
, for any posi-

tive constant β and any positive constant ζOG less than
√

β2x2
OT(0) + β2ζ2

OT . Note that,

when
.
yOT = 0, the target is motionless relative to the center of the array (both have the

same velocity); and when
.
yOT 6= 0, the target has the same heading as the array.

If
.
xOT 6= 0, then squaring the elements of (4), and using (5), we draw from (3) that

β2ζ2
OT = ζ2

OG. If ζOT = 0, then ζOG = 0, and the scalar β can take any positive value;

else β = |ζOG |
|ζOT |

. In both cases, the trajectory of a ghost target is defined by the state vector

YG =
(
±βxOT(0) βyOT(0) βζOT ±β

.
xOT β

.
yOT

)T . �

Remark 1.

1. When the source and the observer are at the same depth, and the path is direct, Theorem 1
recovers the conclusions given in [26].

2. The cases (1), (2) and (3) of Theorem 1 are “rare events”, since the events of dealing with a
source in endfire, broadside or having the same heading as the antenna during the scenario
occur with a probability equal to 0. However, when the target has a trajectory close to one of
these special cases, the estimates will have a poor behavior.

3. For case (4), when the detected ray is not a direct path, for example, when the ray is bottom-
reflected, a hypothesis about the source is sufficient to obtain one solution, corresponding to a
ghost target. Indeed, if we suppose that the depth of the target is zAs (whereas the true value
is zT), then we have β = 2D−(zAs+zO)

2D−(zT+zO)
, whose biggest value βMax = 2D−zO

2D−(zT+zO)
, and the

minimum value is βMin = 2D−(zMax+zO)
2D−(zT+zO)

, where zMax is the largest depth of a submarine
vehicle. Typically, in deep water, D ≥ 4000 m. A reasonable choice of zMax could be 400 m.
We can then have a range of β: [βMin, βMax] =

[
7600−zO

8000−(zT+zO)
, 8000−zO

8000−(zT+zO)

]
. For instance,

when the depths of the antenna and the target are, respectively, 200 and 100 m, we have
[βMin, βMax] = [0.974, 1.013]. In this way, we bound the set of ghost targets, and we can
expect that the bias induced by a wrong choice of zAs is very low.

4. For case (4) again, with a direct path, if the target is not at the same depth as the antenna,
β = zAs−zO

zT−zO
. Because β is a positive number, zAs − zO has the same sign as zT − zO: if

zT > zO, then zO < zAs ≤ zMax, and [βMin, βMax] =
[
0, zMax−zO

zT−zO

]
; if zT < zO, then
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0 ≤ zAs < zO, and [βMin, βMax] =
[
0, zO

zT−zO

]
. In both cases, the range [βMin, βMax] is too

wide to be useful. If the target and the antenna are at the same depth, β can take any positive
value.

3.2. Estimation of the Trajectory

We run 500 Monte Carlo simulations for a typical scenario described as follows:
The observer starts from

(
0 0

)T at the depth zO = 200 m. Its speed and heading

are, respectively, 5 m/s and 0◦. The initial position of the target is
(

5000 7000
)T and its

depth is zT = 100 m. Its route is 45◦ and its speed is 4 m/s.

• The measurements are collected every 4 s (∆t = 4 s). The scenario lasts 20 min.
• The sea bottom depth is 4000 m. The detected ray is a bottom-reflected ray.
• The assumed target depth is zAs = 200 m (whereas the true one is 100 m).
• First, the measurements have been corrupted with an additive Gaussian noise whose

standard deviation is σ = 1.7× 10−2.

Then, we choose the least squares estimator, which is identical to the maximum
likelihood estimator with these assumptions. Note that, in open literature about TMA,
the confidence regions are given by the confidence ellipsoid obtained with the covariance
matrix of the estimate. Since the maximum likelihood estimate is asymptotically efficient
under nonrestrictive conditions, we use here the Cramér–Rao lower bound to compute
such confidence regions.

The result of the simulation is presented in Table 1 and illustrated in Figure 4. Obvi-
ously, even if the assumption made on the target’s depth makes the state vector observable,
it remains inestimable: the hugeness of the diagonal elements of the CRLB does not allow
this kind of TMA to be employed. We note in Figure 4 that the cloud of horizontal estimates
is hyperbola-shaped. This is because the state vector is “weakly” estimable. The parametric
equation of this hyperbola is{

x(ω) = ζAssinh(ω)

y(ω) = ζAsm√
1−m2 cosh(ω)

, with ζAs = 2D− (zAs + zO), and m = yOT(0)√
x2

OT(0)+y2
OT(0)+ζ2

OT

Table 1. Performance of the estimator of the reduced state vector when σ = 1.7× 10−2, in terms of
bias, sample standard deviation and the one given by the square root of the diagonal of the CRLB.

Xr Bias σsamp σCRLB

5000 m −3525 6962 13,356
7000 m −2367 4052 5599

2.83 m/s −1.37 1.81 4.35
2.83 m/s 0.53 1.62 2.75
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We further reduced the standard deviation to σ = 1.7× 10−4 in order to appreciate
the behavior of the MLE. With this (unrealistic) value, the MLE is efficient, as shown in
Table 2 and in Figure 5 (which validates our observability analysis).

Table 2. Performance of the estimator of the reduced state vector with σ = 1.7× 10−4.

Xr Bias σsamp σCRLB

5000 m 60.40 138.67 133.56
7000 m 88.20 58.42 55.99

2.83 m/s 0.043 0.044 0.044
2.83 m/s 0.037 0.028 0.028
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Our conclusion is that the state vector is not estimable, even though it is observable
with an assumption on the target’s depth.

This is why we propose to maneuver the antenna in order to render the state vector
observable with no assumption on the target’s depth, and to augment the information
about it.

4. TMA with One Ray When the Array Maneuvers

In this section, the antenna maneuvers, i.e., it changes its own heading. We start by
proving that the state vector is observable (without any assumption on the target’s depth).
Then, we have recourse to perform Monte Carlo simulations to evaluate the performance
of the MLE.



Sensors 2021, 21, 4797 9 of 20

4.1. Observability Analysis

Theorem 2. Suppose the antenna’s trajectory is composed of two successive legs at constant velocity
(however with the same speed). Let the target be in CV motion. The linear array acquires the conical
angles of the wave emitted from the target, the path of the ray being known as well as the sea bottom
depth. If the target is broadside or endfire to the antenna during a leg, then there is at most a ghost
target. Otherwise, there is no ghost target.

Due to its length, the proof of this theorem is given in the Appendix A.

4.2. Estimation

In this subsection, we present the result of 500 Monte Carlo simulations that are run
to illustrate the behavior of the proposed estimators. First, we give the scenario used here.

The center of the array and the initial position of the source are, respectively, at(
0 0 200

)T and
(

5000 7000 100
)Tat the very beginning of the scenario. The speed

of the array is a constant along the scenario and is equal to 5 m/s. The trajectory of the
array is composed of two legs linked by an arc of a circle. The first leg lasts 1 min 40 s,
during which the array’s heading is 135◦. Then, the array turns to the right with a turn rate
equal to 20◦/min to adopt a new heading equal to 270◦. The duration of the maneuver is
hence equal to 6 min 44 s. The second leg lasts 5 min, so the total duration of the scenario
is 13 min and 20 s. Meanwhile, the target is navigating with a heading equal to 45◦ and a
speed of 4 m/s. The bottom depth is D = 4000 m.

The state vector we have to estimate is hence X =
(

5000 7000 100 2.83 2.83
)T .

The array is assumed to measure the cosines of the conical angles of the bottom-
reflected path given by

m(tk) =
yOT(tk)√

x2
OT(tk) + y2

OT(tk) + [2D− (zT + zO)]
2
+ εk

Measurements are acquired every ∆t = 4 s, with tk = (k− 1)∆t.
The noise vector εk is assumed to be Gaussian, 0-mean and its standard deviation

equal to σ = 1.7× 10−2. The vectors εk are also assumed to be temporally independent.
Again, we choose the least squares estimator.

4.2.1. Estimation of X

The 500 obtained estimates of the initial horizontal position are plotted in Figure 6,
together with the trajectory of the target, the 90%-confidence ellipse and the trajectory of
the array. Again, the view is from the sky.
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The performance of the estimator (bias and standard deviation of each component) is
presented in Table 3.
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Table 3. Performance of the estimator of the plain state vector.

X Bias σsamp σCRLB

5000 m −44.77 854.72 868.12
7000 m −68.16 1162.1 1173.60
100 m 7.14 558.55 545.99

2.83 m/s 0.092 1.67 1.65
2.83 m/s 0.194 2.72 2.68

A convenient way to evaluate the behavior of an estimator is to compute the so-called
normalized estimation error squared (NEES) [27], defined as Nl =

(
X̂l − X

)T F
(
X̂l − X

)
,

where F is the FIM, and X̂l is the estimate computed at the l-th simulation. If X̂l is Gaussian-
distributed with X as the mathematical expectation and the CRLB as the covariance matrix,
then Nl is chi-square distributed with d degrees of freedom (χ2

d), where d is the dimension
of X (here 5). From the central limit theorem, the averaged NEES NS ,

1
NSim

∑NSim
l=1 Nl is

approximately Gaussian; its mathematical expectation is d, and its standard deviation is

equal to
√

2d
NSim

.
From our simulations, we obtain NS = 5.34.
In conclusion, the estimator can be declared efficient. However, the minimum standard

deviation of the target’s depth is not compatible with the physical constraints: with the
standard deviation given in Table 3, the target could be up above the sea surface! Therefore,
a palliative of this is to impose a depth on the target. Indeed, we saw in Section 3.1 that a
supposed depth creates a small bias in estimation of the horizontal position of the target.

4.2.2. Estimation of X Reduced When the Depth of the Target Is Fixed

Now, the third component of X does not have to be estimated. The new state vec-
tor is the denoted as Xr =

(
xT(0) yT(0)

.
xT

.
yT

)T . We impose that zAs = 200 m
(whereas the true depth is still 100 m). Hence, we introduce a bias.

Figure 7 displays the position’s estimates in the same manner as Figure 6. The bias is
not visible to the naked eye. However, Table 4 reveals this bias, which may be acceptable
in a real situation. Even though the averaged NEES (=7.31) is out of its 90% confidence
interval, its value remains acceptable.
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Table 4. Performance of the estimator of the reduced state vector.

Xr Bias σsamp σCRLB

5000 m 65.40 655.61 606.41
7000 m 93.05 831.75 762.56

2.83 m/s 0.034 1.71 1.58
2.83 m/s 0.063 2.76 2.52

The main interest of assuming the depth to be known is to economize on the CPU
time, and reduce the standard deviation of the remaining components to estimate. We are
in the presence of the well-known bias–variance tradeoff.

4.2.3. Estimation of the Reduced State Vector by the Conventional BOTMA

In such a scenario, the conventional BOTMA can be run by neglecting the site effect, so
by imposing that cos(φ(t)) = 1, ∀t. The (incorrect) noise-free measurement model is then

cos(α(t)) = cos(θ(t)− h(t)).

The results are plotted in Figure 8. Obviously, a huge bias appears, leading to an
averaged NEES equal to 1960. More precisely, the bias on the components of the reduced
state vector is

(
−3062.8 −2319.9 14.4 15.8

)T , rendering the BOTMA inoperative.
Clearly, the conventional BOTMA cannot be recommended for the near field. This justifies
a posteriori the interest in taking the site effect and the nature of the wave ray into account,
as previously pointed out in the introduction of [23].
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5. TMA from the Direct Path and the Bottom-Reflected Path

We assume in this section that the sound wave emitted by the target travels on the
direct path and the bottom-reflected path.

5.1. Observability

Theorem 3. Let a linear antenna and a source both be in CV motion.
The antenna acquires the cosines of the conical angles of the direct path and of the bottom-

reflected path.

1. If the target is broadside to the array, then the set of ghost targets is uncountable: it is composed
of all the (virtual) targets at broadside to the array.

2. If the target is endfire to the antenna, the set of ghost targets is composed of virtual sources at
endfire to the antenna.

3. If the route of the antenna and the route of the target are parallel, then the set of ghost targets
is uncountable: at each depth zG, there are two ghost targets moving on a cylinder whose axis
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is the antenna axis, and the radius is a positive scalar β =
√

D−zG
D−zT

. The relative ghost target
velocity is equal to β times the target’s velocity. The initial distance between the ghost image
and the center of the antenna is equal to β times the initial distance between the ghost image
and the center of the antenna.

4. If the route of the antenna and the route of the target are not parallel, then there are three ghost
targets whose motion relative to the antenna is POG(t) = SPOT(t), POG(t) = βPOT(t), and
POG(t) = βSPOT(t), where S is the matrix of the axial symmetry around the line of the
antenna, and β , D−zO

D−zT
. If the depth of the antenna is equal to the depth of the source, then

there is one single ghost target given by POG(t) = SPOT(t).

Proof of Theorem 3. With no loss of generality, we will again assume that the axis of
the sensor array is pointed toward north and that the target is in the half-space where
the second component y of any vector is positive. A convenient rotation helps us in
this case. So the noise-free measurements at time t are m1(t) =

yOT(t)√
x2

OT(t)+y2
OT(t)+z2

OT
, and

m2(t) =
yOT(t)√

x2
OT(t)+y2

OT(t)+[2D−(zT+zO)]2
.

We have to seek a five-dimensional state vector XG =
(

xG(0) yG(0) zG
.
xG

.
yG

)T

defining the trajectory of a ghost target, i.e., producing the same noise-free measurement as X,
that is m1(t) =

yOG(t)√
x2

OG(t)+y2
OG(t)+z2

OG
, and m2(t) =

yOG(t)√
x2

OG(t)+y2
OG(t)+[2D−(zG+zO)]2

.

hence satisfying the two following equalities (in time):

yOT(t)√
x2

OT(t) + y2
OT(t) + z2

OT

=
yOG(t)√

x2
OG(t) + y2

OG(t) + z2
OG

(6)

yOT(t)√
x2

OT(t) + y2
OT(t) + [2D− (zT + zO)]

2
=

yOG(t)√
x2

OG(t) + y2
OG(t) + [2D− (zG + zO)]

2
(7)

under the constraint that zG is in [0, D].
Case 1: yOT(t) is a zero function, i.e., ∀t yOT(t) = 0.
The target is broadside to the antenna, so any ghost targets will be too (see Case 1 in

the proof of theorem 1).
Case 2: yOT(t) is not a zero function.
From Case 2 of the proof of theorem 1, there is a positive scalar β such that yOG(t) =

βyOT(t).

(6)⇔
√

x2
OG(t) + y2

OG(t) + z2
OG = β

√
x2

OT(t) + y2
OT(t) + z2

OT
⇔
[
x2

OG(t) + y2
OG(t) + z2

OG
]
= β2[x2

OT(t) + y2
OT(t) + z2

OT
] (8)

(7)⇔
[

x2
OG(t) + y2

OG(t) + [2D− (zG + zO)]
2
]
= β2

[
x2

OT(t) + y2
OT(t) + [2D− (zT + zO)]

2
]

(9)

Subtracting (9) from (8), we get z2
OG − [2D− (zG + zO)]

2 = β2
[
z2

OT − [2D− (zT + zO)]
2
]
.

Now, we simplify the expressions of these two terms:

z2
OG − [2D− (zG + zO)]

2 = −4(D− zG)(D− zO)

z2
OT − [2D− (zT + zO)]

2 = −4(D− zT)(D− zO)

We deduce from this that

β =

√
D− zG
D− zT

(10)
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Note that β = 1 iif zG = zT .

(8)⇔ x2
OG(t) + y2

OG(t) + z2
OG = β2[x2

OT(t) + y2
OT(t) + z2

OT
]

⇔ x2
OG(t)− β2x2

OT(t) = β2z2
OT − z2

OG
(11)

Since x2
OG(t)− β2x2

OT(t) is a polynomial function of degree 2, (11) is equivalent to

x2
OG(0) = β2x2

OT(0) + β2z2
OT − z2

OG (12)

xOG(0)
.
xOG = β2xOT(0)

.
xOT (13)

.
x2

OG = β2 .
x2

OT (14)

First case
.
xOT = 0

Equation (14) implies that
.
xOG = 0.

Consequently, for any zG in [0, D], the vector XOG =(
±
√

β2x2
OT(0) + β2z2

OT − z2
OG βyOT(0) zOG 0 β

.
yOT

)T
(with β =

√
D−zG
D−zT

) defines
the trajectory of a ghost target.

Second case
.
xOT 6= 0

Using (14), and squaring the terms of (13), we get x2
OG(0) = β2x2

OT(0).
Reporting this in (12), we obtain finally β2z2

OT = z2
OG, i.e.,

β2 =

(
zOG
zOT

)2
(15)

If zT = zO, then zG = zO. In this case, β = 1, and consequently yOG(t) = yOT(t) and
x2

OG(t) = x2
OT(t) from (11). The source’s trajectory is observable up to the axial symmetry

around the (Oy)-axis.

Equations (10) and (15) give us D−zG
D−zT

=
(

zOG
zOT

)2
.

The unknown zG is hence a root of the following equation of degree 2:

(zG − zO)
2 − (zT−zO)2

D−zT
(D− zG) = 0 which can be expanded as follows:

z2
G + zG

[
−2zO + (zT−zO)2

D−zT

]
− D(zT−zO)2

D−zT
+ z2

O = 0.

Of course, zT is a root of this equation. For this value, zG = zT , hence β = 1.

The second root (zG itself) is hence 2zO − zT − (zT−zO)2

D−zT
, zG. We can check readily

that zG − zO = zO − zT − (zT−zO)2

D−zT
= (zO−zT)(D−zT)−(zT−zO)2

D−zT
.

Hence, zG−zO
zT−zO

= zO−D
D−zT

(which is negative).
We deduce from this that:

1. when the target’s depth is larger than the array’s depth, there is a ghost whose depth
is smaller than the array’s depth, and vice versa.

2. β, which is a positive coefficient, is equal to D−zO
D−zT

, or 1.

Therefore, we have identified three ghost targets:
the first one is defined by XOG =

(
−xOT(0) yOT(0) zOT − .

xOT
.
yOT

)T ,

the second is defined by XOG =
(

βxOT(0) βyOT(0) −βzOT β
.
xOT

.
βyOT

)T
,

and the third by XOG =
(
−βxOT(0) βyOT(0) −βzOT −β

.
xOT

.
βyOT

)T
. �

Remark 2. Most of the time, the depth of a submarine vehicle is under the operational constraint:
values of zT are in [0, zMax] and zMax � D. For example, zMax = 400 m, while D = 4000 m.

The proof of the previous theorem must be adapted to this new constraint.

First, we use the fact that the function u 7→ f (u) , 2zO − u− (u−zO)2

D−u is an involution, i.e.,
f ( f (u)) = u.
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Since f (0) = 2zO −
z2

0
D , f

(
2zO −

z2
0

D

)
= 0.

Now the question is: what are the values of zO for which the following inequality holds: 2zO −
z2

0
D ≤ zMax, the greatest value of zO guaranteeing that 2zO −

z2
0

D−zT
≤ zMax is D− D

√
1− zMax

D
(which is less than zMax).

If zO > D−D
√

1− zMax
D , then zG > zMax. In this case, there is a unique ghost target given

by XG =
(
−xT(0) yT(0) zT − .

xT
.
yT

)T .

If zO ≤ D− D
√

1− zMax
D , then zG ≤ zMax. In this case, there are three ghost targets:

one is defined by XG =
(
−xT(0) yT(0) zT − .

xT
.
yT

)T ,

the second is defined by XG =
(

βxT(0) βyT(0) f (zT) β
.
xT β

.
yT

)T ,

and the third by XG =
(
−βxT(0) βyT(0) f (zT) −β

.
xT β

.
yT

)T .
Note that the operational constraint allows us to benefit from the following range:
D−zMax

D ≤ β ≤ D
D−zMax

. For example, when zMax = D
10 , 0.9 ≤ β ≤ 1.11. Consequently, the

ghost target is very close to the target of interest.

5.2. Estimation of the Trajectory

This section is devoted to the estimation of the target’s trajectory, or in other words,
the estimation of X with t∗ = 0 (the first time). Before going into detail, we compute
the so-called Cramér–Rao lower bound to evaluate the asymptotical performance of any
unbiased estimator.

We have considered two typical scenarios. In both, the array is assumed motionless (or,
more realistically, all the mobiles are referenced to it) at the depth zO = 200 m, and the state vec-
tor defining the target’s trajectory is given by the state vector
X =

(
5000 7000 100 2.83 2.83

)T. The standard deviation of the measurement
is σ = 1.7× 10−2. The total duration of the scenario is 5 min, and the sampling time is ∆t = 4
s; consequently, the number of measurement couples is N = 75.

In the first scenario, the bottom depth is D = 2000 m, while in the second, D = 4000 m.
Note that in the first scenario, β = 0.89, and in the second one, β = 0.97. The ghost

target is hence very close to the target of interest.

5.2.1. Estimability

As pointed out in Section 1, the state vector X is “estimable” if its asymptotical
performance given by the CRLB is compatible with the physical constraints. Typically, if
the minimum standard deviation defined by the square root of the third diagonal element
of the CRLB (hence of the depth) is much larger than the depth, then X is declared non-
estimable.

1. First scenario

For this scenario, the square root of the diagonal of the CRLB σCRLB

=
(

1.16 × 106 1.59 × 106 8.22 × 105 637.9 646.1
)T .

2. Second scenario

With the bottom depth, things are not much better, since σCRLB

=
(

6.59 × 105 8.96 × 105 9.73 × 105 352.6 362.2
)T .

In both cases, the minimum standard deviations are huge. We can conclude that the
state vector is not estimable. Computations of minimum standard deviations were made
for various scenarios; in all, the state vector is not estimable.

A palliative of this is to fix the depth of the source at an arbitrary and realistic value, say
zAs, and compute the CRLB of the reduced state vector Xr ,

(
xT(0) yT(0)

.
xT

.
yT

)T
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when we assume that zT = zAs. For example, for zAs = 300 m, the minimum standard
deviations are

σCRLB =
(

281.17 319.37 1.78 2.02
)T for the first scenario, and

σCRLB =
(

130.1 115.3 0.80 0.71
)T for the sec ond one.

Therefore, we propose to estimate the state vector with this hypothesis (zAs = 300 m).
In so doing, we introduce a bias. The next subsection gives us the result of the 500 Monte
Carlo simulations.

5.2.2. Monte Carlo simulations

The computation of the maximum likelihood estimator (MLE) is made with the Gauss-
Newton routine. No numerical issue was encountered.

1. First scenario

The performance of the MLE is summarized in Table 5. We have numerically computed
the bias and the empirical standard deviation (given, respectively in the second and third
column of the table). We can see that the empirical standard deviation is very close to that
given by the CRLB. However, as expected, the MLE is biased (of course, there is no bias if
we choose zAs = zT). In Figure 9, the 90% confidence ellipse is drawn, together with the
cloud of the 500 estimates (in pink).

Table 5. Performance of the estimator of the reduced state vector.

Xr Bias σsamp σCRLB

5000 m 401.12 281.85 281.17
7000 m 557.24 330.87 319.37

2.83 m/s 0.13 1.58 1.78
2.83 m/s 0.12 1.81 2.02
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2. Second scenario: Bottom depth D = 4000 m.

Again, the performance is presented in Table 6. The bias of the estimator is similar
to the one obtained for the first scenario. Only the empirical standard deviations of(

xT(0) yT(0)
)T are larger than that computed from the CRLB. However, Figure 10

shows us that the cloud of estimates is close to the true value and not spread.
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Table 6. Performance of the estimator.

Xr Bias σsamp σCRLB

5000 m 306.81 219.28 130.08
7000 m 432.46 276.61 115.26

2.83 m/s 0.18 0.74 0.80
2.83 m/s 0.18 0.66 0.71
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What is remarkable is the short duration and still the very good performance (in terms
of accuracy) of the result. Numerous simulations (not reported here) were performed;
all confirm the correct performance of the MLE. The shortness of the scenario is crucial,
because everything that we propose here works properly under the condition that the sea
bottom is a plane. During a short scenario, this assumption is likely.

6. Conclusions

In this paper, conical-angle TMA has been addressed, and various multipaths of sound
have been taken into account. The sensor is a line array. Observability was analyzed deeply,
allowing all the existing ghost targets to be identified. The main results are that, if the array
detects one ray (corresponding to one path), the trajectory is not observable: the set of
ghost targets is composed of trajectories that are homothetic to the trajectory of the target
of interest, and their symmetrical images by the axial symmetry around the line array. If
the array detects two rays (corresponding to two different paths), the number of ghost
targets is reduced to three (except when the target is endfire or broadside to the antenna).
When the antenna maneuvers, the target’s trajectory is observable (apart from the special
scenario where there is one single ghost target). Even for “observable” scenarios, the depth
of the target is not estimable (its asymptotical standard deviation is huge). In these cases,
we give a non-restrictive palliative that allows us to provide estimates close to the truth.

In the future, in this context, many problems remain to be faced: identification of
the paths, maneuvering targets, and fusion of data collected by other sensors, as in [28].
The problem of seeking a “good” maneuver of the observer, as it was solved in a 2D
environment [29–31], will be addressed in the future. Some of these problems are already
under investigation.
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Appendix A

Proof of Theorem 2. The proof is made when the first leg is towards North (as previously).

Hence, V1 =

[
0
v

]
, V2 =

[
v sin(α)
v cos(α)

]
, S1 =

[
−1 0
0 1

]
,

and S2 =

[
− cos(2α) sin(2α)

sin(2α) cos(2α)

]
.

Moreover, we assume α 6= kπ.
From Theorem 1, we have to consider the four following cases for each leg:

• the target is broadside to the antenna,
• the target is endfire to the antenna,
• the target has the same heading as the array (but is not endfire to it),
• the other cases.

Note that if the target is in case (1) during the first leg, then in case (2) during the
second one (provided that this situation is possible), the conclusion about observability
will be the same as if the target is in case (2) during the first leg, then in case (1) during the
second leg. To be convinced of this, we just have to reverse the time in the equation. This
remark allows us to shorten the proof.

Case 1: the target is broadside to the antenna during the first leg.

Hence, PT(0) =

[
xT(0)

0

]
, and VOT =

[
cT
0

]
during the first leg, which implies

POT(t) =

[
xT(0) + tcT

0

]
for t ≤ τ. The ghost targets are also in the broadside, hence

POG(t) =
[

xG(0) + tcG
0

]
and VOG =

[
cG
0

]
for t ≤ τ.

Can the target be endfire to the antenna? If so, the target has the same heading as the
antenna during the second leg or, in other words, VT − V2 = λV2, and POT(t), which is
equal to POT(t) = POT(τ) + (t− τ)(VT −V2), is collinear with V2, whenever t ≥ τ. The

first condition cannot be satisfied since VT =

[
cT
v

]
, and V2 =

[
±v
0

]
. There is no ghost.

We skip the case where the target is in case (3) during the second leg. This will be
treated later. Therefore, we now have to consider the other cases during the second leg.
There are two possibilities for the ghost targets: those whose trajectories are defined by (i)
POG(t) = βPOT(t), and those whose trajectories are given by (ii) POG(t) = βS2POT(t), both
for t ≥ τ.

The derivative of (i) is VG −V2 = βVT − βV2, hence VG = βVT + (1− β)V2.

⇔
[

cG
v

]
= β

[
cT
v

]
+ (1− β)v

[
sin(α)
cos(α)

]
,

which implies that (1− β) cos(α) = 1− β. Since cos(α) 6= 1, β = 1. There is no ghost
given by (i).

The derivative of (ii) is VG −V2 = βS2VT − βV2, hence VG = βS2VT + (1− β)V2.

⇔
[

cG
v

]
= β

[
−cT cos(2α) + v sin(2α)
cT sin(2α) + v cos(2α)

]
+ (1− β)v

[
sin(α)
cos(α)

]
.

We deduce that β = v 1−cos(α)
cT sin(2α)+v cos(2α)−v cos(α) .

One ghost exists if cT sin(2α) + v cos(2α)− v cos(α) is a positive quantity. If so, we
then compute cG. There is one ghost at most.

Case 2: the target is endfire to the antenna during the first leg.
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Hence, PT(0) =

[
0

yT(0)

]
, and VOT =

[
0
cT

]
, which implies that

POT(t) =

[
0

yT(0) + tcT

]
for t ≤ τ. During this first leg, the ghost targets are also

endfire to the antenna, so POG(t) =
[

0
yG(0) + tcG

]
for t ≤ τ, and VG −V1 =

[
0

cG

]
.

Again, we skip the case where the target is in case (3) during the second leg. This will
be treated later. So, we now have to consider the other cases during the second leg.
There are two possibilities for the ghost targets: those whose trajectories are defined by (i)
POG(t) = βPOT(t) and those whose trajectories are given by (ii) POG(t) = βS2POT(t), both
for t ≥ τ.

The derivative of (i) is VG −V2 = βVT − βV2, hence VG = βVT + (1− β)V2.

⇔
[

0
cG + v

]
= β

[
0

cT + v

]
+ (1− β)v

[
sin(α)
cos(α)

]
.

We deduce that β = 1. There is no ghost.
Now, differentiating (ii) gives us VG − V2 = βS2VT − βV2, hence VG = βS2VT +

(1− β)V2.

⇔
[

0
cG + v

]
= β(cT + v)

[
sin(2α)
cos(2α)

]
+ (1− β)v

[
sin(α)
cos(α)

]
.

⇒ β(cT + v) sin(2α) + (1− β)v sin(α) = 0 .
We deduce that β = −v sin(α)

cT sin(2α)+v sin(2α)−v sin(α) . One ghost exists if cT sin(2α) +

v sin(2α)− v sin(α) is a negative quantity. If so, we then compute cG. There is one ghost at
most.

Case 3: the target has the same heading as the array (but is not endfire to it)

As in case (2), VOT =

[
0
cT

]
, but here, the first component of POT(t) is not zero.

Hence, VT =

[
0

cT + v

]
, and the target cannot be endfire to the antenna during the second

leg. In this case, VOG =

[
0

βcT

]
, hence VG =

[
0

βcT + v

]
.

Can the target be broadside to the antenna? The answer is positive if V2⊥VT and VOT

is collinear to POT(t), when t ≥ τ. The first condition implies that V2 =

[
±v
0

]
. Since

POT(t) = POT(τ) + (t− τ)(VT −V2), the second condition is satisfied if POT(τ) is collinear
to VT −V2. This is not the case when the first component of POT(τ) is zero, while the first
component of VT −V2 is ±v.

So, we now have to consider the other cases during the second leg. There are two
possibilities for the ghost targets: those whose trajectories are defined by (i) POG(t) =
βPOT(t) and those whose trajectories are given by (ii) POG(t) = βS2POT(t), both for t ≥ τ.

The derivative of (i) is VG −V2 = βVT − βV2, hence VG = βVT + (1− β)V2 or, in other
words,[

0
βcT + v

]
=

[
0

β(cT + v)

]
+ (1− β)v

[
sin(α)
cos(α)

]
. We conclude that β = 1, i.e.,

there is no ghost.
If POG(t) = βS2POT(t), then VG = βS2VT + (1− β)V2[

0
βcT + v

]
= β(cT + v)

[
sin(2α)
cos(2α)

]
+ (1− β)v

[
sin(α)
cos(α)

]
.

This implies that α = 0, which must be rejected by assumption. There is no ghost.
The other cases:
In the other cases, the motion of ghost targets is defined during the first leg by
when t ≤ τ,

POG(t) = β1POT(t) (A1)

or POG(t) = γ1S1POT(t) (A2)
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and during the second leg by
when t ≥ τ,

POG(t) = β2POT(t) (A3)

or POG(t) = γ2S2POT(t) (A4)

Hence, at time τ, the position of a ghost target is

POG(τ) = β1POT(τ) (A5)

or POG(τ) = γ1S1POT(τ) (A6)

and POG(τ) = β2POT(τ) (A7)

or POG(τ) = γ2S2POT(τ) (A8)

Of course, (A5) and (A6) are not compatible, and neither are (A7) and (A8).
Now, let us show that (A5) is not compatible with (A8):
Indeed, if POG(τ) = β1POT(τ) = γ2S2POT(τ), then

β1

γ2
POT(τ) = S2POT(τ) (A9)

Equation (A9) implies that POT(τ) is an eigenvector of S2, with the eigenvalue β1
γ2

. Since β1
γ2

is positive, this eigenvalue is equal to 1, i.e., γ2 = β1. Hence, POT(τ) is in the second leg.
Hence, the set of ghost targets is reduced to those whose positions at time τ are given

by (A5) or (A6), and (A7). Now suppose that a ghost target satisfies (A6) and (A7). By the
same computation, we conclude that POT(τ) is in the first leg, which is impossible since
POT(τ) is in the second leg.

We have proven that (A5) and (A7) only are compatible. It follows that a ghost target
verifies these two equalities (given by (A1) and (A3)):

POG(τ) = β1POT(τ) = β2POT(τ).
Hence, β1 = β2.
Now taking the derivative of the two members of (A1) and of (A3), we obtain
VG = β1(VT −V1) + V1 = β1(VT −V2) + V2, which is equivalent to
(β1 − 1)(V2 −V1) = 0.
Since V2 6= V1, β1 = 1.
Putting this value into (A1) or (A3), we finally get PG(t) = PT(t). The “ghost” is the

target of interest. In conclusion, there is no ghost target. �
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