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Abstract: Numerous epidemiological studies have reported that particulate matter 2.5 (PM2.5) causes
skin aging and skin inflammation and impairs skin homeostasis. Hesperidin, a bioflavonoid that is
abundant in citrus species, reportedly has anti-inflammatory properties. In this study, we evaluated
the cytoprotective effect of hesperidin against PM2.5-mediated damage in a human skin cell line
(HaCaT). Hesperidin reduced PM2.5-induced intracellular reactive oxygen species (ROS) generation
and oxidative cellular/organelle damage. PM2.5 increased the proportion of acridine orange-positive
cells, levels of autophagy-related proteins, beclin-1 and microtubule-associated protein light chain
3, and apoptosis-related proteins, B-cell lymphoma-2-associated X protein, cleaved caspase-3, and
cleaved caspase-9. However, hesperidin ameliorated PM2.5-induced autophagy and apoptosis.
PM2.5 promoted cellular apoptosis via mitogen-activated protein kinase (MAPK) activation by
promoting the phosphorylation of extracellular signal-regulated kinase, c-Jun N-terminal kinase,
and p38. The MAPK inhibitors U0126, SP600125, and SB203580 along with hesperidin exerted a
protective effect against PM2.5-induced cellular apoptosis. Furthermore, hesperidin restored PM2.5-
mediated reduction in cell viability via Akt activation; this was also confirmed using LY294002
(a phosphoinositide 3-kinase inhibitor). Overall, hesperidin shows therapeutic potential against
PM2.5-induced skin damage by mitigating excessive ROS accumulation, autophagy, and apoptosis.

Keywords: hesperidin; particulate matter 2.5; human keratinocyte; autophagy; apoptosis; mitogen-
activated protein kinase

1. Introduction

Hesperidin, a major bioflavonoid, is abundant in citrus species such as sweet oranges
and tangerines, especially in their peels [1]. Hesperidin consists of aglycone, hesperetin,
and the sugar rutinoside [2]. Both hesperidin and hesperetin exhibit various biological
activities including anti-inflammatory, antibacterial, and antitumor properties, as well as the
potential to reduce capillary permeability [3,4]. Furthermore, hesperidin has been shown
to have an inhibitory effect against SARS-CoV-2, the causative agent of COVID-19 [4].
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Particulate matter (PM) exists in the atmosphere as a collection of liquid and solid
particles. Depending on the source, PM has different chemical compositions and sizes,
and PM with an aerodynamic diameter less than 2.5 µm is considered as PM2.5 [5]. PM is
classified into two classes: primary particles and secondary particles. The primary parti-
cles are directly emitted from the source, such as fires, unpaved roads, and construction
sites, whereas the secondary particles are formed through chemical reactions (automo-
biles, industrial zones, and power plants) [6]. The chemical composition of PM could be
a composite of polycyclic aromatic hydrocarbons (naphthalene, acenaphthene, pyrene,
benzo[k]fluoranthene, and benzo[g,h,i]perylene) and heavy metals (Fe, Zn, Pb, As, Cd, Cr,
Cu, and Ni) [7,8]. The toxicity of PM depends on its source, chemical composition, and
particle size [9,10]. Recently, we reported that PM2.5 causes skin damage, skin senescence,
and skin inflammation by generating intracellular reactive oxygen species (ROS) [11–13].

The skin is the largest organ in the human body and is composed of multiple layers.
The skin acts as a barrier between the body and the environment; is involved in thermoreg-
ulation; and protects the body from mechanical injuries, substances, and radiation [14].
There are several signaling pathways and mechanisms that maintain cellular homeostasis
in the skin [15]. A range of extracellular harmful stimuli including PM may trigger cel-
lular damage such as apoptosis, an irreversible event that alters cellular biochemical and
morphological properties [16]. Therefore, in this study, we investigated the therapeutic
potential of hesperidin against PM2.5-mediated cellular damage through the regulation of
autophagy and apoptosis.

2. Materials and Methods
2.1. Reagents

Hesperidin (C28H34O15) was purchased from Sigma-Aldrich Inc. (St. Louis, MO, USA)
and dissolved in dimethyl sulfoxide (DMSO). Standard diesel PM2.5 (SRM 1650b) issued by
the National Institute of Standards and Technology (NIST, Gaithersburg, MD, USA) was
purchased from Sigma-Aldrich Inc. and dissolved in DMSO. LY294002 (a phosphoinositide
3-kinase (PI3K) inhibitor), U0126 (a mitogen-activated protein kinase (MEK) inhibitor),
SP600125 (a c-Jun N-terminal kinase (JNK) inhibitor), and SB203580 (a p38 inhibitor) were
purchased from Calbiochem (San Diego, CA, USA) [17,18].

2.2. Cell Culture

The human HaCaT keratinocyte cell line was obtained from Cell Lines Service (Heidel-
berg, Germany). The cells were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM)
supplemented with 10% fetal bovine serum and antibiotic-antimycotic (100 units/mL
penicillin, 100 µg/mL streptomycin, and 0.25 µg/mL amphotericin B). The cultures were
maintained in a humidified incubator at 37 ◦C with 5% CO2 [19].

2.3. Intracellular ROS Detection

2′,7′-Dichlorodihydrofluorescein diacetate H2DCFDA (Molecular Probes, Eugene, OR,
USA) was used to measure intracellular ROS levels. The cells were cultured at a density of
1.5× 105 cells/mL in a six-well plate and incubated for 16 h. Thereafter, each corresponding
well was treated with hesperidin (50 µM) and PM2.5 (50 µg/mL). Intracellular ROS levels
were assessed using a flow cytometer (Becton Dickinson, Franklin Lakes, NJ, USA) after
staining the cells with H2DCFDA. The cells were seeded (1 × 105 cells/mL) on a chamber
slide and incubated for 16 h, after which hesperidin and PM2.5 were added. Then, the cells
were stained with H2DCFDA, and images were captured using a confocal microscope (Carl
Zeiss, Oberkochen, Germany).
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2.4. Cell Viability Assessment

The colorimetric 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT;
Amresco Inc., Cleveland, OH, USA) assay was used to quantify cell viability. The cells
were seeded at a density of 1.0 × 105 cells/well in a 24-well plate and incubated for 16 h
at 37 ◦C in a humidified atmosphere with 5% CO2. The cells were then treated with
hesperidin (50 µM), PM2.5 (50 µg/mL), bafilomycin A1 (BAF, 10 nM; Sigma-Aldrich),
LY294002 (50 µM), U0126 (50 nM), SP600125 (5 µM), and SB203580 (10 µM) based on each
representative treatment group. Thereafter, 100 µL of MTT (2 mg/mL) was added to each
well and incubated for 4 h to optimize the formation of formazan crystals. The formazan
crystals were dissolved in DMSO, and the absorbance of the samples was determined using
a scanning multi-well spectrophotometer (Sunrise; Tecan, Männedorf, Switzerland) at a
wavelength of 540 nm. The cell viability was further confirmed using the trypan blue assay.
Briefly, the cells were cultured in a six-well plate at a density of 0.8 × 105 cells/mL, and
then incubated for 16 h. The incubated cells were treated with hesperidin and PM2.5 for
24 h. Thereafter, dead cells were stained with 0.1% trypan blue solution. Cell viability was
calculated as follows: live cells/(live cells + dead cells) × 100 [19].

2.5. Lipid Peroxidation Assay

The cells were cultured at a density of 1.0 × 105 cells/mL in a four-well glass cham-
ber slide. After 16 h of incubation, the cells were treated with hesperidin (50 µM) and
PM2.5 (50 µg/mL), and then incubated for another 24 h. After staining with diphenyl-1-
pyrenylphosphine (DPPP) (Molecular Probes), lipid adducts of DPPP oxide were detected
via confocal microscopy.

2.6. Protein Carbonylation Assay

The cells were cultured at a density of 1.5 × 105 cells/mL and incubated for 16 h.
Thereafter, the cells were treated with hesperidin (50 µM) and PM2.5 (50 µg/mL), and then
incubated for another 24 h. All treated cells were harvested and protein oxidation was
detected using the Oxiselect™ protein carbonyl ELISA kit (Cell Biolabs, San Diego, CA,
USA) following the manufacturer’s instructions.

2.7. Single-Cell Gel Electrophoresis Assay (Comet Assay)

The cells were treated with hesperidin (50 µM) and PM2.5 (50 µg/mL) for 30 min
in microtubes based on each representative treatment group. The microtubes were then
centrifuged to collect cells, which were fixed on glass slides by suspending in 1% low-
melting-point agarose. After fixation, the slides were dipped for 1 h in a lysis buffer of
10 mM Tris-HCl (pH 10), containing NaCl (2.5 M), Na2EDTA (100 mM), Triton X-100 (1%),
and DMSO (10%). The lysed cells on the slides were subjected to electrophoresis (25 V and
300 mA) for 20 min. Finally, the cells on the slides were stained with 1% ethidium bromide,
and the comet tail length was measured using a fluorescence microscope equipped with
image analysis software (Kinetic Imaging, Komet 5.5; Andor, Oxford, UK) [11].

2.8. Detection of 8-Oxoguanine (8-oxoG)

The cells were cultured in a four-well chamber slide at a density of 1.5 × 105 cells/mL
and incubated for 16 h and treated with hesperidin (50 µM) and/or PM2.5 (50 µg/mL) for
another 24 h. The expression of 8-oxoG (an oxidative DNA damage indicator) was de-
tected via avidin-tetramethylrhodamine isothiocyanate (TRITC) conjugate (Sigma-Aldrich)
staining. Images were captured using a confocal microscope.

2.9. Quantification of Cellular Ca2+ Level

The cells were cultured at a density of 1 × 105 cell/mL in a four-well glass chamber
slide and incubated for 16 h at 37 ◦C with 5% CO2. Thereafter, the cells were treated with
hesperidin (50 µM) and/or PM2.5 (50 µg/mL) for 24 h. The treated cells were stained with
Fluo-4-AM (Molecular Probes), and images were captured using a confocal microscope.
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2.10. Mitochondrial Membrane Potential (∆ψm) Analysis

The cells were cultured at a density of 1 × 105 cell/mL in a 4-well glass chamber
slide and incubated for 16 h at 37 ◦C with 5% CO2 in a humidified atmosphere. The cells
were then treated with hesperidin (50 µM) and exposed to PM2.5 (50 µg/mL) for 24 h. The
cells were stained with 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine
iodide (JC-1; Invitrogen, Carlsbad, CA, USA) and analyzed using confocal microscopy.

2.11. Acridine Orange Morphology Assessment

Hesperidin (50 µM) and/or PM2.5 (50 µg/mL)-treated cells were treated with acridine
orange (5 µM; Invitrogen) and incubated for 15 min to assess autophagy. Fluorescence was
detected using a fluorescence microscope (BH2-RFL-T3; Olympus, Tokyo, Japan).

2.12. Western Blotting

After each treatment with hesperidin (50 µM) and PM2.5 (50 µg/mL), the cells were
subjected to total protein extraction using PRO-PREP™ protein extraction solution (iNtRON
Biotechnology, Seoul, Korea). The collected lysates were centrifuged at 13,000 rpm for
5 min. The extracted cell lysates were used to quantify protein levels using a protein assay
reagent kit (Bio-Rad, Hercules, CA, USA). Resolving gel sheets (12% SDS-PAGE) were
used to separate the proteins based on their molecular mass. The separated proteins were
transferred from the gel sheets to nitrocellulose membranes. The nitrocellulose membranes
were blocked with 3% bovine serum albumin for 1 h at 20 ◦C. The membranes were then
incubated with the corresponding primary antibodies at 4 ◦C overnight. Primary antibodies
were used to detect beclin-1, microtubule-associated protein-light chain 3 (LC3), caspase-9,
caspase-3, JNK, phospho-JNK, Akt, phospho-Akt, phospho-p38 (Cell Signaling Technology,
Beverly, MA, USA), Bcl-associated X protein (Bax), B-cell lymphoma-2 (Bcl-2), extracellular
signal-regulated kinase (ERK), phospho-ERK, p38, and actin (Santa Cruz Biotechnology,
Santa Cruz, CA, USA). After incubation with the primary antibodies, the membranes were
incubated with the relevant secondary antibodies for another 1 h at room temperature.
Subsequently, the membranes were treated with Amersham ECL western blotting detection
reagent (GE Healthcare, Buckinghamshire, UK), and exposed to X-ray films (Agfa NV,
Mortsel, Belgium) to visualize the protein bands. Bax, LC3, phospho-ERK, and phospho-
p38 antibodies were monoclonal and the other antibodies were polyclonal [17,20,21].

2.13. Hoechst 33342 Staining

The DNA-specific fluorescent dye Hoechst 33342 (Sigma-Aldrich) was used to detect
apoptosis. The cells were seeded in a 24-well plate at a density of 1 × 105 cells/mL and
incubated for 16 h. The cells were then treated with hesperidin (50 µM) and/or PM2.5
(50 µg/mL), BAF (10 nM), U0126 (50 nM), SB203580 (10 µM), and SP600125 (5 µM). After
each treatment, the cells were stained with Hoechst 33342 (20 µM) and visualized using
a fluorescence microscope equipped with a Cool SNAP-Pro color digital camera (Media
Cybernetics, Silver Spring, MD, USA) [21].

2.14. Statistical Analysis

All experiments were performed in triplicate. Data are presented as mean ± standard
error and were analyzed using Tukey’s test and analysis of variance, using Sigma Stat 3.5
(Systat Software Inc., San Jose, CA, USA). Results with p < 0.05 were considered statistically
significant.
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3. Results
3.1. Hesperidin Restored PM2.5-Mediated Reduced Cell Viability by Mitigating Intracellular
ROS Generation

In our previous, we showed that 50 µM hesperidin exerted cytoprotective effects
against UVB in human HaCaT keratinocytes [22]. Therefore, we selected 50 µM as the
optimum concentration for further analysis. Intracellular ROS levels were quantified via
flow cytometry of H2DCFDA staining and we compared the ROS scavenging ability of hes-
peridin with that of N-acetylcysteine (NAC, a well-known antioxidant). Both hesperidin-
and NAC-treated groups showed a significant reduction in PM2.5-induced intracellular ROS
levels (Figure 1A). As shown in Figure 1B, hesperidin also alleviated the PM2.5-induced in-
tracellular ROS levels, which were assessed via the image of H2DCFDA staining. Thereafter,
we assessed the effect of hesperidin against PM2.5-induced cellular apoptosis. The PM2.5-
treated cells showed the highest apoptotic index, whereas the NAC- and hesperidin-treated
cells showed a significant decrease (Figure 1C). As shown in Figure 1D, PM2.5 reduced
cell viability (68%) compared with the control, as assessed using the MTT assay, whereas
hesperidin restored 82% cell viability. This result was further confirmed using trypan blue
staining, indicating that hesperidin has the potential to restore the PM2.5-mitigated cell
viability index (Figure 1E).
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Figure 1. Hesperidin alleviated intracellular ROS generation and cell viability reduction. Cells were
pretreated with hesperidin (50 µM) or NAC (1 mM) for 1 h, and then exposed to PM2.5 (50 µg/mL) for
another 24 h. Intracellular ROS generation was observed using (A) flow cytometry and (B) confocal
microscopy after H2DCFDA staining. (C) Apoptotic body formation was detected via Hoechst 33342
staining. Arrow indicates apoptotic body. (D) MTT and (E) trypan blue assays were used to determine
cell viability. Arrows indicate the dead cells. * p < 0.05 and # p < 0.05 compared with the control cells
and PM2.5-treated cells, respectively.

3.2. Hesperidin Inhibited the Damage of Cellular Components by PM2.5-Induced Oxidative Stress

DPPP staining was used to assess the effect of hesperidin on PM2.5-induced lipid
peroxidation [11]. As shown in Figure 2A, DPPP fluorescence intensity in the hesperidin-
treated group was mitigated compared with that in the PM2.5-treated group. Protein
carbonylation is considered a biomarker for oxidative stress due to protein damage [11].
PM2.5 triggered protein carbonylation, whereas hesperidin reversed it (Figure 2B). We then
assessed the protective effect of hesperidin on PM2.5-induced DNA damage, which was
confirmed using the comet assay (Figure 2C), where the hesperidin-treated group showed a
significant reduction in comet tail length compared with the PM2.5-treated group. To further
confirm the above result, we assessed the 8-oxoG level using avidin-TRITC staining; PM2.5
triggered the formation of 8-oxoG (high red fluorescence), whereas hesperidin reversed it
(Figure 2D).



Antioxidants 2022, 11, 1363 7 of 14Antioxidants 2022, 11, x FOR PEER REVIEW 7 of 14 
 

(A) 

 

(B) 

 
(C) 

 

(D) 

 

Figure 2. Hesperidin mitigated PM2.5-induced lipid peroxidation, protein carbonylation, and DNA 
damage. Cells were pretreated with hesperidin (50 µM) for 1 h, and then exposed to PM2.5 (50 
µg/mL) for another 24 h. (A) Lipid peroxidation was detected via the image of DPPP staining. (B) 
Protein carbonylation was detected using the protein carbonyl ELISA kit. (C) Comet assay and (D) 
avidin-TRITC staining were used to assess DNA damage. * p < 0.05 and # p < 0.05 compared with the 
control cells and PM2.5-treated cells, respectively. 

3.3. Hesperidin Mitigated PM2.5-Induced Mitochondrial Dysfunction and Autophagy Activation 
ROS can disrupt the cellular Ca2+ homeostasis, which could result in mitochondrial 

stress and autophagy induction [23,24]. PM2.5-induced oxidative stress resulted in both 
intracellular Ca2+ accumulation and mitochondrial damage [11]. As shown in Figure 3A, 
PM2.5 increased intracellular Ca2+ accumulation, which was alleviated by hesperidin. It has 
been reported that calcium overload in the cytoplasm enhances the opening of the mito-
chondrial permeability transition pores and results in mitochondrial membrane depolar-
ization, impairs ATP production, and triggers cellular apoptosis [25]. We then assessed 
the mitochondrial membrane potential (Δψm) via JC-1 staining, where red fluorescence 
represents the polarized status and green fluorescence represents the depolarized status. 
PM2.5 elevated mitochondrial depolarization, which was notably reversed by hesperidin 
(Figure 3B). Autophagy is triggered in response to mitochondrial depolarization to re-
move dysfunctional or damaged mitochondria [25]. We then assessed the effect of hesper-
idin on PM2.5-mediated autophagy activation using acridine orange, which detects au-
tophagic lysosomes with orange/red fluorescence due to their intracellular acidity, which 

Figure 2. Hesperidin mitigated PM2.5-induced lipid peroxidation, protein carbonylation, and DNA
damage. Cells were pretreated with hesperidin (50 µM) for 1 h, and then exposed to PM2.5 (50 µg/mL)
for another 24 h. (A) Lipid peroxidation was detected via the image of DPPP staining. (B) Protein
carbonylation was detected using the protein carbonyl ELISA kit. (C) Comet assay and (D) avidin-
TRITC staining were used to assess DNA damage. * p < 0.05 and # p < 0.05 compared with the control
cells and PM2.5-treated cells, respectively.

3.3. Hesperidin Mitigated PM2.5-Induced Mitochondrial Dysfunction and Autophagy Activation

ROS can disrupt the cellular Ca2+ homeostasis, which could result in mitochondrial
stress and autophagy induction [23,24]. PM2.5-induced oxidative stress resulted in both
intracellular Ca2+ accumulation and mitochondrial damage [11]. As shown in Figure 3A,
PM2.5 increased intracellular Ca2+ accumulation, which was alleviated by hesperidin. It
has been reported that calcium overload in the cytoplasm enhances the opening of the
mitochondrial permeability transition pores and results in mitochondrial membrane depo-
larization, impairs ATP production, and triggers cellular apoptosis [25]. We then assessed
the mitochondrial membrane potential (∆ψm) via JC-1 staining, where red fluorescence
represents the polarized status and green fluorescence represents the depolarized status.
PM2.5 elevated mitochondrial depolarization, which was notably reversed by hesperidin
(Figure 3B). Autophagy is triggered in response to mitochondrial depolarization to remove
dysfunctional or damaged mitochondria [25]. We then assessed the effect of hesperidin
on PM2.5-mediated autophagy activation using acridine orange, which detects autophagic
lysosomes with orange/red fluorescence due to their intracellular acidity, which forms
cytoplasmic vesicles [21]. As shown in Figure 3C, PM2.5 augmented the accumulation
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of intracellular vacuoles, which was mitigated by hesperidin. According to the western
blotting results, PM2.5-treated cells prominently expressed autophagy-related proteins
such as beclin-1 and LC3, whereas hesperidin mitigated the expression of these proteins
(Figure 3D).
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Figure 3. Hesperidin prevented PM2.5-induced intracellular Ca2+ accumulation, mitochondria dys-
function, and autophagy. Cells were pretreated with hesperidin (50 µM) for 1 h, and then exposed
to PM2.5 (50 µg/mL) for another 24 h. (A) Intracellular Ca2+ level was detected using confocal
microscopy after Fluo-4-AM staining. (B) The mitochondrial membrane potential was detected using
confocal microscopy after JC-1 staining. (C) Autophagy was detected using fluorescence microscopy
after acridine orange staining. (D) Cell lysates were subjected to western blotting of target proteins
(beclin-1, LC3, and actin).

3.4. Hesperidin Ameliorated Cellular Apoptosis via the Inhibition of PM2.5-Induced Autophagy

PM2.5-induced intracellular vacuole accumulation was further clarified using BAF,
a lysosomal inhibitor [26]. Compared with BAF-treated cells, hesperidin-treated cells
exhibited a considerable reduction in PM2.5-induced intracellular vacuole accumulation
(Figure 4A). In addition, BAF, hesperidin, or both notably decreased PM2.5-induced apop-
tosis, as assessed using Hoechst 33342 staining (Figure 4B), resulting in the significant
recovery of PM2.5-mediated reduced cell viability, as assessed using MTT and trypan blue
assays (Figure 4C,D).
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Figure 4. Hesperidin prevented cellular apoptosis and reduced cell viability via the inhibition of
PM2.5-induced autophagy. Cells were pretreated with hesperidin (50 µM), BAF (10 nM), or both for
1 h, and then exposed to PM2.5 (50 µg/mL) for another 24 h. (A) Autophagy was detected using
images captured via fluorescence microscopy after staining with acridine orange. (B) Apoptotic
bodies were observed using Hoechst 33342 staining, and the arrows indicate apoptotic bodies. Cell
viability was assessed via (C) MTT assay and (D) trypan blue staining, and the arrows indicate the
dead cells. * p < 0.05, ** p < 0.05, and # p < 0.05 compared with BAF-untreated control cells, BAF-
untreated PM2.5-exposed cells, and BAF-untreated hesperidin + PM2.5-exposed cells, respectively.

3.5. Hesperidin Inhibited PM2.5-Induced Cellular Apoptosis via MAPK Inactivation

We assessed the expression of apoptosis-related proteins, Bax, Bcl-2, cleaved caspase-9,
and cleaved caspase-3. PM2.5 enhanced the expression levels of Bax, cleaved caspase-9, and
cleaved caspase-3 protein, but hesperidin reversed this pattern (Figure 4A). In addition,
hesperidin increased the expression of anti-apoptotic protein Bcl-2, which was inhibited by
PM2.5 exposure (Figure 4A). Considering the activation of the MAPK signaling pathway,
we assessed the expression levels of the active form of intracellular ERK, JNK, p38, and
Akt proteins. PM2.5-treated cells presented the upregulated expression of phospho-ERK,
phospho-JNK, and phospho-p38, whereas hesperidin pretreatment mitigated phosphory-
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lated protein expression (Figure 4B). Furthermore, hesperidin pretreatment upregulated the
expression of phospho-Akt, which was reduced by PM2.5 exposure (Figure 4B). To confirm
whether hesperidin exerted its cytoprotective effect against PM2.5 through the inhibition of
MAPK pathway activation, we performed cellular apoptosis and cell viability assessments
using MAPK pathway-related protein inhibitors. ERK, JNK, and p38 inhibitors decreased
the PM2.5-induced apoptotic body formation, similar to the reduced pattern observed under
hesperidin treatment (Figure 4C). To investigate the cell viability levels, the trypan blue
and MTT assays were performed, and the results confirmed that all inhibitors increased
PM2.5-mediated reduced cell viability, similar to the viability of hesperidin-treated cells
(Figure 4D,E). Furthermore, to demonstrate that hesperidin antagonizes the repressive
effect of PM2.5 on Akt activation, we performed the MTT assay with the PI3K inhibitor
LY294002. The cell viability of the hesperidin + LY294002 + PM2.5 group decreased com-
pared to that of the hesperidin + PM2.5 group, indicating that hesperidin has the potential
to restore PM2.5-suppressed Akt via the activation of PI3K (Figure 4F).
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Figure 4. Hesperidin mitigated PM2.5-induced cell apoptosis and MAPK activation. Cells were
pretreated with hesperidin (50 µM) for 1 h, and then exposed to PM2.5 (50 µg/mL) for another 24 h.
(A) Cell lysates were subjected to western blotting for Bax, Bcl-2, cleaved caspase-9, cleaved caspase-3,
(B) phospho-ERK, ERK, phospho-JNK, JNK, phospho-p38, p38, phospho-Akt, Akt. Actin was used as
the loading control. Cells were pretreated with hesperidin (50 µM), U0126 (50 nM), SP600125 (5 µM),
SB203580 (10 µM), and LY294002 (50 µM) for 1 h, and then exposed to PM2.5 (50 µg/mL) for 24 h.
(C) Hoechst 33342 staining was used to assess cellular apoptosis, and the arrows indicate apoptotic
bodies. Cell viability was assessed using (D) trypan blue, arrows indicating the dead cells, and
(E,F) MTT assays. * p < 0.05, # p < 0.05, and ** p < 0.05 compared with the control cells, PM2.5-exposed
cells, and hesperidin + PM2.5-exposed cells, respectively.

4. Discussion

The present study showed that hesperidin alleviates the PM2.5-induced ROS gener-
ation and cellular macromolecule damage (DNA, protein, and lipid), thereby protecting
against PM2.5-mediated cell viability reduction.

Autophagy involves the degradation of cellular organelles and recycling of damaged
cellular organelles and abnormal proteins to maintain intracellular homeostasis. How-
ever, overactivation of autophagy may damage critical cellular components, resulting in
aberrant cell shapes and cell death [27]. Excessive autophagy activation may contribute to
apoptotic cell death via unchecked degradative processes [28]. Excessive ROS production
can result in defective autophagy, hyperactivation, or inhibition of autophagic flux, and
apoptosis [29]. In our previous study, we demonstrated that PM2.5 induced the generation
of ROS and autophagy, resulting in apoptosis [11]. However, the present study showed
that hesperidin alleviates both PM2.5-mediated autophagy activation and apoptosis via its
antioxidant effect.

The MAPK pathway is activated in response to cellular stress, and it is implicated
in cellular signaling that leads to cell death or survival [30]. Hesperidin mitigated PM2.5-
mediated MAPK activation and cell apoptosis, which suggests that hesperidin exerts its
therapeutic potential against PM2.5 via the inhibition of MAPK activation. It has been
reported that the activation of PI3K and its downstream Akt could increase cell survival via
the inhibition of apoptosis [18]. We observed that hesperidin could increase cell viability
reduced by PM2.5 via Akt activation, suggesting that hesperidin has therapeutic potential
against PM2.5-mediated cellular damage via the inhibition of MAPK activation as well
as the activation of PI3K/Akt. It has been reported that PM2.5 could induce cell death in
multiple ways including apoptosis, necrosis, pyroptosis, and ferroptosis [31,32]. For our
further studies, we plan to evaluate the effects of hesperidin by focusing on PM2.5-induced
apoptosis and other forms of cell death including ferroptosis and pyroptosis.

Overall, hesperidin mitigated PM2.5-induced macromolecular damage, alleviated au-
tophagy hyperactivation, and inhibited cell apoptosis via the inhibition of MAPK activation,
and induced cell survival via PI3K/Akt activation (Figure 5).
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Figure 5. Schematic diagram summarizing the protective mechanism of hesperidin against PM2.5-
induced cell damage. Hesperidin protects keratinocytes by suppressing PM2.5-induced intracellular
ROS generation, intracellular macromolecules damage, autophagy activation, and cell apoptosis.
Hesperidin alleviates cell apoptosis via the inhibition of PM2.5-induced MAPK activation as well
as excessive autophagy activation, which may cause the uncontrolled degradation of intracellular
components that eventually results in apoptosis and cell death. Furthermore, hesperidin restored the
PM2.5-mediated decrease in cell viability via the activation of the PI3K/Akt pathway.

5. Conclusions

Our study demonstrated that hesperidin exerts the protective effect against PM2.5-
induced cell death by alleviating excessive ROS generation, macromolecule damage, exces-
sive autophagy activation, and cell apoptosis. On the basis of our findings, hesperidin is a
drug candidate for skin protection against air pollutants.
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