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Abstract
Background: Deconjugation of ubiquitin and/or ubiquitin-like modified protein substrates is
essential to modulate protein-protein interactions and, thus, signaling processes in cells. Although
deubiquitylating (deubiquitinating) enzymes (DUBs) play a key role in this process, however, their
function and regulation remain insufficiently understood. The "loss-of-function" phenotype studies
can provide important information to elucidate the gene function, and zebrafish is an excellent
model for this goal.

Results: From an in silico genome-wide search, we found more than 90 putative DUBs encoded in
the zebrafish genome belonging to six different subclasses. Out of them, 85 from five classical
subclasses have been tested with morpholino (MO) knockdown experiments and 57 of them were
found to be important in early development of zebrafish. These DUB morphants resulted in a
complex and pleiotropic phenotype that, regardless of gene target, always affected the notochord.
Based on the huC neuronal marker expression, we grouped them into five sets (groups I to V).
Group I DUBs (otud7b, uchl3 and bap1) appear to be involved in the Notch signaling pathway based
on the neuronal hyperplasia, while group IV DUBs (otud4, usp5, usp15 and usp25) play a critical role
in dorsoventral patterning through the BMP pathway.

Conclusion: We have identified an exhaustive list of genes in the zebrafish genome belonging to
the five established classes of DUBs. Additionally, we performed the corresponding MO
knockdown experiments in zebrafish as well as functional studies for a subset of the predicted DUB
genes. The screen results in this work will stimulate functional follow-up studies of potential DUB
genes using the zebrafish model system.
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Background
During the past 15 years, protein modification by ubiqui-
tin (UBQ) and ubiquitin-like (UBL) molecules has been
suggested to be an important mechanism in regulating
numerous critical cellular processes, such as signal trans-
duction, transcriptional control, protein degradation, epi-
genetic modification and intracellular localization. UBQ
is a 76 amino-acid protein that is covalently linked to
lysine residues of target proteins in a multi-step process.
The process of UBQ conjugation involves three basic
classes of enzymes. UBQ-activating enzymes (E1s) acti-
vate the C terminus of UBQ, resulting in the formation of
an ATP-dependent thio-ester that is linked to the E1's
active site - cysteine residue. Afterwards, UBQ is trans-
ferred to the active site - cysteine residue - of an E2 conju-
gating enzyme. The third class of enzymes, the UBQ-
protein ligases (E3s) catalyze the final reaction (the UBQ-
conjugation process), in which the UBQ is attached to the
lysine residue of the protein substrate (reviewed in [1,2]).
As a result of the ubiquitylation (ubiquitination) process,
the target protein can be modified by a single UBQ
(mono-ubiquitylation) or several UBQs (poly-ubiquityla-
tion), which determines the tagging outcome [3].

Deconjugation of UBQ- and/or UBL-modified protein
substrates is essential to recycle both the substrate pro-
teins and the UBQ or UBL modifiers; thus, this process
influences protein-protein interactions, signaling proc-
esses and the pool of free UBQ/UBL within the cell. The
deconjugation process is managed by deubiquitylating
enzymes (DUBs). The DUBs are in a heterogeneous group
of cysteine or metalloproteases [4], which can cleave the
scissile peptide bond between the last residue of UBQ
(Gly 76) and target proteins. Since their discovery in
1990s, DUBs have been emerging as key regulators in
many basic cellular processes. For example, they modu-
late the ubiquitin-proteasome system (reviewed in [5,6]).
Recently, numerous studies have shown that DUBs are
linked to diseases such as cancer. CYDL is a tumor sup-
pressor [7-11]; UCHL1 and USP24 are involved in Parkin-
son's disease [12-16]; ATXN3 influences ataxias [17,18].

Most extensively, DUBs have been studied in the human
genome [4]. The classical DUBs can be divided into five
subclasses based on their UBQ-protease domains. These
are (i) UBQ-specific proteases (USPs), (ii) otubain pro-
teases (OTUs), (iii) UBQ C-terminal hydrolases (UCHs),
(iv) Machado-Joseph disease proteases (MJDs) and (v)
JAMM motif proteases (JAMMs). Nijman et al. have iden-
tified 95 DUBs, out of which the overwhelming majority
(58) belongs to the USP class. Whereas the DUBs in the
JAMM family are metalloproteases, the other four groups
belong to the cysteine protease class. Additionally, two
more subclasses of DUBs have been suggested based on
evidence from sequence homology [19]. The so-called

PPPDE group involves papain-like proteases and the
WLMs (Wss1p-like proteases) are metalloproteases. Both
are hypothesized to play a role in removal of UBQ or UBL
from substrate proteins. Experimentally, DUBs can be
identified with several approaches such as using hemag-
glutinin-tagged (HA) UBQ-derived probes [20] or biotin-
labeled UBQ aldehyde probes [21] for labeling. These
methods had been used to identify several members of the
USP, UCH and OTU families [6]. Alternatively, extension
of families of known or suspected representatives of DUB
classes is possible with the in silico collection of families of
significantly similar sequences within the homology con-
cept.

It must be noted that the understanding of the DUBs'
functions remains very limited despite considerable
research efforts. Apparently, the problems are associated
with the large number of various DUBs (some of which
might compensate for others in parallel pathways) and
with their position in the subcellular gene networks where
a single DUB can affect several pathways via its protein
substrates. One possibility to get new insight into the
problem is to involve new model organisms into the anal-
ysis and to rely on their specific methodological advan-
tages. The zebrafish (Danio rerio) system with its
morpholino (MO) technology is superbly suited for easily
studying the loss-of-function phenotype in vivo, impor-
tant information necessary to elucidate the genes' func-
tion [22,23]. In this work, we use the zebrafish model to
identify the MO knockdown phenotypes of potential
DUB genes that we have identified with in silico methods
from the genome sequence. The respective experiments
have been carried out for 85 putative DUBs. 57 out of the
85 genes were found to be required for normal develop-
ment and their morphants have exhibited complex phe-
notypes always with inclusion of notochord
deformations. In order to narrow down the functions in
development for some of the genes, we chose a neuronal
marker, huC, for grouping the DUBs into subgroups that
provide hints for specific pathway involvement. This first
loss-of-function study of DUB genes in zebrafish provides
a valuable resource for further DUB studies in vertebrates.

Results
Zebrafish has more than 90 putative DUBs encoded in its 
genome
DUB-subclass-specific Hidden Markov model and BLAST/
PSI-BLAST searches (as described in the Methods section)
have been applied for identifying DUBs in the proteome
of zebrafish. It should be noted that the first genome-wide
search has been started in February 2008 and was regu-
larly repeated (last time, in April 2009). Depending on the
zebrafish proteome and the non-redundant protein data-
base, the numbers of hits were slightly different and not
all putative DUB sequences were known at the planning
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stage of experimental work. Therefore, we conclude that
our current list of potential DUBs in zebrafish might not
be completely exhaustive; yet, it appears comprehensive at
the time of writing. For the ubiquitin-specific protease
(USP) class containing a UCH (PF0043) domain, we
determined 51 proteins. 15 zebrafish proteins resembling
OTU-like cysteine proteases (OTUs) have an OTU
(PF02338) domain. Another three proteins have the fea-
tures of Machado-Joseph disease proteases (MJDs) with
Josephine domain (PF02099). There are four zebrafish
ubiquitin C-terminal hydrolase proteins (UCHs) sharing
a Peptidase_C12 (PF1088) domain. The DUB metallopro-
teases are represented by 14 proteins carrying a Mov34/
MPN/PAD-1 family (PF01398) domain (JAMMs).
Another four proteins belong to the PPPDE class
(PF05903). In total, this results in 91 candidate targets. In
Additional file 1, the names and accession numbers of all
91 hits are shown.

The sequence domain architectures of all 91 DUB hits are
also shown in Additional file 1. The combination of UBQ-
protease domains with domains and motifs from the
ubiquitylation pathway (such as ubiquitin-associated
UBA, ubiquitin UBQ and ubiquitin-interacting motif,
UIM) is not a real surprise, whereas the association with
nucleic-acid binding domains (Myb_DNA_binding,
PRO8 and Tudor) and protein-binding domains (SWIRM
and MATH) would make sense in the context of the
involvement of DUB proteins in the regulation of gene
expression. The PRPF8 (pre-mRNA-processing-splicing
factor 8) protein, a member of the JAMM protein family,
is known to be one of the largest and most highly con-
served nuclear protein that occupies a central position in
the catalytic core of the spliceosome [24]. Another mem-
ber of the JAMM protein family, MYSM1, is a histone H2A
deubiquitinase that regulates transcription by coordinat-
ing histone acetylation and deubiquitylation, and destabi-
lizing the association of linker histone H1 with
nucleosomes [25]. We searched the scientific literature
extensively for evidence for DUB functions and the sum-
mary of known DUBs is shown in Additional file 2.

We think that both the human and zebrafish DUB lists are
not complete at present and revisions of the genome build
or the proteome lists will lead to some correction. As a
general trend, the total numbers as well as the numbers of
DUBs in the subclasses are quite comparable between
both organisms [4]. For the overwhelming majority
(about four fifths), there are also clear orthologues in fish
and humans (these genes carry the names of their human
counterparts in Additional file 1); yet, there are also a few
cases of missing equivalents in either organism or organ-
ism-specific duplications and it is not clear at present
whether genome revisions will resolve these discrepan-
cies. So far, it appears too early to draw biological conclu-
sions out of differences in the DUB lists.

57 DUB genes are required for zebrafish early 
development
At the time of starting the MO experiments, our list com-
prised 85 gene entries. For most of them, we found
records in GenBank and/or the Ensembl genome database
(Additional file 3) suitable for straightforward MO design.
It is a common and general practice to design the MOs
that target the ATG translation sites. Translation-blocking
MO interferes with the protein translation process of the
target gene. However, ATG translation start site informa-
tion was missing for 11 sequences and we used a worka-
round as described in the Methods section. For these
genes, we designed MOs targeting splicing of exon-intron
junction that is on or in the vicinity of conserved domains
(marked in bold italics in Additional file 3).

Among all 85 MOs tested, 26 MOs (31%) led to no detect-
able morphological phenotypes, while two MOs (2%)
resulted in cell death in early developmental stages (cell
arrest after 30% epiboly). The remaining 57 MOs (67%)
gave different observable phenotypes, including abnor-
mal development in head, brain, eyes, body axis, noto-
chord, precardial region, yolk and tail. Most of the MOs
did not specially affect one region but several. The noto-
chord was always affected in the MO knockdown experi-
ments. The results are summarized in Additional file 4. In
this table, brief phenotypic descriptions and images of the
morphants are shown.

Classifying DUB genes into five subgroups according to 
their huC expression level and pattern
As we mentioned above, most of the DUB genes gave plei-
otropic phenotypes. It appears difficult to classify the
diverse phenotypes based on their varied morphology.
Therefore, we applied additional in situ staining of the
neuronal huC marker. We chose huC as the primary
marker because of its strong and easily recognizable stain-
ing patterns in zebrafish early development. In addition,
neuronal development is always a hot topic and research-
focusing point. In the screen, its distinctive distribution
patterns allowed classifying 83 out of 85 DUB genes into
five groups (except for zranb1a and usp46 (2%) that
resulted in cell death). The largest group includes 47
members (group V, 55%), which shows no change in huC
expression level or patterning. Within this group, all the
members exhibit the same neuronal pattern as the con-
trol. Neurons are formed in a well-organized manner
(data not shown). Group I is the only group that has an
increased huC expression (increase in both expression
level and number of neurons) and/or enlarged patterning
and is composed of three members (4%). Overgrown
hindbrain neurons were found among them (Figure 1A-
D). Groups II to IV are characterized by a decrease in huC
expression with different patterns. Group II shows
decreased huC expression without changed patterning
and comprises 16 members (19%). Group III exhibits
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decreased huC expression with slightly destructive pat-
terning effect and has 13 members (15%). They have
abnormal shape of hindbrain neurons, such as curved
neuron pattern and uneven cranial ganglia length. Finally,
group IV features a decrease of huC expression together
with severely destructed patterning and it is made up of 4
members (5%). All the members in this group cannot
form organized neuronal patterns. Besides, individual
small clusters of neurons were observed. Moreover, all the
cranial ganglia structures were lost in this group. Selected
results among them are shown in Figure 2. Since groups I
and IV showed distinct huC in situ results, we next focused
on these two groups for general signaling and develop-
mental studies. The classification is summarized in Addi-
tional file 4.

otud7b, bap1 and uchl3 (group I) may be involved in 
Notch signaling
The knockdown of group I DUB genes resulted in
increased huC expression (Figure 1A-D, Additional file 5),
indicating an increase in neurons. Neurogenesis is the
process of forming neurons in the early development.
Neuronal death during the development is a normal proc-
ess happened in the normal development [26]. One of the
well known midline cell fate signaling is the Notch path-
way [27,28]. Inactivation of Notch pathway leads to a fail-
ure of the lateral inhibition, which results in premature
differentiation of neural progenitors and permits neuron
mass production.

Activation of Notch leads to her4 expression [29]. Mor-
phants of all group I DUB genes (otud7b, bap1 and uchl3)
showed neuronal hyperplasia, indicating a compromise
in Notch-dependent lateral inhibition during develop-
ment (Figure 1A-D). Consistently, all their morphants

huC and her4 expression in morphants of group I zebrafish DUBs at 24 hpfFigure 1
huC and her4 expression in morphants of group I 
zebrafish DUBs at 24 hpf. huC and her4 expression at 24 
hpf, dorsal view. Increase in huC expression was found in 
morphants of group I DUBs when compared to control (A-
D). There are 3 members in this group, which named as 
otud7b, bap1 and uchl3. The arrows mark the increased huC 
expression area (B-C), while the arrowheads mark the 
denser expression pattern (D). uchl3 morphants showed the 
most severe effect with both stronger and denser huC 
expression. her4 is a downstream target gene in the Notch 
signaling pathway, increase of neurons may be due to the 
decrease of the Notch activation. Decrease in her4 expres-
sion was found in morphants of all group I DUBs when com-
pared to control (E): otud7b (F), bap1 (G) and uchl3 (H). 
Arrows show the absence of her4 expression in the mor-
phants. The number of embryos with the presented pheno-
type is shown in the right bottom corner of each panel.

Comparison of huC expression in morphants of groups II, III and IV zebrafish DUBs at 24 hpfFigure 2
Comparison of huC expression in morphants of 
groups II, III and IV zebrafish DUBs at 24 hpf. huC 
expression at 24 hpf, dorsal view. Decreased huC expression 
was found in morphants of these 3 groups. Group II has 16 
members that showed a typical decreased huC expression 
(arrows). Group III has 13 members that showed the 
decreased huC expression with destructive patterning. Lastly, 
group IV has 4 members that had the most severe decreased 
and destructive huC expression. All 4 members named otud4, 
usp5, usp15 and usp25 could not form a normal neuronal pat-
tern in the head region. Arrowheads mark the abnormal pat-
terns in morphants of group III; while arrows indicate the 
absence of neurons in morphants of group IV.
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showed decreased her4 expression in descending order of
otud7b, bap1 and uchl3 (Figure 1E-H, Additional file 5),
indicating that their corresponding genes may be involved
in the Notch signaling pathway.

otud4, usp5, usp15 and usp25 (group IV) play critical roles 
in dorsoventral patterning
From the huC expression, we noticed that neurons of
group IV morphants are not well organized, implying that
their dorsoventral patterning might be affected in the
early stages. From the phenotypic studies at 24 hpf, the
group IV morphants have dorsalized phenotypes that
ranged from C1 to C5 (Additional file 6), where C5 shows
the strongest dorsalized phenotype [30,31]. Their pheno-
types became milder afterwards (Additional file 4), which
might be due to the decreasing MO blocking effect at later
stages and/or negative feedback regulation on gene
expression [32]. We collected the MO-injected embryos
for in situ staining at about 50%-60% epiboly and 10-
somite stages. Several molecular markers were used to
examine the mesoderm, ectoderm and dorsolateral
regions.

Three different markers of ventral territories (bmp4, eve1
and gata2) and two dorsal ectoderm and mesoderm mark-
ers (chd and gsc) were used. Bone morphogenetic protein
4 (Bmp4) is important to the dorsoventral patterning of
the mesoderm. The failure of its expression in dorsal blas-
tomeres causes the ventralization of the embryo [33-35].
eve1 is a zebrafish homeobox gene similar to even-skipped
in Drosophila [36]. It is strongly expressed in the ventrola-
teral marginal cells. gata2 is a hematopoietic transcription
factor gene [37] that is expressed in a pattern similar to
eve1. It is a marker for ventral ectoderm and hematopoi-
etic cells in ventral mesoderm. All three markers showed
similar results in the group IV morphants. Their tran-
scripts in the ventral half of the marginal and the animal
zone are expressed in a more restricted area than controls
(Figure 3A-O, Additional file 7). For the dorsal patterning,
we used chordin (chd) and goosecoid (gsc). Chordin can
antagonize and repress BMP4 and is normally dorsally
restricted [38]. Similarly, gsc expression is also restricted to
dorsal region [39]. Expression of chd and gsc in the mor-
phants was expanded into lateral domains (Figure 3P-Y).
To summarize, the ventral fates were affected and
restricted in a smaller area while the dorsal region was
expanded during gastrula.

The shift of various marker genes (bmp4, chd, eve1, gata2
and gsc) would result in phenotypic changes in the later
developmental stages. In order to confirm that the dorsal-
ized effects are maintained after gastrulation, we chose
some other in situ markers for the studies at 10-somite
stage: myoD is used for dorsal mesoderm and somite mus-
cle staining [40,41]; gata1 is ventrally expressed in pre-

sumptive hematopoietic cells in two lateral stripes
[37,42]; and pax2a is used for marking the presumptive
neural region [43]. From the in situ results, we found that
myoD and pax2a expression patterns were expanded in
group IV morphants, indicating a dorsalized phenotype
[41,44]. myoD expression in otud4, usp5 and usp25 mor-
phants was weaker but wider. The number of stained
somatic muscles was decreased. usp25 morphants showed
the most severe result while usp15 showed a similar myoD
pattern to wild-type (Figure 4F-J). For gata1 staining, wid-
ening of the two lateral stripes of presumptive hematopoi-
etic cells was found in otud4, usp5 and usp25 morphants.
Same as the results of other probes, usp15 morphants
showed a similar gata1 expression pattern as wild-type
(Figure 4K-O). Similarly, in pax2a in situ staining, usp15
morphants showed a similar expression pattern as wild-
type. In otud4, usp5 and usp25 morphants, distance
between two otic vesicles was increased, which featured
dorsalization. In addition, usp25 morphants also showed
a decreased pax2a expression in otic vesicles (Figure 4P-T).
Taken together, the abnormal dorsoventral patterning in
morphants of otud4, usp5, usp15 and usp25 genes started
from gastrula and continued in later developmental

Comparison of ventral (bmp4, eve1, gata2) and dorsal (chd, gsc) markers expression in morphants of group IV zebrafish DUBs at 50-60% epibolyFigure 3
Comparison of ventral (bmp4, eve1, gata2) and dorsal 
(chd, gsc) markers expression in morphants of group 
IV zebrafish DUBs at 50-60% epiboly. Ventral markers 
(bmp4, eve1 and gata2) and dorsal markers (chd and gsc) 
expression of group IV morphants at 50-60% epiboly stage, 
animal pole views, dorsal towards the right. otud4 (B, G, L, Q, 
V), usp5 (C, H, M, R, W) and usp25 (E, J, O, T, Y) morphants 
showed narrower expression pattern for ventral markers 
(A-O) but wider expression pattern of dorsal markers (P-Y). 
usp15 showed a similar expression pattern (D, I, N, S, X) 
with control (A, F, K, P, U). Red dot lines indicate the normal 
expression margin of ventral markers in wild-type embryos.
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stages. In addition, while usp25 morphants always
showed a more severe dorsalized pattern, usp15 always
showed the least.

The group IV DUB genes are likely involved in the BMP 
pathway
The BMP signaling pathway is well known for its essenti-
ality in many developmental processes [45]. In zebrafish,
it plays a main role in determining the ventral cell fates
[46]. Briefly, the BMP signaling pathway starts from the
BMP receptors activation. The receptors are mediated by
BMPs and will active the Smad proteins (R-Smad)
through phosphorylation. The Smad protein will then
bind to a common mediator Smad (Co-Smad) to form
complexes, which will finally be translocated into the
nucleus and act as transcriptional regulators. Mutations of
ventral bmp gene will result in the dorsalization of the
embryo. swirl (swr) and snailhouse (snh) [30] are two well
known mutants that have mutations in bmp2b [31] and

bmp7 genes [47,48], respectively. To gain further insights
into where group IV DUBs function in the BMP pathway,
we preformed co-injection of group IV MOs and selected
mRNA of BMP signaling genes. Single mRNA injections of
bmp4 and smad1 resulted in ventralized phenotypes as
previously described [31,49]. When embryos were
injected with bmp4 mRNA and group IV MO, we observed
ventralized phenotypes (Figure 5E-G). The results seemed
to disagree with our hypothesis, since Bmp4 is at the
uppermost position in the BMP pathway. However,
because DUBs are enzymes, their functions might be com-
pensated or replaced by others. Thus, we preformed co-
injection of bmp4 mRNA with different combination of
group IV DUB MOs. Based on the single MO injection
result, we chose the most effective usp25 MO as a basic
component and all the MO concentrations were halved as
single injection. Except for the mild effect of usp15+usp25
double knockdown, both otud4+usp25 and usp5+usp25
MOs significantly enhanced the dorsalized phenotypes in
embryos co-injected with bmp4 mRNA (Figure 5E-G). For
co-injection of smad1 mRNA and group IV MOs, ventral-
ized phenotypes were found (Figure 5H-J). Specific injec-
tion amounts were tabulated in Table 1. In the table, we
introduced the Dorsal-Ventral (DV) value, which was cal-
culated by the frequencies of phenotypes times a fixed
value (5 for C5, 4 for C4, -4 for V4 and -3 for V3 pheno-
types, etc.). The final DV value indicated the average result
of the co-injection experiments. To summarize, the com-
bination MOs could not rescue ventralized phenotypes
caused by smad1 mRNA injection (negative DV value),
while maintained their dorsalized phenotypes when co-
injected with the bmp4 mRNA (positive DV value except
the mild effect of usp15+usp25). These data suggested that
the group IV DUBs act downstream of Bmp4 and
upstream of Smad1 in dorsoventral patterning. The sub-
strate of the particular E3 ligase in the BMP pathway can
be deubiquitylated more efficiently by two DUBs. Collec-
tively, all the group IV DUB genes are involved in the BMP
pathway and can affect the early dorsoventral patterning
in the zebrafish. The proposed working model is depicted
in Figure 6A-G. We classified the phenotypes based on
Additional file 6 and further confirmed by in situ staining
using different molecular markers at different stages
(Additional file 8).

Discussion
In this paper, we describe our identification of candidate
DUB genes in zebrafish and the results of the "loss-of-
function" screen based on the morpholino technology;
thus, vastly extending the available biological informa-
tion about DUB gene function and creating a resource for
their further functional study. To our knowledge, "loss-of-
function" studies of DUBs in any kinds of organism have
been carried out only for very few genes due to the consid-
erable cost associated with raising genetic knockout- and/
or knockdown-modulated animals. Zebrafish is a model

Comparison of myoD, gata1 and pax2a expression in mor-phants of group IV zebrafish DUBs at 10-somite stageFigure 4
Comparison of myoD, gata1 and pax2a expression in 
morphants of group IV zebrafish DUBs at 10-somite 
stage. Morphology of group IV morphants at 10-somite 
stage (A-E). Lateral expansion of somite muscles were indi-
cated (arrowheads and purple dot lines) in otud4 (B), usp5 
(C) and usp25 (E) morphants. usp15 (D) morphants showed 
a similar phenotype as control (A). myoD, gata1 and pax2a 
expression at 10-somite stage, dorsal view (F-T). Orange dot 
lines represent the distance between two lateral stripes; blue 
dot lines indicate the distance between two optic vesicles; 
while red dot lines show the distance between midbrain and 
otic vesicle. mb, midbrain; ot, otic vesicle; n, neuronal and p, 
pronephric precursor expression domains. otud4, usp5 and 
usp25 morphants showed features of dorsalization: lateral 
expression of myoD (G-J, marked with arrows), pax2a (Q-T) 
and widening of the gata1 (L-O) mesoderm distance expres-
sion. usp15 (I, N, S) showed a similar expression to control 
(F, K, P). All are head to the left.
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organism that is well suited to fill this gap. It is well
known for its fast life cycle and the transparency of its
embryos. Recently, the techniques of using MO knock-
down and mRNA overexpression by microinjection fur-
ther advance the versatility of using zebrafish as a model
system. Developmental processes are always an interest-
ing area for studying gene functions. Thus, we used the
zebrafish to perform the DUB genes "loss-of-function"
screen to understand their developmental functions.

More than 90 DUB candidates in zebrafish were found
To begin with, we started an in silico screen aimed at iden-
tifying potential DUB genes from the zebrafish genome.
Although both the genome and the proteome of zebrafish
are subject to some changes and corrections in the future,
the available sequence data is sufficient for deriving the
overwhelming part of the complete genes of DUB candi-
dates. For six of the described seven classes of DUBs (USP,
OTU, UCH, MJD, JAMM, PPPDE), we found 91 candi-
dates. As expected, there are no candidates for the WLM

group. Both in total number and in respect to the distribu-
tion among subclasses, zebrafish and human are not very
different. For most (ca. 80%) of the candidates, there are
obvious orthologues in both organisms although there
are occasional organism-specific duplications or missing
DUBs (Table 2). The sequence domain architecture analy-
sis of the DUBs showed co-occurrence with domains char-
acteristic for UBQ/UBL pathways as well as for gene
expression, chromatin and cytoskeletal re-structuring
processes; thus, it is likely that DUBs influence the respec-
tive biomolecular mechanisms (Additional file 1).

DUB genes play different roles in the developmental 
processes
Out of 85 putative zebrafish DUB genes that were sub-
jected to a MO test, 57 DUB morphants show pleiotropic
phenotypes throughout the body. From the results, we
infer that DUB genes play different roles in the early
zebrafish developmental processes, ranging from the dor-
soventral patterning during the gastrulation to the fine-
tuning of neurons and fin phenotypes. Most of the DUB
genes appear multi-functional: they affect not only one
and single developmental process. Taking Cyld as an
example, there are published papers using the Cyld knock-
out mice for the studies. They have different effects on
spermatogenesis and osteoclastogenesis [50,51]. Deubiq-
uitylation is an important process for cells to maintain the
cellular level of UBQ. Different cellular processes require
ubiquitylation. E3 ligase is an enzyme that is involved in
the last step of ubiquitylation. E3 ligases like BIR repeat-
containing Ubiquitin-conjugating enzyme (BRUCE) and
Mind bomb (Mib) perform different functions. BRUCE
can regulate the apoptosis and cytokinesis [52,53], while
Mib can facilitate the internalization of cell surface Delta
in signal-sending cell and promote Notch activation in
signal-receiving cells [54,55]. The number of UBQ E3
ligases is far greater than that of DUB enzymes, which
implies that, as a trend, one DUB enzyme could deubiq-
uitylate the substrates of several E3 ligases [4]. This fact
may explain why our DUB-morphants did not show any
unique and specific phenotypes. The resulting normal
phenotype in some morphants may be due to the non-
specific or/and low dosage of the MOs. Besides, we could
not exclude the possibility that some other DUBs could
compensate the deubiquitylation process of the knock-
down DUB gene. Thus, those 26 DUB genes that did not
give phenotypes could be regarded as the "non-essential"
DUB genes, while those 59 (including two that are
required for survival) DUB genes caused abnormal phe-
notypes are critical for development.

Notch signaling and the group I DUB genes
In the vertebrate neuronal development, formation of
excess number of neurons during the neurogenesis will
decay through apoptosis to ensure the formation of cor-

Table 1: Dorsal-ventral value of RNA and/or MO injection 
studies

RNA/MO pg/em pmol n ep n DV value

-/otud4 0.5 3 104 3.14
-/usp5 2.0 3 101 2.50
-/usp15 0.5 3 127 2.10
-/usp25 2.0 3 185 3.14
-/otud4+usp25 0.25/1.0 2 100 2.59
-/usp5+usp25 1.0/1.0 2 110 3.63
-/usp15+usp25 0.25/1.0 2 78 2.56

bmp4/- 2.5 3 98 -2.66
bmp4/otud4 2.5 0.5 3 71 -2.93
bmp4/usp5 2.5 2.0 3 65 -2.52
bmp4/usp15 2.5 0.5 3 78 -2.55
bmp4/usp25 2.5 2.0 3 82 -2.54
bmp4/otud4+usp25 2.5 0.25/1.0 2 93 1.27
bmp4/usp5+usp25 2.5 1.0/1.0 2 118 2.63
bmp4/usp15+usp25 2.5 0.25/1.0 2 132 -0.31

smad1/- 800 3 96 -1.37
smad1/otud4 800 0.5 3 103 -1.44
smad1/usp5 800 2.0 3 111 -1.32
smad1/usp15 800 0.5 3 104 -0.94
smad1/usp25 800 2.0 3 98 -1.76
smad1/otud4+usp25 800 0.25/1.0 2 68 -1.08
smad1/usp5+usp25 800 1.0/1.0 2 71 -0.95
smad1/usp15+usp25 800 0.25/1.0 2 75 -0.88

Two mRNA (bmp4 and smad1) were co-injected with the group IV 
MOs (otud4, usp5, usp15 and usp25). The dorsal-ventral values were 
calculated as follows: Frequency of phenotypes * [C5: 5; C4: 4; C3: 3; 
C2: 2; C1: 1; Wt: 0; V1: -1; V2: -2; V3: -3; V4: -4]. The highest DV 
value is 5, which indicates 100% C5 phenotypes, while lowest is -4, 
which represents 100% V4 phenotypes. Negative values (ventralized 
phenotypes) were shown in bold.
Abbreviations: n ep, number of experiments; n, number of scored 
embryos; DV value, dorsal-ventral value.
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rect neurons' connection and pattern [56]. Neuronal
death is a normal process happens during development
[26]. Thus, it is abnormal that there are an increased
number of neurons in the developmental process. The
selection of the neuronal cell death and/or survival is
mainly based on various neurotrophic factors and their
related signaling pathway [57-59]. Notch signaling is well
known for its control of cell fate and regulation of pattern
formation [60]. Notch is a transmembrane receptor that is
involved in the Notch signaling pathway, which was first
identified in the mutant fly with "notches" in the wing
[61]. Reports had shown that Notch signaling restricts
neural differentiation by inhibiting the expression of
proneural genes and its deficiency results in neurogenic

phenotypes [62,63]. Our huC in situ screen identified
three group I DUB genes, whose morphants exhibit an
increase of neurons, indicating a premature differentia-
tion - a possible consequence of a failure in the Notch-
dependent lateral inhibition. Within these morphants, we
further confirmed that the expression level of one of the
Notch signaling downstream target gene, her4, was
decreased. These results suggested that group I DUB genes
affected Notch signaling directly or indirectly.

BMP signaling and the group IV DUB genes
In the huC screen, there were four DUB genes whose mor-
phants had severely destructive neuronal patterning. One
of the reasons to cause this could be the early defect in

Frequency of dorsalized and ventralized phenotypes after knockdown of group IV DUB genes and overexpression of Bmp sign-aling genesFigure 5
Frequency of dorsalized and ventralized phenotypes after knockdown of group IV DUB genes and overexpres-
sion of Bmp signaling genes. Panels A to D showed the frequency of dorsalized phenotypes after knockdown of group IV 
DUB genes. Noted that severe dorsalized phenotypes were found after double-knockdown of usp5+usp25 or usp15+usp25 (C, 
D). Panels E to G showed the phenotypes' frequencies after overexpression of bmp4 and group IV DUB genes knockdown. 
Noted that there were phenotypic shift from ventralization to dorsalization after double knockdown of two DUB genes, with 
more obvious changes in otud4+usp25 (E) and usp5+usp25 (F) double knockdown. Panels H to J showed the results of the 
smad1 overexpression and double knockdown of group IV DUB genes. Noted that the ventralized effects were maintained in 
the double knockdown of group IV DUB genes. Collectively, the results suggested that group IV DUB genes are involved in the 
BMP pathway and function between Bmp4 and Smad1. Noted that there were three different Y axis scales in the figure (A-D; 
E-G; H-J). The number of injected embryos was showed in Table 1.
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Proposed model of group IV DUB genes in the BMP pathwayFigure 6
Proposed model of group IV DUB genes in the BMP pathway. Group IV DUB genes (otud4, usp5, usp15 and usp25) are 
involved in the BMP pathway. Panel A shows the normal wild type embryo with usual BMP activity. Panel B shows that single 
group IV MO knockdown results in dorsalized phenotypes. Panel C shows that overexpression of smad1 leads to ventralized 
phenotypes (V1-V3). Panel D shows that bmp4 overexpression results in severe ventralized phenotypes (V3, V4). Panel E 
shows that co-injection of combination of group IV MOs and smad1 mRNA results in mild ventralized phenotypes. Panel F 
shows that co-injection of combination group IV MOs and bmp4 mRNA causes severe dorsalized phenotypes as in panel B. 
Double knockdown of group IV MOs with bmp4 or smad1 overexpression causes different results. Overexpression of bmp4 
could not rescue the dorsalized phenotypes that caused by double MOs knockdown, while smad1 could. This implies that 
group IV DUBs function between Bmp4 and Smad1 in the BMP pathway. Since co-injection experiments could not result in 
absolute dorsalized or ventralized phenotypes, which suggests that the DUB genes might interact with other dorsoventral sig-
naling pathways. The proposed working model is shown in G. Taken together with the real-time results (Additional file 9), the 
group IV MO will increase the mRNA expression of different signaling genes (bolded), which results in stimulating Chd and 
inhibiting Smad. Collectively, all the effects will inhibit the BMP pathway and cause dorsalized effect. We propose that group IV 
DUBs will act on the substance X that is directly involved in the BMP pathway. Besides, they may interact with another com-
mon substrate X' that stimulates different signaling genes and generates secondary dorsal-ventral effects in the zebrafish early 
development.
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dorsoventral patterning. We tested different dorsal and
ventral molecular markers at different time points and the
results suggested that these morphants are dorsalized.
One of the well known pathways involved in the dorsov-
entral patterning is the BMP pathway, which is required to
specify the ventral cell fate [46]. We further underwent the
co-injections experiments of mRNA of BMP signaling
genes and the DUB MOs to further determine whether
these DUBs are involved in the BMP pathway. When we
co-injected smad1 mRNA and group IV DUB MOs into
embryos, the dorsalized phenotypes caused by MO injec-
tion alone was rescued, indicating that group IV DUB
genes are involved in the BMP pathway. Surprisingly,
bmp4 mRNA injection with single group IV MO also
resulted in ventralized phenotypes, which suggested that
their functions might be compensated by others. Thus, we
decided to make a combination of MOs among the group

IV DUBs. After double knockdown with bmp4 overexpres-
sion, results showed that there was a shift from V3-V4
phenotypes to dorsalized phenotypes. It is notable that all
the experiments could not completely transform the over-
expression (ventralized) or knockdown (dorsalized)
effects. This observation suggests that group IV DUBs may
not simply be involved in the BMP pathway, but also
involved in other dorsoventral pathways such as Nodal,
Fgf, and Wnt. Reports have shown that these pathways can
interact with each others [64-66]. We tested different sig-
naling genes mRNA expressions by the real-time PCR.
Consistently, results showed that the group IV MO could
affect the signaling genes expression slightly but signifi-
cantly in Nodal, Fgf and Wnt pathways. Details were
shown in Additional file 9. It is not surprising that DUBs
are involved and function differently in more than one
pathway. Many cellular processes involve ubiquitylation,

Table 2: Comparison of DUB genes in human and zebrafish

DUB Family Name Extra DUB Genes in 
Zebrafish

Missing DUB Genes (Protein) 
in Zebrafish

Subtotal in Zebrafish Subtotal in Human

USP cyldb USP6 51 58
usp2b USP9X
usp9 USP9Y

usp12b USP17
usp53 USP26
usp54b USP29

unclassified (1) USP35
unclassified (2) USP41
unclassified (3) USP50

USP51
USP52
USP55

#59 (DUB3)
#60

#61 (TL132-l)
#62 (TL132)

OTU otud1l OTUD6A 15 14
otud3 OTUBQ2
otud5b OTUD1
zranb1b

UCH 4 4

MJD ATXN3L 3 5
JOS3

JAMM eif3hb #89 (IFP38) 14 14
stambpb #91

PPPDE pppde1 4 n.a.
loc794838
pppde2a
pppde2b

Through the in silico screen, 91 putative DUB genes were found in zebrafish, which were classified into 6 families. Details were summarized in the 
table. For the first 5 families (USP, OTU, UCH, MJD and JAMM), gene and protein names in human were based on Nijman et al., 2005 [4]. The 
human homologues of the PPPDE family were not studied in this work. n.a. stands for "not analyzed".
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which suggests that one DUB may deubiquitylate more
than one substrate. Here, we only showed the knockdown
of group IV DUB genes will change the mRNA expression
of different signaling genes; however, we did not know
exactly how they are regulated and what is the mechanistic
details between group IV DUB genes and them. Further
biochemical studies have to be conducted in order to fully
understand the nature of the DUBs.

Conclusion
From the in silico screen, we have identified 91 zebrafish
DUB candidate genes belonging to six families. Out of the
85 targets that were subjected to a MO knockdown test:
two were found to cause cell death and 57 resulted in plei-
otropic developmental phenotypes; the remaining 26 did
not show a detectable phenotype. Based on the expression
level and pattern changes of huC, the 57 cases are classi-
fied into five groups. Further functional analyses of group
I DUB genes suggest that three DUB genes (uchl3, otud7b
and bap1) are the candidate genes to be functionally asso-
ciated with the Notch pathway. Group IV DUB genes
(otud4, usp5, usp15 and usp25) appear to be involved in
the BMP pathway. Besides, our results suggest that sub-
strates of the E3 ligase in BMP pathway are deubiquit-
ylated more efficiently by two DUBs. To conclude, this
paper provides a basic frame for the functional studies of
DUB genes and acts as a screening step for researchers to
pick up their specific DUB genes for follow-up studies
based on the phenotypes. We understand that the screen
might not be fully complete and that further research and
in-depth studies are required. By releasing the genetic and
functional information at this stage, the research effi-
ciency with respect to zebrafish DUB genes will be accel-
erated.

Methods
Fish strains and maintenance
The wild-type strain used in the screen was AB line. They
were raised and staged as described [67]. Throughout the
experiments, the embryos were incubated at 25°C. All
experimental procedures on zebrafish embryos were
approved by the Biological Research Centre, A*STAR, Sin-
gapore (BRC IACUC No. 080390).

Identification of potential DUB genes in the zebrafish 
genome
For 5 types of DUB domains, PFAM [68] entries do exist
and the corresponding hidden Markov models (HMMs)
[69] were used for searches against the zebrafish proteome
from ENSEMBL genome build database (originally with
version v48 from February 2008 and, repeatedly, with
later versions up to and including v53 from April 2009).
The accessions of these five entries are: (i) UBQ-specific
proteases (USPs) with the UBQ C-terminal hydrolase
domain (UCH, PF0043), (ii) otubain proteases (OTUs)

with the OTU-like cysteine protease domain (OTU,
PF02338), (iii) UBQ C-terminal hydrolases (UCHs) with
the UBQ C-terminal hydrolase family 1 domain
(Peptidase_C12, PF1088), (iv) Machado-Joseph disease
proteases (MJDs) with the Josephine domain (PF02099)
and (v) JAMM motif metalloproteases (JAMMs) with the
Mov34/MPN/PAD-1 family domain (PF01398).

Subsequently, the hits were blasted [70] against the
zebrafish subset of the non-redundant protein sequence
database for finding additional hits among sequences that
were not included into the zebrafish genome build.
Finally, blast searches against the human subset of the
nrdb identified the closest human homologous proteins.
Similar procedures were carried out for the PPPDE group
and the WLMs (Wss1p-like proteases) group, where we
relied on the published alignments [19] and on the PFAM
entries PF08325 (WLM) and PF05903 (PPPDE). It should
be noted that, depending on the zebrafish genome release
and on the inclusion/removal of sequences into/from the
non-redundant protein database, the in silico search
results varied to some degree over time; the results pre-
sented here are an integration of the repeated searches.

Morpholino (MO) sequence site selection and design
For each putative DUB gene found in the genome-wide in
silico search, an individual morpholino was designed.
First, we tried to find the translation initiation site (TIS) by
mapping the protein sequence onto the genome or tran-
scripts with BLAST http://blast.ncbi.nlm.nih.gov/
Blast.cgi[70]. For proteins with obviously missing or
incorrect N-termini, we inspected the respective genomic
data and tried to find a TIS in agreement with sequences
from other organisms. If this was not possible (and for
sequences whose MOs for the TIS did not match the min-
imal MO quality criteria (see below)), we searched for
exon/intron boundaries as a possible morpholino
sequence site with the goal that the MO targeting site was
located on or 5' to the UBQ protease domains.

Once the initiation site was selected, all potential
upstream sequences for MO target oligos were processed
with AMOD [71]. Antisense MOs were selected based on
the guidelines from Gene Tools (reviewed by [23]). Basi-
cally, the MOs should have a GC content about 40-60%,
less than 37% G content, and without any consecutive tri-
or tetra-G nucleotide sequences. In addition, the selected
MOs should minimize self or pair sequence homology.
Furthermore, MOs that target 5'-UTR were generated for
some selected DUB genes to test their specificity. Designed
MOs are tabulated (Additional file 3).

Morpholino specificity
Since the screen is a high-throughput knockdown analysis
by using MO. Mistakes or non-specific knockdown might
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happen. However, we have tried our best to confirm the
phenotypes by injecting the MOs and examined the phe-
notypes by at least two researchers. Besides, for those
group I genes, we have designed a second MO that targets
5'-UTR region to further verify the knockdown pheno-
types. In addition, we also used splicing MOs, which the-
oretically lead to un-spliced fragments encoding a stop
codon within, and 5mis-match MOs of group IV DUBs to
confirm that our knockdown results were specific and effi-
cient. Sequences of MOs were listed in Additional file 3,
and the result was tabulated in Additional file 10. Besides,
the RT-PCR checks of splicing MOs were shown in Addi-
tional file 5.

Expression construct generation and mRNA synthesis
bmp4 and smad1 were amplified with primers (for bmp4:
5'-CCGGATCCATGATTCCTGGTAATCGAATGCTGA-3'
and 5'-CCCTCGAGTTAGCGGCAGCCACACCCCT-3'; for
smad1: 5'-CCGAATTCATGAATGTCACCTCACTCTTT-
TCCT-3' and 5'-CCCTCGAGCTAGGACACTGAAGAAAT-
GGGGTT-3') containing BamHI and XhoI; EcoRI and
XhoI restriction sites, respectively, from full-length cDNA
using Pfu DNA polymerase (Stratagene, La Jolla, CA) and
ligated into pCS2+ to generate pCS2+bmp4 and pCS2+-
smad1 expression constructs. All constructs cloned in the
pCS2+ vectors were linearized by NotI. Capped RNA was
prepared with the SP6 Message Machine kit (Ambion,
Austin, TX) and finally dissolved in DEPC-treated water.

Morpholino (MO) and mRNA injection
All MOs were purchased from Gene Tools, LLC (Philo-
math, OR), re-suspended in DEPC-treated water to make
a 5 mM stock and stored at -20°C. Diluted MOs and/or
mRNA (amount specified in Table 1 and Additional file 4)
were injected into one- or two-cell stage embryos.
Embryos from four different pairs of fish were used for
each MO and/or mRNA injection.

Screening procedure
Injected embryos (including control) were mainly scored
at two time points (1 and 3 days postfertilization (dpf)),
corresponding to the pharyngula period and the hatching
period, respectively [67]. The screening examination was
mainly based on the method described previously [22].
Briefly, embryos at early stages were examined for abnor-
malities in the shape and morphology of those early
developing tissues or organs like eyes, brain, notochord,
spinal cord and somites. Afterwards, in the latter stage,
pigmentation and phenotypic changes in cardiovascular
system and the fins were also examined. All phenotypes
were observed in a dominant feature of injected embryos
at a non-toxic dose by at least two screeners. Besides, the
MO-induced effects were not accompanied with those
non-specific effects caused by overdose MO treatment
(unpublished observations). In addition, we also fixed

embryos at 50-60% epiboly, 10-somite stage and 24 hpf
for whole mount in situ hybridization (WISH).

Whole mount in situ hybridization (WISH)
Plasmids that were used to make antisense mRNA probes
have been published previously: bmp4 [72], chd [73], eve1
[36], gata1 [37], gata2 [37], gsc [39], her4 [29], huC [74],
myoD [40], pax2a [43]. Single in situ hybridization was
performed as described [75].

RNA extraction, reverse transcription and quantitative 
real-time PCR
Embryos at 10-somite and prim-5 stages were collected.
Their total RNA was extracted using TRIzol (Invitrogen,
Carlsbad, CA). Purified sample RNA with a ratio of 1.8-
2.0 at A260/A280 was used. Briefly, 0.5 μg of total RNA
extracted was reversely transcribed by iScript cDNA syn-
thesis kit (Bio-Rad, Hercules, CA). In case of real-time RT-
PCR, PCRs were conducted using LightCycler 480 real-
time PCR detection system using SYBR Green I Master
(Roche, Basel, Switzerland). The copy number of the tran-
scripts for each sample was calculated in reference to the
parallel amplifications of known concentrations of the
respective cloned PCR fragments. Standard curves were
constructed and the amplification efficiencies were about
0.9-0.95. The data were then normalized using the expres-
sion levels of β-actin mRNA. The occurrence of primer-
dimers and secondary products was inspected using melt-
ing curve analysis. Our data indicated that the amplifica-
tion was specific. There was only one PCR product
amplified for individual set of primers. Control amplifica-
tion was done either without RT or without RNA. In the
case of RT-PCR (underlined), embryos at prim-5 stage
were used. PCRs were conducted by DNA Engine Dyad
Peltier Thermal Cycler (Bio-Rad) using PCR Core Kit
(Roche). Primers for β-actin (F: AGATCTGGCATCACAC-
CTTC, R: TCACCAGAGTCCATCACGAT), β-catenin2 (F:
AGGATCTGGACAACCAGGTG, R: GCACCATCACT-
GCAGCTTTA), fgf8 (F: GCAAGAAAAATGGTCTGGGA, R:
TGCGTTTAGTCCGTCTGTTG), her4 (F: TGGCTCAA-
GAGTTCGTCAAG, R: AGTGGTCTGAGGATTGTCCA),
huC (F: TCGAGTCCTGCAAATTGGTC, R: GTGAGGTGAT-
GATCCTTCCA), lefty1 (F: CGCAAATTCACAAGAGGGAT,
R: TCTCGGGGATTCTTGATGTC), nodal1 (F: GAGTGTGA-
GAGAAGCCCCTG, R: AGGTTCACTTCCACCACCAG),
otud4 (F: GCGGTGCTTTGTCATTTACA, R: CTCTGA-
GAACGATCTTCTGG), sprouty2 (F: AGCAATGAGTA-
CACGGAGGG, R: CACCTGCATTTCCCAAAAGT), usp5 (F:
ATTTCGCTGCACCTTTGGTG, R: TGTTGGTCCTTCTT-
GATGTGG), usp15 (F: CATGCAGTGCGCGAGCGAAG, R:
CTGAGAGCAGGCCGCTGTTG), usp25 (F: TTCATGCAG-
GAGCTTAGGCA, R: GCCAGGAAACGTCCATAAAA) and
wnt8a (F: TGGTCGACTTGCTGTCAAAG, R: TCCATG-
TAGTCCCATGCTGA).
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Statistical analysis
All data are represented as the mean ± SEM. Statistical sig-
nificance is tested by Student's t-test. Groups were consid-
ered significantly different if P < 0.05.

List of abbreviations used
24 hpf: 24 hours after fertilization; BMP: bone morphoge-
netic protein; BRUCE: BIR repeat-containing Ubiquitin-
conjugating enzyme; chd: chordin; DUBs: deubiquitylat-
ing enzymes; gsc: goosecoid; HA: hemagglutinin-tagged;
JAMM: JAMM motif proteases; MIB: Mind bomb; MJD:
Machado-Joseph disease protease; MO: morpholino;
OTU: otubain protease; TGF-β: transforming growth fac-
tor β; TIS: translation initiation site; UBL: Ubiquitin-like;
UBQ: Ubiquitin; UCH: Ubiquitin C-terminal hydrolase;
UIM: Ubiquitin-interacting motif; USP: Ubiquitin-specific
protease; WISH: whole mount in situ hybridization;
WLMs: Wsslp-like proteases.

Authors' contributions
WKFT, BE, FE and YJJ planned and designed the experi-
ments. BE and FE contributed in the bioinformatics anal-
ysis of DUB genes. WKFT designed the MO and mRNA.
WKFT, SHKH and QN performed the experiments. WKFT,
BE, FE and YJJ wrote the manuscript. All authors read and
approved the final manuscript.

Additional material

Acknowledgements
We thank HL Ang, AWO Cheong and KL Poon for providing information 
and plasmids of in situ probes. We also thank the members of Jiang lab for 
helpful comments and discussions in the experiments. We thank the staff 
of Zebrafish Facility in IMCB for their excellent maintenance of fish stocks. 
This work is supported by the Agency of Science, Technology and Research 
(A*STAR), Singapore.

References
1. Hershko A, Ciechanover A: The ubiquitin system.  Annu Rev Bio-

chem 1998, 67:425-479.
2. Pickart CM: Ubiquitin enters the new millennium.  Mol Cell

2001, 8(3):499-504.
3. Hicke L: A new ticket for entry into budding vesicles-ubiqui-

tin.  Cell 2001, 106(5):527-530.

Additional file 1
Sequence Domain Architecture of zebrafish DUBs.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-637-S1.PDF]

Additional file 2
Reported DUB functions between 2005-2009.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-637-S2.XLS]

Additional file 3
DUB genes in zebrafish. The table lists the basic information of their 
names, Ensembl access/GenBank numbers and their MO sequences.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-637-S3.XLS]

Additional file 4
Early developmental phenotypes of zebrafish after DUBs MO knock-
downs.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-637-S4.XLS]

Additional file 5
This figure shows the PCR products of group IV DUBs after injecting 
splicing MOs and the expression levels of huC and her4 in morphants 
of group I and selected group II DUB genes by using RT-PCR.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-637-S5.PDF]

Additional file 6
This figure shows the morphologies of dorsalized (C1-C5) and ven-
tralized (V1-V4) embryos after microinjections at 24-30 hpf.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-637-S6.PDF]

Additional file 7
This figure presents the lateral view of in situ hybridization data of 
ventralized markers (bmp4, eve1, gata2) at 50-60% epiboly mor-
phants.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-637-S7.PDF]

Additional file 8
This figure shows the results of in situ hybridization experiments, 
using gsc, pax2a + myoD probe at 50-60% epiboly and prim-5 stage.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-637-S8.PDF]

Additional file 9
This figure shows the mRNA expression level of different signaling 
genes (β-catenin2, fgf8, lefty1, nodal1, sprouty2 and wnt8a) at 10-
somite stage of group IV DUB morphants.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-637-S9.PDF]

Additional file 10
Frequency of dorsalized phenotypes of group IV MOs injection studies.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-637-S10.PDF]
Page 13 of 15
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2164-10-637-S1.PDF
http://www.biomedcentral.com/content/supplementary/1471-2164-10-637-S2.XLS
http://www.biomedcentral.com/content/supplementary/1471-2164-10-637-S3.XLS
http://www.biomedcentral.com/content/supplementary/1471-2164-10-637-S4.XLS
http://www.biomedcentral.com/content/supplementary/1471-2164-10-637-S5.PDF
http://www.biomedcentral.com/content/supplementary/1471-2164-10-637-S6.PDF
http://www.biomedcentral.com/content/supplementary/1471-2164-10-637-S7.PDF
http://www.biomedcentral.com/content/supplementary/1471-2164-10-637-S8.PDF
http://www.biomedcentral.com/content/supplementary/1471-2164-10-637-S9.PDF
http://www.biomedcentral.com/content/supplementary/1471-2164-10-637-S10.PDF
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9759494
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11583613
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11551499
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11551499


BMC Genomics 2009, 10:637 http://www.biomedcentral.com/1471-2164/10/637
4. Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM,
Sixma TK, Bernards R: A genomic and functional inventory of
deubiquitinating enzymes.  Cell 2005, 123(5):773-786.

5. Amerik AY, Hochstrasser M: Mechanism and function of deubiq-
uitinating enzymes.  Biochim Biophys Acta 2004, 1695(1-
3):189-207.

6. Love KR, Catic A, Schlieker C, Ploegh HL: Mechanisms, biology
and inhibitors of deubiquitinating enzymes.  Nat Chem Biol
2007, 3(11):697-705.

7. Brummelkamp TR, Nijman SM, Dirac AM, Bernards R: Loss of the
cylindromatosis tumour suppressor inhibits apoptosis by
activating NF-kappaB.  Nature 2003, 424(6950):797-801.

8. Kovalenko A, Chable-Bessia C, Cantarella G, Israel A, Wallach D,
Courtois G: The tumour suppressor CYLD negatively regu-
lates NF-kappaB signalling by deubiquitination.  Nature 2003,
424(6950):801-805.

9. Trompouki E, Hatzivassiliou E, Tsichritzis T, Farmer H, Ashworth A,
Mosialos G: CYLD is a deubiquitinating enzyme that nega-
tively regulates NF-kappaB activation by TNFR family mem-
bers.  Nature 2003, 424(6950):793-796.

10. Reiley W, Zhang M, Sun SC: Negative regulation of JNK signal-
ing by the tumor suppressor CYLD.  J Biol Chem 2004,
279(53):55161-55167.

11. Ikeda F, Dikic I: CYLD in ubiquitin signaling and tumor patho-
genesis.  Cell 2006, 125(4):643-645.

12. Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, Harta G,
Brownstein MJ, Jonnalagada S, Chernova T, et al.: The ubiquitin
pathway in Parkinson's disease.  Nature 1998,
395(6701):451-452.

13. Liu Y, Fallon L, Lashuel HA, Liu Z, Lansbury PT Jr: The UCH-L1
gene encodes two opposing enzymatic activities that affect
alpha-synuclein degradation and Parkinson's disease suscep-
tibility.  Cell 2002, 111(2):209-218.

14. Saigoh K, Wang YL, Suh JG, Yamanishi T, Sakai Y, Kiyosawa H, Harada
T, Ichihara N, Wakana S, Kikuchi T, et al.: Intragenic deletion in
the gene encoding ubiquitin carboxy-terminal hydrolase in
gad mice.  Nat Genet 1999, 23(1):47-51.

15. Oliveira SA, Li YJ, Noureddine MA, Zuchner S, Qin X, Pericak-Vance
MA, Vance JM: Identification of risk and age-at-onset genes on
chromosome 1p in Parkinson disease.  Am J Hum Genet 2005,
77(2):252-264.

16. Li Y, Schrodi S, Rowland C, Tacey K, Catanese J, Grupe A: Genetic
evidence for ubiquitin-specific proteases USP24 and USP40
as candidate genes for late-onset Parkinson disease.  Hum
Mutat 2006, 27(10):1017-1023.

17. Burnett B, Li F, Pittman RN: The polyglutamine neurodegener-
ative protein ataxin-3 binds polyubiquitylated proteins and
has ubiquitin protease activity.  Hum Mol Genet 2003,
12(23):3195-3205.

18. Scheel H, Tomiuk S, Hofmann K: Elucidation of ataxin-3 and
ataxin-7 function by integrative bioinformatics.  Hum Mol
Genet 2003, 12(21):2845-2852.

19. Iyer LM, Koonin EV, Aravind L: Novel predicted peptidases with
a potential role in the ubiquitin signaling pathway.  Cell Cycle
2004, 3(11):1440-1450.

20. Borodovsky A, Ovaa H, Kolli N, Gan-Erdene T, Wilkinson KD, Ploegh
HL, Kessler BM: Chemistry-based functional proteomics
reveals novel members of the deubiquitinating enzyme fam-
ily.  Chem Biol 2002, 9(10):1149-1159.

21. Balakirev MY, Tcherniuk SO, Jaquinod M, Chroboczek J: Otubains:
a new family of cysteine proteases in the ubiquitin pathway.
EMBO Rep 2003, 4(5):517-522.

22. Haffter P, Granato M, Brand M, Mullins MC, Hammerschmidt M, Kane
DA, Odenthal J, van Eeden FJ, Jiang Y-J, Heisenberg C-P, et al.: The
identification of genes with unique and essential functions in
the development of the zebrafish, Danio rerio.  Development
1996, 123:1-36.

23. Eisen JS, Smith JC: Controlling morpholino experiments: don't
stop making antisense.  Development 2008, 135(10):1735-1743.

24. Grainger RJ, Beggs JD: Prp8 protein: at the heart of the spliceo-
some.  RNA 2005, 11(5):533-557.

25. Zhu P, Zhou W, Wang J, Puc J, Ohgi KA, Erdjument-Bromage H,
Tempst P, Glass CK, Rosenfeld MG: A histone H2A deubiquiti-
nase complex coordinating histone acetylation and H1 disso-
ciation in transcriptional regulation.  Mol Cell 2007,
27(4):609-621.

26. Kandel ER, Schwartz JH, Jessell TM: Principles of Neural Science,
4/e.  New York: McGraw-Hill; 2000. 

27. Latimer AJ, Dong X, Markov Y, Appel B: Delta-Notch signaling
induces hypochord development in zebrafish.  Development
2002, 129(11):2555-2563.

28. Jülich D, Lim CH, Round J, Nicolaije C, Schroeder J, Davies A, Geisler
R, Consortium TS, Lewis J, Jiang Y-J, et al.: beamter/deltaC and the
role of Notch ligands in the zebrafish somite segmentation,
hindbrain neurogenesis and hypochord differentiation.  Dev
Biol 2005, 286(2):391-404.

29. Takke C, Dornseifer P, von Weizsäcker E, Campos-Ortega JA: her4,
a zebrafish homologue of the Drosophila neurogenic gene
E(spl), is a target of NOTCH signalling.  Development 1999,
126(9):1811-1821.

30. Mullins MC, Hammerschmidt M, Kane DA, Odenthal J, Brand M, van
Eeden FJ, Furutani-Seiki M, Granato M, Haffter P, Heisenberg C-P, et
al.: Genes establishing dorsoventral pattern formation in the
zebrafish embryo: the ventral specifying genes.  Development
1996, 123:81-93.

31. Kishimoto Y, Lee KH, Zon L, Hammerschmidt M, Schulte-Merker S:
The molecular nature of zebrafish swirl: BMP2 function is
essential during early dorsoventral patterning.  Development
1997, 124(22):4457-4466.

32. Topczewska JM, Topczewski J, Shostak A, Kume T, Solnica-Krezel L,
Hogan BL: The winged helix transcription factor Foxc1a is
essential for somitogenesis in zebrafish.  Genes Dev 2001,
15(18):2483-2493.

33. Köster M, Plessow S, Clement JH, Lorenz A, Tiedemann H, Knöchel
W: Bone morphogenetic protein 4 (BMP-4), a member of
the TGF-beta family, in early embryos of Xenopus laevis:
analysis of mesoderm inducing activity.  Mech Dev 1991,
33(3):191-199.

34. Dale L, Howes G, Price BM, Smith JC: Bone morphogenetic pro-
tein 4: a ventralizing factor in early Xenopus development.
Development 1992, 115(2):573-585.

35. Jones CM, Lyons KM, Lapan PM, Wright CV, Hogan BL: DVR-4
(bone morphogenetic protein-4) as a posterior-ventralizing
factor in Xenopus mesoderm induction.  Development 1992,
115(2):639-647.

36. Joly JS, Joly C, Schulte-Merker S, Boulekbache H, Condamine H: The
ventral and posterior expression of the zebrafish homeobox
gene eve1 is perturbed in dorsalized and mutant embryos.
Development 1993, 119(4):1261-1275.

37. Detrich HW, Kieran MW, Chan FY, Barone LM, Yee K, Rundstadler
JA, Pratt S, Ransom D, Zon LI: Intraembryonic hematopoietic
cell migration during vertebrate development.  Proc Natl Acad
Sci USA 1995, 92(23):10713-10717.

38. Sasai Y, Lu B, Steinbeisser H, De Robertis EM: Regulation of neural
induction by the Chd and Bmp-4 antagonistic patterning sig-
nals in Xenopus.  Nature 1995, 376(6538):333-336.

39. Stachel SE, Grunwald DJ, Myers PZ: Lithium perturbation and
goosecoid expression identify a dorsal specification pathway
in the pregastrula zebrafish.  Development 1993,
117(4):1261-1274.

40. Weinberg ES, Allende ML, Kelly CS, Abdelhamid A, Murakami T,
Andermann P, Doerre OG, Grunwald DJ, Riggleman B: Develop-
mental regulation of zebrafish MyoD in wild-type, no tail and
spadetail embryos.  Development 1996, 122(1):271-280.

41. Little SC, Mullins MC: Twisted gastrulation promotes BMP sig-
naling in zebrafish dorsal-ventral axial patterning.  Develop-
ment 2004, 131(23):5825-5835.

42. Kimmel CB, Warga RM, Schilling TF: Origin and organization of
the zebrafish fate map.  Development 1990, 108(4):581-594.

43. Krauss S, Johansen T, Korzh V, Fjose A: Expression of the
zebrafish paired box gene pax[zf-b] during early neurogene-
sis.  Development 1991, 113(4):1193-1206.

44. Xie J, Fisher S: Twisted gastrulation enhances BMP signaling
through chordin dependent and independent mechanisms.
Development 2005, 132(2):383-391.

45. Hogan BL: Bone morphogenetic proteins: multifunctional reg-
ulators of vertebrate development.  Genes Dev 1996,
10(13):1580-1594.

46. Holley SA, Ferguson EL: Fish are like flies are like frogs: conser-
vation of dorsal-ventral patterning mechanisms.  Bioessays
1997, 19(4):281-284.
Page 14 of 15
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16325574
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16325574
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15571815
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15571815
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17948018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17948018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12917690
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12917690
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12917690
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12917691
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12917691
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12917689
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12917689
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12917689
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15496400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15496400
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16713556
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16713556
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9774100
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9774100
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12408865
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12408865
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12408865
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10471497
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10471497
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10471497
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15986317
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15986317
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16917932
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16917932
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16917932
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14559776
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14559776
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14559776
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12944423
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12944423
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15483401
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15483401
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12401499
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12401499
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12401499
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12704427
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12704427
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9007226
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18403413
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18403413
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15840809
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15840809
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17707232
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17707232
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17707232
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12015285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12015285
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16125692
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16125692
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16125692
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10101116
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9007231
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9007231
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9409664
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9409664
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9409664
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11562356
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11562356
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1863557
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1863557
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1425340
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1425343
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7905819
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7479870
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7479870
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7630399
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8104775
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8104775
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8104775
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8565839
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15525664
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15525664
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2387237
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2387237
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1811936
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1811936
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15604098
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15604098
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8682290
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8682290
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9136625
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9136625


BMC Genomics 2009, 10:637 http://www.biomedcentral.com/1471-2164/10/637
Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

47. Dick A, Hild M, Bauer H, Imai Y, Maifeld H, Schier AF, Talbot WS,
Bouwmeester T, Hammerschmidt M: Essential role of Bmp7
(snailhouse) and its prodomain in dorsoventral patterning of
the zebrafish embryo.  Development 2000, 127(2):343-354.

48. Schmid B, Furthauer M, Connors SA, Trout J, Thisse B, Thisse C, Mul-
lins MC: Equivalent genetic roles for bmp7/snailhouse and
bmp2b/swirl in dorsoventral pattern formation.  Development
2000, 127(5):957-967.

49. Dick A, Meier A, Hammerschmidt M: Smad1 and Smad5 have dis-
tinct roles during dorsoventral patterning of the zebrafish
embryo.  Dev Dyn 1999, 216(3):285-298.

50. Wright A, Reiley WW, Chang M, Jin W, Lee AJ, Zhang M, Sun SC:
Regulation of early wave of germ cell apoptosis and sperma-
togenesis by deubiquitinating enzyme CYLD.  Dev Cell 2007,
13(5):705-716.

51. Jin W, Chang M, Paul EM, Babu G, Lee AJ, Reiley W, Wright A, Zhang
M, You J, Sun SC: Deubiquitinating enzyme CYLD negatively
regulates RANK signaling and osteoclastogenesis in mice.  J
Clin Invest 2008, 118(5):1858-1866.

52. Bartke T, Pohl C, Pyrowolakis G, Jentsch S: Dual role of BRUCE as
an antiapoptotic IAP and a chimeric E2/E3 ubiquitin ligase.
Mol Cell 2004, 14(6):801-811.

53. Pohl C, Jentsch S: Final stages of cytokinesis and midbody ring
formation are controlled by BRUCE.  Cell 2008,
132(5):832-845.

54. Le Borgne R, Bardin A, Schweisguth F: The roles of receptor and
ligand endocytosis in regulating Notch signaling.  Development
2005, 132(8):1751-1762.

55. Chitnis A: Why is Delta endocytosis required for effective
activation of Notch?  Dev Dyn 2006, 235(4):886-894.

56. Hamburger V, Levi-Montalcini R: Proliferation, differentiation
and degeneration in the spinal ganglia of the chick embryo
under normal and experimental conditions.  J Exp Zool 1949,
111(3):457-501.

57. Klein R: Role of neurotrophins in mouse neuronal develop-
ment.  FASEB J 1994, 8(10):738-744.

58. Peruzzi F, Gordon J, Darbinian N, Amini S: Tat-induced deregula-
tion of neuronal differentiation and survival by nerve growth
factor pathway.  J Neurovirol 2002, 8(Suppl 2):91-96.

59. Althaus HH, Klöppner S, Klopfleisch S, Schmitz M: Oligodendroglial
cells and neurotrophins: a polyphonic cantata in major and
minor.  J Mol Neurosci 2008, 35(1):65-79.

60. Lai EC: Notch signaling: control of cell communication and
cell fate.  Development 2004, 131(5):965-973.

61. Morgan TH: The theory of the gene.  Am Nat 1917, 51:513-544.
62. Chitnis AB: The role of Notch in lateral inhibition and cell fate

specification.  Mol Cell Neurosci 1995, 6(4):311-321.
63. Parks AL, Huppert SS, Muskavitch MAT: The dynamics of neuro-

genic signalling underlying bristle development in Drosophila
melanogaster.  Mech Dev 1997, 63(1):61-74.

64. Mizoguchi T, Izawa T, Kuroiwa A, Kikuchi Y: Fgf signaling nega-
tively regulates Nodal-dependent endoderm induction in
zebrafish.  Dev Biol 2006, 300(2):612-622.

65. Poulain M, Furthauer M, Thisse B, Thisse C, Lepage T: Zebrafish
endoderm formation is regulated by combinatorial Nodal,
FGF and BMP signalling.  Development 2006, 133(11):2189-2200.

66. Varga M, Maegawa S, Bellipanni G, Weinberg ES: Chordin expres-
sion, mediated by Nodal and FGF signaling, is restricted by
redundant function of two beta-catenins in the zebrafish
embryo.  Mech Dev 2007, 124(9-10):775-791.

67. Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF: Stages
of embryonic development of the zebrafish.  Dev Dyn 1995,
203(3):253-310.

68. Sammut SJ, Finn RD, Bateman A: Pfam 10 years on: 10,000 fami-
lies and still growing.  Brief Bioinform 2008, 9(3):210-219.

69. Eddy SR: What is a hidden Markov model?  Nat Biotechnol 2004,
22(10):1315-1316.

70. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lip-
man DJ: Gapped BLAST and PSI-BLAST: a new generation of
protein database search programs.  Nucleic Acids Res 1997,
25(17):3389-3402.

71. Klee EW, Shim KJ, Pickart MA, Ekker SC, Ellis LB: AMOD: a mor-
pholino oligonucleotide selection tool.  Nucleic Acids Res
2005:W506-511.

72. Chin AJ, Chen J-N, Weinberg ES: Bone morphogenetic protein-
4 expression characterizes inductive boundaries in organs of
developing zebrafish.  Dev Genes Evol 1997, 207:107-114.

73. Miller-Bertoglio VE, Fisher S, Sanchez A, Mullins MC, Halpern ME:
Differential regulation of chordin expression domains in
mutant zebrafish.  Dev Biol 1997, 192(2):537-550.

74. Kim CH, Ueshima E, Muraoka O, Tanaka H, Yeo SY, Huh TL, Miki N:
Zebrafish elav/HuC homologue as a very early neuronal
marker.  Neurosci Lett 1996, 216(2):109-112.

75. Ma M, Jiang Y-J: Jagged2a-Notch signaling mediates cell fate
choice in zebrafish pronephric duct.  PLoS Genet 2007, 3(1):e18.
Page 15 of 15
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10603351
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10603351
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10603351
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10662635
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10662635
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10590480
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10590480
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10590480
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17981138
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17981138
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17981138
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18382763
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18382763
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15200957
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15200957
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18329369
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18329369
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15790962
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15790962
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16425217
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16425217
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18142378
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18142378
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18142378
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8050673
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8050673
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12491158
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12491158
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12491158
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18327658
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18327658
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18327658
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14973298
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14973298
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9178257
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17026981
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17026981
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17026981
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16672336
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16672336
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16672336
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17686615
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17686615
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17686615
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8589427
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8589427
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18344544
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18344544
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15470472
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9254694
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15980523
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15980523
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9441687
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9441687
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8904795
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8904795
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8904795
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17257056
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17257056
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Zebrafish has more than 90 putative DUBs encoded in its genome
	57 DUB genes are required for zebrafish early development
	Classifying DUB genes into five subgroups according to their huC expression level and pattern
	otud7b, bap1 and uchl3 (group I) may be involved in Notch signaling
	otud4, usp5, usp15 and usp25 (group IV) play critical roles in dorsoventral patterning
	The group IV DUB genes are likely involved in the BMP pathway

	Discussion
	More than 90 DUB candidates in zebrafish were found
	DUB genes play different roles in the developmental processes
	Notch signaling and the group I DUB genes
	BMP signaling and the group IV DUB genes

	Conclusion
	Methods
	Fish strains and maintenance
	Identification of potential DUB genes in the zebrafish genome
	Morpholino (MO) sequence site selection and design
	Morpholino specificity
	Expression construct generation and mRNA synthesis
	Morpholino (MO) and mRNA injection
	Screening procedure
	Whole mount in situ hybridization (WISH)
	RNA extraction, reverse transcription and quantitative real-time PCR
	Statistical analysis

	List of abbreviations used
	Authors' contributions
	Additional material
	Acknowledgements
	References

