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Abstract

Background

The 2019 novel coronavirus disease (COVID-19) has created unprecedented medical chal-

lenges. There remains a need for validated risk prediction models to assess short-term mor-

tality risk among hospitalized patients with COVID-19. The objective of this study was to

develop and validate a 7-day and 14-day mortality risk prediction model for patients hospital-

ized with COVID-19.

Methods

We performed a multicenter retrospective cohort study with a separate multicenter cohort

for external validation using two hospitals in New York, NY, and 9 hospitals in Massachu-

setts, respectively. A total of 664 patients in NY and 265 patients with COVID-19 in Massa-

chusetts, hospitalized from March to April 2020.

Results

We developed a risk model consisting of patient age, hypoxia severity, mean arterial pres-

sure and presence of kidney dysfunction at hospital presentation. Multivariable regression

model was based on risk factors selected from univariable and Chi-squared automatic inter-

action detection analyses. Validation was by receiver operating characteristic curve (dis-

crimination) and Hosmer-Lemeshow goodness of fit (GOF) test (calibration). In internal

cross-validation, prediction of 7-day mortality had an AUC of 0.86 (95%CI 0.74–0.98; GOF
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p = 0.744); while 14-day had an AUC of 0.83 (95%CI 0.69–0.97; GOF p = 0.588). External

validation was achieved using 265 patients from an outside cohort and confirmed 7- and 14-

day mortality prediction performance with an AUC of 0.85 (95%CI 0.78–0.92; GOF p =

0.340) and 0.83 (95%CI 0.76–0.89; GOF p = 0.471) respectively, along with excellent cali-

bration. Retrospective data collection, short follow-up time, and development in COVID-19

epicenter may limit model generalizability.

Conclusions

The COVID-AID risk tool is a well-calibrated model that demonstrates accuracy in the pre-

diction of both 7-day and 14-day mortality risk among patients hospitalized with COVID-19.

This prediction score could assist with resource utilization, patient and caregiver education,

and provide a risk stratification instrument for future research trials.

Introduction

The 2019 novel coronavirus disease (COVID-19), caused by severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) has become an international pandemic. Although the original

outbreak was attributed to zoonotic transmission in Wuhan, China, human-to-human trans-

mission through respiratory droplets and aerosolization has resulted in rapid disease spread

across the world. As of May 11, 2020 there have been over 4 million confirmed cases of

COVID-19, with many more likely infected, and more than 280,000 associated deaths world-

wide [1]. Clinical presentations of COVID-19 have been heterogeneous, ranging from mild

flu-like symptoms (fever, cough, and fatigue) to severe respiratory symptoms and hypoxia

resulting in acute respiratory distress syndrome (ARDS). Given the wide spectrum of symp-

toms, there have been varied clinical trajectories, ranging from outpatient management to hos-

pital admission, need for intensive care and/or mechanical ventilation, multisystem organ

failure, and death. In select cases, the progression of disease may be extremely rapid, with the

observed time between onset of symptoms and the development of ARDS as short as 9 days

[2].

With a vast number of individuals affected by the disease, there has been an imbalance

between the supply and demand of hospital and intensive care unit (ICU) beds, straining avail-

able healthcare resources [3]. Attempts have been made to clarify the relationship of risk fac-

tors with clinical prognosis in order to risk stratify patients and appropriately allocate available

but limited healthcare resources. Several observational studies have noted that patients who

are older or carry various comorbidities, such as diabetes, cardiovascular disease [4], and

hypertension [5, 6], have higher risk for in-hospital mortality from COVID-19 [7]. Other stud-

ies have shown certain biomarkers such as ferritin, lactate dehydrogenase (LDH), D-dimer,

and C-reactive protein (CRP) to predict COVID-19 severity [8, 9]. While there have been

attempts at creating prediction models that combine several variables to estimate prognosis,

including the use of scoring systems and machine learning [10], many of these models have

been suboptimal due to high-risk of bias, restricted sample sizes, and limited number of out-

comes of interest [10].

Given the paucity of comprehensive data to guide providers and caregivers on the progno-

sis of COVID-19 patients and the potential for rapid disease progression, there remains a need

to develop a prediction model for mortality. As New York City has become the epicenter of

the COVID-19 pandemic in the United States, we sought to use our large cohort of patients to
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develop a prognostic model that could predict the risk of death within 7 or 14 days from

admission. Using data from hospitalized patients infected with COVID-19 from two New

York City hospitals, the primary objective of this study is to construct an accurate prognostic

model, called the COVID-AID (Admission to Death) risk tool, and externally validate the

model using another large cohort from a different region of the United States.

Material and methods

Patient population and data collection for independent variables

This was a retrospective study performed at two hospitals in Manhattan (an academic tertiary

referral center and a smaller community hospital). Adult patients (age�18 years) with a posi-

tive real-time reverse-transcription polymerase chain reaction (RT-PCR) from a respiratory

sample (naso- or oropharyngeal, or bronchial/sputum samples) for SARS-CoV-2 between

March 4, and April 9, 2020 were included. All included patients had laboratory-confirmed

COVID-19. Patients who were admitted (including temporary observation defined as admis-

sion to emergency department and discharge within 24 hours) were included in this analysis.

The study was reviewed and approved by the institutional review board (Weill Cornell Medi-

cine: 2004021793). We followed TRIPOD guidelines for reporting multivariable prediction

models (See S1 Table in S1 File) [11].

Clinical parameters including demographics (age, gender, race/ethnicity) and past medical

history including cancer, chronic kidney disease (CKD), chronic obstructive pulmonary dis-

ease (COPD), asthma, obstructive sleep apnea (OSA), cardiovascular disease (CVD) [4], his-

tory of venous thromboembolism (VTE), diabetes, hypertension, inflammatory bowel disease

(IBD), chronic liver disease, or solid organ transplantation were obtained from patients’ medi-

cal records.

Date of first symptoms recorded and date of positive SARS-CoV-2 PCR were recorded,

as were the initial vital signs upon presentation. The first set of recorded vital signs includ-

ing temperature (with fever defined as T�37.8), respiratory rate (RR), heart rate (HR), sys-

tolic, diastolic, and mean arterial pressures (SBP, DBP, MAP, respectively), and body mass

index (BMI) were extracted. BMI was categorized into normal weight between a BMI �18.5

and <25 kg/m2 (reference category), underweight BMI <18.5 kg/m2, overweight BMI �25

kg/m2 and <30 kg/m2, obese BMI �30 kg/m2 and <40 kg/m2, and morbidly obese BMI

�40 kg/m2.

A comprehensive set of laboratory studies was also extracted upon admission. This

included complete blood count (white blood cell, absolute neutrophil, absolute lymphocyte,

and platelet counts), serum creatinine (sCr), liver tests including alanine aminotransferase

(ALT), aspartate aminotransferase (AST), total bilirubin, alkaline phosphatase, and albumin,

as well as serum troponin, procalcitonin, lactate dehydrogenase, fibrinogen, lactate levels, and

inflammatory markers including C reactive protein (CRP), D-dimer, and ferritin. Patients

were considered to have biochemical indication of liver injury at presentation if they had ALT

or AST>40 U/L, total bilirubin>1.2 mg/dL, or alkaline phosphatase>150 U/L (upper limit of

normal at our laboratory). Kidney dysfunction was defined as Kidney Disease Improving

Global Outcomes Acute Kidney Injury (KDIGO AKI) stage 2 or greater where sCr was at least

2 times or more then reference value with reference estimate at 1mg/dL (i.e. sCr� 2.0 mg/dL)

[12].

Patients’ degree of hypoxia on admission was categorized based on pulse oximetry as a) no

hypoxia (defined as an oxygen saturation of�95% on room air), b) moderate hypoxia (defined

as maintaining an oxygen saturation of 90–95% on room air or�90% with 4 liters or less sup-

plemental oxygen through a nasal cannula, or c) severe hypoxia (defined as needing more than
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4 liters of supplemental oxygen, non-rebreather mask or non-invasive (e.g. BiPAP) or invasive

ventilation to maintain an oxygen saturation of�90%, or failure to maintain an oxygen satura-

tion of�90%).

Outcomes. Data were extracted regarding need for supplementary oxygen, non-invasive

positive pressure ventilation (NIPPV), or invasive ventilatory support with mechanical ventila-

tion, ICU admission, and death. The main outcome of this study was 14-day mortality. The

secondary outcome of interest was 7-day mortality.

Follow-up, survival modeling, and prediction. Patients were followed from time of

admission until May 24th, 2020. Survival time was defined as the time between admission to

death (failure time) or the date when patients were last known to be alive (censoring time). To

calculate 7-day mortality, deaths that occurred within 7 days of admission were kept while

deaths occurring after 7 days were recorded as non-events. To calculate 14-day mortality,

deaths that occurred within 14 days of admission were kept while deaths occurring after 14

days were recorded as non-events.

Univariable logistic regression models were created for each of the aforementioned inde-

pendent variables. To lessen the influence of extreme values, we transformed continuous vari-

ables into natural logarithms. Selection of predictors was performed using Chi-square

automatic interaction detection (CHAID) modeling in order to decrease the dimensionality of

the data and explore the most informative variables for identifying patient groups with the

highest risk of mortality [13]. Variables which were significant in univariable analysis (defined

as p-value <0.05) were included in the CHAID model with adjusted significance testing (Bon-

ferroni method) without limitation on the number of nodes and branches [14, 15]. Indepen-

dent risk factors that were chosen from the CHAID algorithm (Xj) were subsequently included

in a multivariable logistic regression and their regression coefficients (βj) were stored. An indi-

vidual odds ratio of mortality (ORi) was calculated for each patient by adding the product of

each individual risk factor level and its corresponding coefficient:

ORi¼exp ð
P

1 to j½Xij bj� þ b0Þ

Where ORi is each individual’s OR of mortality, Xij is the individual’s level of j’th risk factor,

and βj is the coefficient for the j’th risk factor, and β0 is the intercept for the logistic regression.

An individual probability of death (Pi) was calculated from the individual’s ORi:

Pi ¼ ORi=ð1þ ORiÞ

Internal and external validation of the prediction model

10-fold cross validation was used for internal validation of the prediction models, and mean

(95%CI) performance characteristics across 10 internal validations as well as overall perfor-

mance characteristics in the whole development cohort were reported [16]. Discriminant anal-

yses in the internal and external validation sets were performed using receiver operating

characteristic (ROC) curve. Area under the curve (AUC) and its 95% confidence intervals

were reported. Calibration was performed using visual calibration plots of observed versus pre-

dicted risk of death within groups formed by 10 quantiles of predicted risk of death, with over-

lying linear predictions and their 95% confidence intervals. Chi-Squared statistics and

corresponding p-values (DF = 8) were reported from the Hosmer-Lemeshow goodness-of-fit

test for calibration.

External validation was separately performed by using a cohort of 265 adult patients (age>

= 18) admitted with a positive RT-PCR for SARS-CoV-2 from a respiratory sample between

March 7, and April 2, 2020, in 2 tertiary care and 7 community hospitals from a single
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healthcare system in Massachusetts. Identical definitions, independent, and outcome variables

were used in the external validation analysis.

The study was reviewed and approved by the corresponding institutional review board

(Partners Healthcare: 2020P0000983).

Chained multiple imputations (50 repetitions) using linear and logistic regressions for con-

tinuous and categorical variables, respectively, were used to impute missing data on indepen-

dent variables (S2 Table in S1 File) [17]. All tests were two-tailed with a significance level of

alpha< 0.05, except when adjusted for multiple comparisons as described above. All analyses

were performed with Stata 13.0 for Windows (StataCorp LP, College Station, TX). The 3D

graphs of risk were generated using Microsoft Mathematics (Microsoft Corporation, Red-

mond, WA).

Results

A total of 664 patients were hospitalized with COVID-19 between March 4, and April 9, 2020.

The mean age of patients was 64 years (SD = 17), with 63% being male (Table 1). Ninety-three

deaths occurred within 14 days of hospital admission and observed 7-day and 14-day mortality

rates were 9.5% (95%CI 7.3–11.7%), and 14% (95%CI 11.4–16.7%), respectively (Fig 1).

Analysis of mortality risk factors

In univariable analysis, age, race/ethnicity, history of hypertension or cardiovascular disease,

history of chronic kidney disease, mean arterial pressure (MAP), respiratory rate and presence

of hypoxia on presentation, serum creatinine level, presence of kidney dysfunction, platelet

count, procalcitonin, lactate dehydrogenase, lactic acid, troponin, Ferritin, D-dimer, C-reac-

tive protein, and AST levels on presentation were significantly associated with 14-day mortal-

ity (Table 1).

These variables were then included in the CHAID algorithm to find an optimal decision

tree for splitting patients into low- and high-risk categories and predicting the risk of death.

Age, admission MAP, presence of severe hypoxia (compared to no or moderate hypoxia) on

presentation, and presence of kidney dysfunction on admission were selected as the most

informative risk factors for categorizing patients according to their risk of 14-day mortality

(Fig 2).

Development of 7-day and 14-day mortality prediction models

These four risk factors (age, MAP, presence of severe hypoxia, presence of kidney dysfunction)

were then included in two separate multivariable regression models, one with 7-day mortality

as the outcome, and another with 14-day mortality as the outcome, in order to estimate the

corresponding coefficient for each risk factor and outcome pair. The details of the regression

parameters are included in Table 2.

Each patient’s predicted odds of 7-day mortality was then calculated as

OR7-day = exp [Loge(age)� 7.8913 + Loge(MAP)� -1.5434 + 1.0738 (if kidney dysfunction

present) + 0.9385 (if severe hypoxia present) -29.8233]

Similarly, each patient’s predicted odds of 14-day mortality was calculated as

OR14-day = exp [Loge(age)� 6.4001+ Loge(MAP)� -1.2073+ 1.0281 (if kidney dysfunction

present)+ 0.7977 (if severe hypoxia present) -24.1700]

The predicted odds were then translated into predicted probabilities for each patient (S3

Table in S1 File and S1 and S2 Figs).
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Table 1. Demographics, medical history, laboratory, and clinical findings of patients with COVID-19 upon admission.

Variable Total, n = 664 Death within 14 days of admission P-value�

No, n = 571 Yes, n = 93

Age, years 64±17 62±16 80±12 <0.001

Male 415(63) 357(63) 58(62) 0.977

Race/ethnicity 0.008

White/Caucasian 217(44) 183(43) 34(50)

Black/African-American 73(15) 64(15) 9(13)

Asian 68(14) 52(12) 16(24)

Other 134(27) 125(29) 9(13)

BMI

Normal 148(31) 120(29) 28(43) 0.084

Underweight 18(4) 14(3) 4(6)

Overweight 142(30) 124(30) 18(28)

Obese 139(29) 127(31) 12(18)

Morbidly obese 32(7) 29(7) 3(5)

Pre-existing comorbidities

Hypertension 377(57) 309(54) 68(73) 0.001

Diabetes 206(31) 174(30) 32(34) 0.447

Chronic kidney disease 92(14) 69(12) 23(25) 0.001

Cardio-vascular disease 135(20) 98(17) 37(40) <0.001

COPD/Asthma 81(12) 69(12) 12(13) 0.823

Obstructive sleep apnea 27(4) 23(4) 4(4) 0.902

VTE 54(8) 43(8) 11(12) 0.163

Cancer 78(12) 62(11) 16(17) 0.081

IBD 8(1) 7(1) 1(1) 0.902

Chronic liver disease 20(3) 18(3) 2(2) 0.602

Solid organ transplantation 20(3) 18(3) 2(2) 0.602

Vital signs

fever 170(26) 153(27) 17(18) 0.082

Respiratory rate 21±6 21±5 24±7 <0.001

Heart rate 94±19 94±19 92±19 0.450

Mean arterial pressure, mmHg 93±14 94±14 89±15 0.001

Hypoxia on presentation <0.001

No 248(37) 228(40) 20(22)

Moderate 223(34) 196(34) 27(29)

severe 193(29) 147(26) 46(49)

Kidney dysfunction�� 93(14) 62(11) 31(33) <0.001

Laboratory findings

Creatinine, mg/dL 1.6±3.1 1.5±3.1 2.3±2.3 <0.001

White blood cell count, x10^3 7.7±6.6 7.6±6.8 8.0±4.6 0.673

Absolute lymphocyte count,x10^3 1.1±2.1 1.1±2.2 0.8±0.6 0.053

Absolute neutrophil count, x10^3 7±9.2 6.7±9.0 8.3±10.6 0.056

Platelet count, x10^3 218±99 223±100 188±92 0.001

Procalcitonin, ng/mL 0.9±4.3 0.7±3.1 1.9±8.4 <0.001

D-dimer, ng/mL 1736±4600 1495±4321 3222±5874 <0.001

C reactive protein, mg/dL 15±13 15±14 17±10 0.015

Lactate dehydrogenase, U/L 475±302 450±220 633±578 <0.001

Lactate, mmol/L 1.9±1.5 1.7±1.1 2.7±2.6 <0.001

(Continued)
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Internal validation

10-fold internal cross validation showed a mean AUC of 0.864 (95%CI 74.0–97.7%) and a

mean Hosmer-Lemeshow chi-squared statistic of 5.13 (p = 0.744) for prediction of 7-day mor-

tality. The mean AUC was 0.827 (95%CI 0.687–0.966) with a Hosmer-Lemeshow chi-squared

statistic of 6.53 (p = 0.588) for prediction of 14-day mortality across 10 internal cross valida-

tions. The model had excellent overall discrimination for 7-day mortality with an AUC of

0.877 (95%CI 0.831–0.923; Fig 3A) in the development cohort. The model also had excellent

discrimination for 14-day mortality in the development cohort with an AUC of 0.847 (95%CI

0.806–0.888; Fig 3C). The models showed excellent calibration for predicting both 7-day (Hos-

mer-Lemeshow chi-squared = 9.10, p = 0.334; DF = 8), and 14-day (Hosmer-Lemeshow chi-

squared = 9.64, p = 0.291; DF = 8) mortality, with excellent agreement between observed and

predicted risk of mortality across 10 quintiles of risk (Fig 3B and 3D).

External validation

The external validation cohort consisted of 265 patients admitted with laboratory-confirmed

COVID-19. Patients in this cohort had a mean age of 65 years (SD = 17), and were 56% male.

39 deaths occurred within 14 days of admission and 7-day and 14-day mortality rates were

7.5% (95%CI 4.4–10.8%) and 14.7% (95%CI 10.4–19.0%), respectively (Fig 1).

The same prediction models were used to predict each patient’s probability of 7-day and

14-day mortality within the external validation cohort. The model had excellent discrimination

for 7-day mortality with an AUC of 0.851 (95%CI 0.781–0.921; Fig 4A), as well as an excellent

discrimination for 14-day mortality with an AUC of 0.825 (95%CI 0.764–0.887; Fig 4C).

The models showed excellent calibration for predicting both 7-day (Hosmer-Lemeshow

chi-squared = 9.03, p = 0.340; DF = 8) and 14-day (Hosmer-Lemeshow chi-squared = 7.63,

p = 0.471; DF = 8) mortality, with excellent agreement between observed and predicted risk of

mortality across 8 quintiles of risk (Fig 4B and 4D).

Discussions

The COVID-AID risk tool is a prediction model that accurately estimates the 7- and 14-day

risk of death following admission for patients hospitalized with COVID-19 using four simple,

Table 1. (Continued)

Variable Total, n = 664 Death within 14 days of admission P-value�

No, n = 571 Yes, n = 93

Ferritin, ng/mL 1273±1780 1107±1215 2265±3501 0.001

Troponin I, ng/mL 0.2±0.9 0.1±0.8 0.5±1.4 <0.001

Albumin, g/dL 3.3±0.6 3.3±0.7 3.2±0.6 0.225

Total bilirubin, mg/dL 0.7±0.5 0.7±0.5 0.7±0.5 0.516

ALT, U/L 49±53 49±51 46±61 0.021

AST, U/L 61±76 56±54 90±151 <0.001

Alkaline phosphatase, U/L 90±78 90±83 85±46 0.461

^Data are mean ± SD, or n(%).

�P-values are from a univariable logistic regression model with 14-day mortality as the outcome. The continuous variables are transformed by natural logarithm before

used in regression. VTE: venous thromboembolism; IBD: inflammatory bowel disease; NSAID: non-steroidal anti-inflammatory drug; AST: aspartate aminotransferase;

ALT: alanine aminotransferase; INR: international normalized ratio; aPTT: activated partial thromboplastin time.

��Kidney dysfunction, defined as serum creatinine at admission� 2 mg/dL

https://doi.org/10.1371/journal.pone.0239536.t001
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well-defined variables that are all available at initial presentation–patient age, mean arterial

pressure, serum creatinine and severity of hypoxia. We demonstrated that this prognostic

model had consistent test performance in forecasting mortality risk using an independent

COVID-19 positive population from another U.S. region in external validation. While other

groups around the world have attempted prognostic modeling for COVID-19 disease severity

Fig 1. Flowchart of the populations used to build and externally validate mortality prediction models.

https://doi.org/10.1371/journal.pone.0239536.g001
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or mortality, a recent systematic review found a lack of generalizability, poor reporting, and

severe biases limiting their use [10]. In addition, while some studies have established the sever-

ity of respiratory distress by applying a scoring system (Brescia-COVID Respiratory Severity

Scale) based on oxygenation status and chest imaging among a critically-ill Italian population

affected with COVID-19 [18, 19], there remains great need for a precise prediction score based

on variables available at first encounter in order to add clinical meaningfulness and practical-

ity. More recently, a prediction score, COVID-GRAM, was constructed in China to predict

development of critical illness among hospitalized patients with COVID-19 [20]. While this

10-item prediction rule was found to have good predictive value (AUC 0.88), there are several

limitations that may affect its applicability and generalizability. The study and model’s end-

point, an aggregate outcome of ICU admission and intubation, may be affected by non-clinical

factors such as differences in local policy, demand, and resources available. Furthermore, the

hospitalized COVID-19 population may also be different in China compared to U.S., as

Fig 2. Optimal decision tree for categorizing patients admitted for COVID-19 based on the most informative predictors of 14-day

mortality.

https://doi.org/10.1371/journal.pone.0239536.g002

Table 2. Risk prediction model for mortality risk for patients admitted with COVID-19, developed using the training data set.

7-day mortality 14-day mortality

Risk factor Coefficient Standard error Risk factor Coefficient Standard error

Loge(age) 7.8913 1.2109 Loge(age) 6.4001 0.8852

Loge(MAP) -1.5434 0.9283 Loge(MAP) -1.2073 0.7999

Kidney dysfunction� 1.0738 0.3445 Kidney dysfunction 1.0281 0.3038

Severe hypoxia 0.9385 0.3087 Severe hypoxia 0.7977 0.26

Intercept -29.8233 7.1248 Intercept -24.17 5.5901

�Kidney dysfunction, defined as serum creatinine at admission� 2 mg/dL

https://doi.org/10.1371/journal.pone.0239536.t002
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threshold for admission may vary. Certain factors in the prediction rule, such as imaging

results or state of consciousness, are also subject to interpretation of the user, thereby adding

another layer of subjectivity. These factors may all limit the generalizability of this prediction

score, particularly among the U.S. hospitalized COVID-19 population. Therefore, we sought

to address this need by developing the COVID-AID 7-day and 14-day mortality risk tool and

validated the discrimination and calibration using two independent U.S. populations with

COVID-19 disease.

The COVID-AID risk tool is an easy-to-use, bedside clinical decision instrument that may

assist healthcare workers in determining resource utilization and hospital triage of patients

infected with SARS-CoV2. Additionally, the calculator may also allow patients, family mem-

bers, and additional caregivers to gain helpful insight on disease severity and prognosis. More-

over, we propose that the COVID-AID risk tool might assist future therapeutic trial design as

a validated tool to be used for risk stratification. The strength of this instrument is the simplic-

ity of the variables used in the model, including the generalizability of included admission

vitals, age, and serum creatinine, all of which can be readily obtained at all hospitals at the time

of hospital or emergency room presentation (See case examples in S3 Table in S1 File). The use

of only objective parameters would also help reduce inter-user variability.

Regarding the comprised model variables, each has scientific rationale in the pathophysiol-

ogy of COVID-19 disease, which strengthens the generalizability of the model (See predicted

mortality risks in S1 and S2 Figs). Not surprisingly, the degree of hypoxia at presentation has

been well-defined as a significant indicator of severity of illness, particularly in acute respira-

tory stress conditions, and carries strong justification to be a significant risk factor in the

Fig 3. Discrimination and calibration of prediction models in internal validation. a) 7-day mortality: Receiver

operator characteristic (ROC) curve for discrimination. Area under the curve (AUC) = 0.877 (95%CI 0.831–0.923). b)

7-day mortality: Calibration plot of observed versus predicted risk of mortality (Hosmer-Lemeshow chi-

squared = 9.10, p = 0.334; DF = 8). c) 14-day mortality: Receiver operator characteristic (ROC) curve for

discrimination. Area under the curve (AUC) = 0.847 (95%CI 0.806–0.888). d) 14-day mortality: Calibration plot of

observed versus predicted risk of mortality (Hosmer-Lemeshow chi-squared = 9.64, p = 0.291; DF = 8).

https://doi.org/10.1371/journal.pone.0239536.g003
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clinical course of severe COVID-19 [18, 19, 21, 22]. In addition, given our focus on short-term

mortality as an outcome, we found that lower MAP at presentation was linked with early death

and remained a consistent, early adverse predictor among patients in our cohort. We hypothe-

size that this is due to the fact that these patients were more likely to be suffering from systemic

vasodilatory states, such as sepsis [23] or the inflammatory cytokine storm syndrome, which

has been associated with severe COVID-19 and ARDS [24–26]. Interestingly, we also found

that kidney dysfunction at presentation (defined as serum creatinine�2 mg/dL), regardless of

chronicity, was the most significant extra-thoracic organ system to impact short-term mortal-

ity among hospitalized patients afflicted with COVID-19. This, too, is not surprising, as kidney

dysfunction, particularly acute kidney injury, is associated with increased mortality among

critically ill patients [27, 28] and is commonly associated with episodes of hypotension [29].

Further supporting our findings, elevated serum creatinine was observed more often in inter-

national COVID-19 cohorts among those who died [5, 7, 30], and a recent study on a large

cohort of admitted patients with COVID-19 in New York, USA, reported that 22% of total

admissions and more than two thirds of admissions leading to death were complicated by

acute kidney injury, making it the most common end-organ failure among the admitted

patients with COVID-19 [31]. Kidney dysfunction in COVID-19 is hypothesized to be either a

consequence of a direct local inflammatory response on the renal epithelial cell during viral

inclusion or indirectly as a result from pro-inflammatory and immune-mediated kidney dam-

age [32, 33]. Lastly, patient age, perhaps the most common risk factor for adverse outcomes in

acute and chronic illnesses, maintained significance in our prediction model, and thus, justi-

fied prior literature quoting age as an important risk factor in COVID-19 adverse outcomes

[10, 30, 33–35]. Therefore, these four variables demonstrated that older patients who present

Fig 4. Discrimination and calibration of prediction models in external validation. a) 7-day mortality: Receiver

operator characteristic (ROC) curve for discrimination. Area under the curve (AUC) = 0.851 (95%CI 0.781–0.921). b)

7-day mortality: Calibration plot of observed versus predicted risk of mortality (Hosmer-Lemeshow chi-

squared = 9.03, p = 0.340; DF = 8). c) 14-day mortality: Receiver operator characteristic (ROC) curve for

discrimination. Area under the curve (AUC) = 0.825 (95%CI 0.764–0.887). d) 14-day mortality: Calibration plot of

observed versus predicted risk of mortality (Hosmer-Lemeshow chi-squared = 7.63, p = 0.471; DF = 8).

https://doi.org/10.1371/journal.pone.0239536.g004
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with poor oxygenation, hypotension, and kidney dysfunction have a generalizable and plausi-

ble increased risk for short-term demise from COVID-19.

Our study relies on the retrospective collection of clinical and outcome data. However, we

used a structured data abstraction tool and increased the generalizability of the results by

obtaining data from a large cohort of patients admitted at two different New York City hospi-

tals (a tertiary care and a smaller non-teaching hospital). Furthermore, we externally validated

our model in a large healthcare system (composed of both an academic tertiary center as well

as affiliated community hospitals) in Massachusetts in an effort to ensure consistency in the

model’s performance. The COVID-AID score also provides specific advantages over the

recently published COVID-GRAM score developed in China, as it requires less input of data

(4 variables versus 10), uses only objective parameters easily obtained upon presentation, and

predicts the universal outcome of death with comparable performance (AUC 0.825–0.851).

Our model requires global validation; however, we attempted to focus on easily reproducible

and generalizable variables for this model that entailed only age, initial vital signs (hypoxia and

blood pressure), and one laboratory test (serum creatinine) that can be easily obtained in a uni-

form fashion from a variety of healthcare settings.

In conclusion, the COVID-19 pandemic continues to wage a catastrophic burden on inter-

national healthcare and the global economy. As research continues to elucidate effective thera-

pies for SARS-CoV2, healthcare workers and patients alike need assistance in understanding

what clinical parameters on admission might predict increased severity of disease and short-

term mortality. We have developed an easy-to-use clinical prognostic score that accurately pre-

dicts risk of mortality with excellent calibration and consistency in test performance using an

external validation cohort. The COVID-AID risk tool calculator is also available online at

www.covidaidscore.com. While there is need for international validation, this novel mortality

prediction model may help providers understand the expected risk of death for patients pre-

senting to the hospital. We propose that the COVID-AID risk tool can enhance our knowledge

of how to successfully manage these patients, lead to more effective healthcare resource utiliza-

tion, and provide patients and their loved ones with improved understanding of disease sever-

ity and prognosis. Additionally, the COVID-AID risk tool also delivers an accurate risk

stratification estimate for researchers to properly design future trials in hopes of discovering

effective therapies against this virus.
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S1 Fig. 7-day risk of mortality in patients admitted with COVID-19, based on age (18 to 80

years), mean arterial pressure (MAP, 40 to 100 mmHg), severe hypoxia, and kidney dys-

function. a) No severe hypoxia or kidney dysfunction. b) No severe hypoxia, but kidney dys-

function present. c) Severe hypoxia present, but no kidney dysfunction. d) Both severe

hypoxia and kidney dysfunction present.

(JPG)

S2 Fig. 14-day risk of mortality in patients admitted with COVID-19, based on age (18 to

80 years), mean arterial pressure (MAP, 40 to 100 mmHg), severe hypoxia, and kidney dys-

function. a) No severe hypoxia or kidney dysfunction. b) No severe hypoxia, but kidney dys-

function present. c) Severe hypoxia present, but no kidney dysfunction. d) Both severe

hypoxia and kidney dysfunction present.

(JPG)
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