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Abstract

Motivation: The discovery of transcription factor binding site (TFBS) motifs is essential for untan-

gling the complex mechanism of genetic variation under different developmental and environmen-

tal conditions. Among the huge amount of computational approaches for de novo identification of

TFBS motifs, discriminative motif learning (DML) methods have been proven to be promising for

harnessing the discovery power of accumulated huge amount of high-throughput binding data.

However, they have to sacrifice accuracy for speed and could fail to fully utilize the information of

the input sequences.

Results: We propose a novel algorithm called CDAUC for optimizing DML-learned motifs based on

the area under the receiver-operating characteristic curve (AUC) criterion, which has been widely

used in the literature to evaluate the significance of extracted motifs. We show that when the con-

sidered AUC loss function is optimized in a coordinate-wise manner, the cost function of each re-

sultant sub-problem is a piece-wise constant function, whose optimal value can be found exactly

and efficiently. Further, a key step of each iteration of CDAUC can be efficiently solved as a compu-

tational geometry problem. Experimental results on real world high-throughput datasets illustrate

that CDAUC outperforms competing methods for refining DML motifs, while being one order of

magnitude faster. Meanwhile, preliminary results also show that CDAUC may also be useful for im-

proving the interpretability of convolutional kernels generated by the emerging deep learning

approaches for predicting TF sequences specificities.

Availability and Implementation: CDAUC is available at: https://drive.google.com/drive/folders/

0BxOW5MtIZbJjNFpCeHlBVWJHeW8.

Contact: dshuang@tongji.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

By binding to their genomic target sequences and regulating the ex-

pression patterns of genes, transcription factors (TFs) play essential

roles in transcriptional regulatory networks which control various

cellular and developmental processes. Generally speaking, a TF pre-

fers to bind to similar short sequences (known as TF binding sites,

TFBSs) across the genome. In order to untangle the complex mech-

anism of genetic variation under different developmental and envir-

onmental conditions, it is an important first step to discover the

underlining overrepresented sequence patterns of TFBSs, which are

referred to as TFBS motifs.

In the past decade, due to the rapid development of high-

throughput sequencing technology, a variety of experimental methods

have been developed to extract TF-DNA binding regions. In particu-

lar, ChIP-seq, which combines chromatin immunoprecipitation with

high-throughput sequencing, greatly improves the amount and spatial

resolution of generated data, both of which are beneficial for the

studies of TF binding in vivo. However, ChIP-seq also brings two

challenges for motif discovery methods: (i) The enormous amount of

potential TF binding regions yielded from a single experiment requires

highly scalable motif discovery tools; (ii) Computationally, motif

learning methods rank candidate motifs by either implicitly or expli-

citly contrasting them with a ‘background’ model which describes

how the foreground sequences should look like if no motif instance in

present there (Valen et al., 2009). Common choices for the back-

ground include multinomial or Markov models (Kilpatrick et al.,

2014). However, such generic models may fail to capture important

properties of real genomic sequences. In addition, a TF could bind

alone to some sequences, and yet cooperate with other TFs and bind

to other sequences, leading to multiple motifs that each explains only

a subset of the foreground set (Mason et al., 2010; Setty and Leslie,

2015). Such subtle signals may not be significantly enriched against a

‘universal’ background, and are thus hard to detect (Bailey and

Machanick, 2012; Lesluyes et al., 2014).
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Currently, many motif algorithms tailored for high-throughput

datasets have been proposed. Among existing approaches, the dis-

criminative motif learning (DML) methods are promising for simul-

taneously addressing the aforementioned two challenges (Agostini

et al., 2014; Bailey, 2011; Mason et al., 2010; Valen et al., 2009;

Yao et al., 2013). In contrast to traditional motif learners, DMLs

carefully collect a number of real DNA sequences as background,

which can better represent the complex and heterogeneous nature of

genome sequences and help discern the motif signals of interest, then

search for sequence motifs that can discriminate between the posi-

tive and negative sets. In addition, by designing the negative dataset

in a problem specific manner, DMLs can be also useful for studying

context-dependent regulatory activities (Mason et al., 2010).

Computationally, the cost functions DMLs are generally noncon-

vex, non-differentiable, and even discontinuous, and are thus difficult

to optimize. To circumvent such difficulties and improve scalability,

current DML methods typically do not search for motif directly over

the complete parameter space, but instead adopt approximate

schemes that could sacrifice both accuracy and expressive power. For

example, the motifs learned by DREME (Bailey, 2011) and MotifRG

(Yao et al., 2013) are limited to the discrete IUPAC space, while

HOMER (Heinz et al., 2010) chooses to refine motifs by only tuning

external parameters. Therefore, although DML algorithms could rap-

idly identify binding motifs, they may fail to fully utilize the informa-

tion of the input sequence (Patel and Stormo, 2014).

From a computational point of view, the learning objective of

DML methods is essentially the inference of a predictor (represented as

a motif) that can discriminate between two input sets (Maaskola and

Rajewsky, 2014), which is similar in spirit to several machine learning

tasks, especially binary classification and bipartite ranking. For such

tasks, the area under the receiver-operating characteristic curve (AUC)

figures prominently as the evaluation tool (Gao et al., 2016).

Meanwhile, AUC has also been widely used in the literature to measure

the significance of extracted motifs (McLeay and Bailey, 2010;

Orenstein and Shamir, 2014; Weirauch et al., 2013; Yao et al., 2013).

Given the importance of the AUC metric, several previous stud-

ies attempted to investigate whether it may also serve as an alterna-

tive criterion for improving the quality of discriminative motif

elicitation. Li et al. (2007) proposed GAPWM to utilize AUC for im-

proving the quality of a poorly estimated motif. However, GAPWM

is based on genetic algorithm and could be too slow for high-

throughput datasets. Instead, Patel et al. (Patel and Stormo, 2014)

developed discriminative motif optimizer (DiMO) which can more

efficiently refine the quality of raw motifs found by fast DMLs.

Experimental evaluations show that it can improve AUC for 90% of

the tested TFs, and the magnitude of improvement could be up to

39%. Despite the good performance of DIMO, it achieves efficiency

by simply using a fixed heuristic formula to update current motif so-

lutions, whose relationship with the desired AUC objective is hard

to characterize. In summary, existing approaches that use AUC as

objective for learning motifs either has to rely on heuristic updating

rules or is computationally impractical for high-throughput datasets,

which indicates a gap in current state of knowledge.

In this paper, we aim at closing this gap by developing a novel al-

gorithm called Coordinate Descent based AUC optimization

(CDAUC) for direct maximization of the AUC score of input motifs.

The contributions of this paper can be summarized as follows:

1. We show that when the AUC loss function is optimized in a

coordinate-wise manner, the cost function of each resultant sub-

problem is a piece-wise constant (PCF) function, whose optimal

value can be found exactly.

2. To further improve the tractability of CDAUC, we show that the

parameter learning of the above mentioned PCF can be cast as

computational geometry problem, which is then solved using a

specialized data structure called range tree with fractional cas-

cading (De Berg et al., 2000).

3. An efficient parameter setting approach is proposed, which en-

sures that each sub-problem of the coordinate descent process

can be solved in a global-optimal manner.

The remainder of the paper is organized as follows. In Section 2, we

formally define the motif optimization problem. As convolutional

neural networks (CNNs) are becoming the state-of-the-art

approaches for sequence-based prediction of TF binding, we also

discuss the differences in terms of problem formulations between

DMLs and CNNs, and how CDAUC may also be useful for improv-

ing the PWMs learned using CNNs. In Section 3, we present the

CDAUC method and discuss its implementation. Experimental con-

figurations and results are given in Section 4.

2 Background

2.1 Problem formulation
As in the general problem setting of discriminative motif learning,

we have a set of DNA sequences T as input, each S 2 T is a string of

length jSj defined over the DNA alphabet. T is further divided into a

positive set P and a negative set N , and we would like to find the

motif that is most significantly enriched in P relative to N .

As one of the most widely used motif representation, position

weight matrices (PWMs) model the motif as W 2 RjRj�l, where the

entries of each column represent the binding preference for four

elements of the DNA alphabet R ¼ fA;C;G;Tg in the correspond-

ing position of the motif. The matching score between any sequence

of l letters s ¼ s½1:l� and W is given by (Alipanahi et al., 2015; Patel

and Stormo, 2014):

f s; Wð Þ ¼
Xl

i¼1

I s i½ � ¼ A
� �

W 1;i½ � þ I s i½ � ¼ C
� �

W 2;i½ � þ � � �

� � � I s i½ � ¼ G
� �

W 3;i½ � þ I s i½ � ¼ T
� �

W 4;i½ �

 !
; (1)

where Ið�Þ is the indicator function. For a sequence S that is longer

than l, its matching score f ðS; WÞ is the maximal matching score be-

tween W and the complete set of l-long subsequences of S, such a set

can be obtained by using a sliding window of width l to scan S and

its reverse complement �S (Patel and Stormo, 2014):

f ðS; WÞ ¼ maxs2SðSÞðf ðs; WÞÞ;

SðSÞ ¼ fS½i;...;iþl�1�j1 � i � jSj � l þ 1g [ f�S ½i;...;iþl�1�j1 � i � jSj � l þ 1g:
(2)

One can plot an empirical ROC curve corresponding to the scoring

function (2) as (Narasimhan and Agarwal, 2013):

TPR tð Þ ¼
P

S2P I f S; Wð Þ > tð Þ
jPj ;

FPR tð Þ ¼
P

S2N I f S; Wð Þ > tð Þ
jN j ;

(3)

where j � j returns the cardinality of a set. The area under this empir-

ical curve (AUC) is calculated as (Gao et al., 2016):X
S12P;S22N

I f S1; Wð Þ > f S2; Wð Þð Þ þ 0:5 � I f S1; Wð Þ ¼ f S2; Wð Þð Þð Þ

jPj � jN j :

(4)
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2.2 DMLs versus CNNs for motif learning
Before we proceed further with the analysis of (4), it is important

to note that DML methods (which include CDAUC as a special

case) are not so much interested in classifying the sequences as

being positive or negative, but rather in learning motifs (Maaskola

and Rajewsky, 2014). Being consistent with this purpose, the cost

functions adopted in most of the DML methods, such as the one in

(4), are defined to quantify the over-representation of a single can-

didate motif in the input data. Consequently, the optimization of

one of these cost functions may also be viewed as the searching of

an extremely large space of possible motifs, looking for the one

with the highest degree of over-representation (McLeay and

Bailey, 2010). The resultant solution would accordingly be an en-

riched motif in the input data, and can be safely interpreted as

such. A side effect of these loss functions, however, is that they can

only extract one motif each time. To elicit multiple motifs, one

could either repeatedly mask the matching positions of found

motifs and then rerun the algorithm on unmasked regions (Bailey,

2011; Maaskola and Rajewsky, 2014), or use a meta-learning

scheme that infer all motifs simultaneously while encouraging their

diversity (Ikebata and Yoshida, 2015). Nevertheless, such

approaches are still not ideal for modelling coorperative bindings

of multiple TFs. In addition, the sequence information recognized

by a TF is highly complex and not limited to the core-binding motif

(Dror et al., 2015). Due to these issues, state-of-the-art machine

learning methods for sequence-based modeling of TF binding are

convolutional neural nets (CNNs) (Alipanahi et al., 2015; Zeng

et al., 2016), which use a large number of features to collectively

capture the complex characteristics of bound DNA sequences, and

thereby significantly outperform DML methods in terms of pre-

dicting TF-DNA interactions.

Similar to DML methods such as DIMO and CDAUC, CNNs

also adopt PWMs as the basic building block. Although previous

works (Alipanahi et al., 2015; Kelley et al., 2016) show that some of

PWMs learned by CNNs can be quite similar to known TF motifs, it

may be problematic to view CNNs as motif learning methods that

perform the same task as DMLs, as explained below.

Computationally, CNNs firstly extract features from an input

sequence by scanning it using PWMs as convolutional kernels,

these features are then fed into a neural network layer to produce

the final binding score. During the training phase, all model par-

ameters, including the PWMs and network weights, are updated

simultaneously to improve the learning objective, which meas-

ures how well can the binding score function discriminate be-

tween positive and negative sets (Alipanahi et al., 2015). Clearly,

the learning schemes of CNNs are designed to quantify the col-

lective effects of PWMs and the output layer, with limited con-

sideration of the meanings of individual PWMs. As a result, even

though two sets of PWMs may differ greatly, as long as they lead

to the same decision function, then CNNs would not be able to

differentiate between them. This property of CNN methods is

not a problem if one is only concerned about the accuracy of pre-

dicting DNA-protein interactions. However, as mentioned ear-

lier, (discriminant) motif learning is more concerned about

extractions and interpretations of individual sequences patterns,

hence CNN methods may not be the most suitable tool for motif

learning.

To better illustrate this issue, two synthetic examples are pre-

sented in Supplementary Material S1. For each example, we describe

two possible solutions learned by CNNs. The first solution is

‘correct’ in the sense that it successfully recovers the ground-truth

motifs, while the second solution is ‘wrong’ as it fails to achieve this.

However, judged by the learning criteria of CNNs, these two solu-

tions are both ‘correct’ as they both could accurately discriminate

between binding sequences and non-binding sequences

The above-mentioned problem of CNNs is mainly due to the

way the mathematical models and objective functions are formu-

lated therein, and hence should be less serious for DML methods.

Therefore, if the PWMs learned via CNNs are refined by

CDAUC or DIMO, then the refined PWMs may better resem-

ble the true motifs. This possibility will be explored experimentally

in Section 4.4.

3 Materials and methods

3.1 Numerical encoding
To facilitate further discussion, we firstly follow (Alipanahi et al.,

2015; Kelley et al., 2016) and encode (2) as a numerical form. Let

gð•Þ code A, C, G and T as ei, 1 � i � 4, respectively, where ei

2 R4 is the i-th natural basis. By concatenating the corresponding

coding vector for each position of s 2 SðSÞ together, we embed s

into 4l-dimensional linear space as:

x ¼ g sð Þ ¼ g s 1½ �
� �T

; g s 2½ �
� �T

; . . . ; g s l½ �
� �T

h iT
2 R4l: (5)

Based on (5), S can also be converted to a set B of coding vectors:

BðSÞ ¼ fx : x ¼ gðsÞ; s 2 SðSÞg: (6)

Accordingly, W is vectorized as

w ¼ ½W½1;1�; . . . ;W½4;1�; . . . ;W½1;l�; . . . ;W½4;l��T : (7)

Using (6) and (7), (2) can be simplified as

f ðS; WÞ ¼ max
x2BðSÞ

ðwTxÞ: (8)

3.2 The general framework of CDAUC
Using (8), the maximization of (4) is equivalently reformulated as:

min
w
‘w wð Þ �

X
S1 ;S2ð Þ2P�N

1� I f S1; wð Þ > f S2; wð Þð Þ

� 0:5 � I f S1; wð Þ ¼ f S2; wð Þð Þ

 !
: (9)

Our general framework for optimizing (9) is similar to the scheme in

(Hsieh and Dhillon, 2011), and is presented in Algorithm 1.

Specifically, we start from an initial point w0 2 R4l and generate a

series of intermediate solutions fwkg1k¼1 until convergence. The pro-

cess from wk to wkþ1 is referred here as an outer iteration. Only one

variable of w is updated at each outer iteration until convergence.

Specifically, each outer iteration has 4l inner iterations, in which we

aim to calculate the following one variable update (line 3) for each

coordinate of w: wkþ1;i ¼ wk þ ti � ei, where ei is the i-th natural

basis, and ti is obtained by solving the following one-variable sub-

problem of (9):

mint ‘tðtÞ � ‘wðwk þ t � eiÞ

s:t: tl � t � tr:
(10)

The specific choices of tl and tr in (10) will be discussed in Section

3.6.2. Then the coordinate which makes the objective decrease the

most is chosen as the updating direction (line 5).
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3.3 Analysis of the scoring function
In order to solve the sub-problem (10), we start by taking a closer

look at the binding score (2) of any individual sequence S as a

single-variant function of t:

fSðtÞ � f ðS; wk þ t � eiÞ: (11)

From (11), we can see that it is the basic building block of (9).

As is detailed in Supplementary Material S2, fSðtÞ can be rewrit-

ten as the following piece-wise linear function:

fSðtÞ ¼
fSðtSÞ tl � t � tS;

fSðtSÞ � tS þ t tS � t � tr:

(
(12)

where ðtS; fSðtSÞÞ is the coordinate of the break point that depends

on S only, and the two index sets IS and OS are defined as follows:

IS ¼ fx : x 2 BðSÞ; x½i� ¼ 1g;

OS ¼ fx : x 2 BðSÞ; x½i� ¼ 0g:
(13)

3.4 Analysis of the pair-wise comparison function
Next, we analyze the pair-wise loss function, which for any pair of

training sequences ðS1; S2Þ 2 P �N is defined as:

‘S1 ;S2
tð Þ � 1� I fS1

tð Þ > fS2
tð Þð Þ � 1

2
I fS1

tð Þ ¼ fS2
tð Þð Þ: (14)

By using (14), the objective function in (9) can be rewritten as

‘tðtÞ ¼
P
ðS1 ;S2Þ2P�N ‘S1 ;S2

ðtÞ, thus ‘S1 ;S2
ðtÞ essentially measures the

contribution of each pair of ðS1; S2Þ to ‘tðtÞ.
Recall from (12) that every fSðtÞ is uniquely determined by

ðtS; fSðtSÞÞ, thus perhaps not surprisingly, the shape of ‘S1 ;S2
ðtÞ is

completely determined by the relative position between ðtS1
; fS1
ðtS1
ÞÞ

and ðtS2
; fS2
ðtS2
ÞÞ. More specifically, let Dt and Df be defined as

Dt ¼ tS1
� tS2

;

Df ¼ fS1
ðtS1
Þ � fS2

ðtS2
Þ:

(15)

As is analyzed in Supplementary Material S3, ‘S1 ;S2
ðtÞ could have nine

possible kinds of shapes, each of which corresponds to a different re-

gion of Dt and Df (See Fig. 1 for illustrations), the corresponding nine

types of ‘S1 ;S2
ðtÞ are listed in Figure 2, where tS1 ;S2

is defined as

tS1 ;S2
¼

tS2
þ Df ðS1; S2Þ 2 [3

i¼1Ai;

tS1
� Df ðS1; S2Þ 2 [6

i¼4Ai:

(
(16)

3.5 Outline of the algorithm
Figure 2 shows that the ‘S1 ;S2

ðtÞ is constant when ðS1; S2Þ 2 [9
i¼7Ai,

and is piecewise constant when ðS1; S2Þ 2 [6
i¼1Ai, with tS1 ;S2

as the

break point. Recall that the final loss ‘tðtÞ is simply the sum of all

‘S1 ;S2
ðtÞ with ðS1; S2Þ 2 P �N , therefore it is also a step function

and could only change value at one of the break points of these pair-

wise loss functions.

Based on the above observations, we use Algorithm 2 to find the

optimal solution of (10). Specifically, we record all the break points

ftS1 ;S2
jðS1; S2Þ 2 Xg(line 1) and compute their corresponding error

updates f‘‘ðtS1 ;S2
Þg based on expressions of ‘S1 ;S2

ðtÞ presented in

Figure 2 (line 2-11), then sort it in an increasing order (line 12).

Here, we only need to consider ðS1; S2Þ which belongs to one of the

first six scenarios, because the remaining three scenarios don’t have

break points in the considered interval and won’t lead to an error

update. These break points divide the coordinate to at most jXj þ 1

intervals, and the loss ‘tðtÞ in each interval can be incrementally cal-

culated using the values of f‘‘ðtS1 ;S2
Þg (line 13), then the interval

which gives the minimal loss is easy to obtain.

Fig. 1. The 2-d coordinate plane divided into nine non-overlapping parts, each

of which corresponds to a different interacting scenario between ðtS1
; fS1
ðtS1
ÞÞ

and ðtS2
; fS2
ðtS2
ÞÞ, and results in a different type of ‘S1 ;S2

ðtÞ. The horizontal axis

and the vertical axis represent Dt and Df defined in (15), respectively

Algorithm 1. The general framework of CDAUC

Input: Positive set P, negative set N , solution w0, iteration

number k ¼ 0.

Output: the optimized wk.

1. Obtain the reformulated AUC optimization problem

(9) using (8).

2. repeat

3. Compute wkþ1;i for every 1 � i � 4l by solving

(10).

4. io ¼ arg max1� i� 4lð‘wðwkÞ � ‘wðwkþ1;iÞÞ.
5. wkþ1 ¼ wkþ1;io , k ¼ kþ 1.

6 until convergence

Algorithm 2.

Input: Positive set P, negative set N , current solution wk.

Output: The optimal solution of (10).

1. Collect the set X � [6
j¼1Aj.

2. for all ðS1; S2Þ 2 X do

3. Calculate Dt and Df using (15).

4. Determine the corresponding error update term

using Figure 2.

5. Calculate tS1 ;S2
using (16).

6. if ‘‘ðtS1 ;S2
Þ doesn’t exist yet

7. ‘‘ðtS1 ;S2
Þ ¼ error update.

8. else

9. ‘‘ðtS1 ;S2
Þ ¼ ‘‘ðtS1 ;S2

Þ þ error update.

10. end if

11. end for

12. Sort the collected ‘ ¼ f‘‘ðtS1 ;S2
ÞjðS1; S2Þ 2 [6

j¼1Ajg by

the value of tS1 ;S2
in an increasing order.

13. Incrementally calculate the loss function on each

interval.

14. Return the interval with the lowest loss.
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3.6 Implementation details
3.6.1 Range query

To implement the line 1 of Algorithm 2, we could simply exhaust-

ively consider every element of P �N , and test whether they belong

to X . Clearly, all of the elements of X would be enumerated in this

way, and it requires OðjPj � jN jÞ time. However, jXj could be sig-

nificantly smaller than jPj � jN j in practice, it would thus be desir-

able to develop a more ‘output-sensitive’ screening algorithm whose

computational time depends not only on jPj and jN j, but also goes

proportionally with jXj. To accomplish this, we first note that

X ¼ [
S22N
ðfðS1; S2ÞjS1 2 ðY1

S2
nY3

S2
Þ or S1 2 ðY2

S2
nY3

S2
ÞgÞ; (17)

where

Y1
S2
¼ fS1jDt � Df � 0; S1 2 Pg;

Y2
S2
¼ fS1jDt � Df � 0; S1 2 Pg;

Y3
S2
¼ fS1jDt ¼ Df ¼ 0; S1 2 Pg:

(18)

Equations (17) and (18) show that the elements of N can be com-

pletely identified by solving jN j sub-problems:

Problem 1. For every S2 2 N , firstly identify Y1
S2

and Y2
S2

, then

filter out the elements of Y3
S2

from both of them. h

Furthermore, if we define a bijective map / : ðtS;fSðtSÞÞ! ðxS;ySÞ
as

xS ¼ fSðtSÞ � tS;

yS ¼ fSðtSÞ;
(19)

then Y1
S2

, Y2
S2

, and Y3
S2

can be rewritten as

Y1
S2
¼ fS1jxS1

� xS2
; yS1
� yS2

; S1 2 Pg;

Y2
S2
¼ fS1jxS1

� xS2
; yS1

� yS2
; S1 2 Pg;

Y3
S2
¼ fS1jxS1

¼ xS2
; yS1
¼ yS2

; S1 2 Pg:

(20)

Using (20), the first part of Problem 1 can be equivalently stated in a

completely geometric manner, as illustrated in Figure 3:

Problem 2. Given a 2-dimensional point set ZP ¼fðxS;ySÞjS2Pg,
report the elements of ZP that lie in a specific rectangle (specifically,

½xmin;xS2
��½yS2

;ymax� or ½xS2
;xmax�� ½ymin;yS2

�), where

xmax ¼ maxS2P xS; xmin ¼ minS2P xS;

ymax ¼ maxS2P yS; ymin ¼ minS2P yS:
(21)

The key observation here is that Problem 2 is a special case of the or-

thogonal range search, a well-studied problem in the computational

geometry community and many specialized efficient algorithms have

been developed for it (Agarwal and Erickson, 1999). As is in our case,

range search typically has to deal with a large number of similar queries

on the same dataset, so it is worthwhile to firstly pre-organize the

queried dataset into a data structure that can efficiently answer many

potential queries by exploiting their shared geometric properties.

In CDAUC, we specifically adopt the 2-d range tree for process-

ing ZP , which can achieve faster answer times than alternative data

structures (e.g. k-d tree) by using more storage space (Agarwal and

Erickson, 1999). Roughly speaking, the 2-d range tree is a two-level

balanced search tree (BST) recursively defined over each dimension

of the input point set (see Fig. 4 for an illustrative example). By

adopting the ‘Fractional Cascading’ technique, the query time of

range tree can be further reduced. We refer the reader to (De Berg

et al., 2000) for details on related construction and query protocols.

Fig. 3. Identification of AUC-relevant positive-negative point pairs as a range

query problem. The blue points denote elements of fðtS ; fS ðtS ÞÞjS 2 Pg, while

the red points denote elements of fðtS ; fS ðtS ÞÞjS 2 Ng. xmin,xmax, ymin, and

ymax are defined in (21). After the bijective map of these points into another

2-d space, for each red point, there are two corresponding axis-parallel shad-

owed rectangles (defined in (21)) with it as one of the vertices, only those

positive (blue) points which lie inside the rectangles need to be considered

Fig. 2. Illustrations of the relative position between fS1
ðtÞ(blue line) and

fS2
ðtÞ(red line) in nine scenarios, the corresponding error update terms used

in Algorithm2, the expressions of ‘S1 ;S2
ðtÞ defined in (14), and the conditions

satisfied by Dt and Df
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The overall process of identifying N using range tree is presented

in Algorithm 3. Note that the construction of range tree requires

that there should be no duplicate points in ZP (De Berg et al., 2000).

Thus, we have to firstly preprocess ZP to obtain cZP such that this

requirement could be fulfilled (line 2). Since each element of cZP
could represent multiple elements of the original ZP , it is necessary

to additionally record the number of occurrences of each element ofcZP in ZP .

As is analyzed in Supplementary Material S4, the overall complex-

ity of Algorithm 3 is Oð2jPj log ðjPjÞ þ 2jN j log ðjPjÞ þ jXjÞ, which

could be much faster than the aforementioned brute-force implemen-

tation if jXj is significantly smaller than jPj � jN j. The efficiency of

CDAUC will be experimentally demonstrated in Section 4.3.

3.6.2 Parameter setting

Recall that CDAUC has a pair of hyper-parameters ðtl; trÞ, which de-

termines the search interval of each sub-problem (10). Since the ana-

lysis in previous subsections establishes that ‘tðtÞ is piecewise

constant, if we can choose ðtl; trÞ properly such that ‘tðtÞ is constant

when t > tr and t < tl, then the optimal t that globally maximizes ‘t

ðtÞ could be obtained by solving (10). In the Supplementary Material

S5, we show that ðtl; trÞ which satisfies this requirement can be effi-

ciently found in OðjPj þ jN jÞ time.

3.6.3 Parallelization

By examining Algorithm 1, it is easy to see that in each outer iter-

ation, the optimization problem (10) for every 1 � i � 4l is solved

independently, thus CDAUC can be parallelized simply by distribut-

ing these sub-problems to different threads.

4 Results

In this section, the performance of CDAUC is systematically eval-

uated. As one of the most widely used DML methods, DREME was

firstly adopted to identify the preliminary motifs, these motifs were

then re-optimized by CDAUC and DIMO separately. The outputs of

three methods were then compared to assess CDAUC for optimizing

DML motifs. In addition, we also adopted HOMER as a compari-

son baseline.

We downloaded the ChIP-seq data for 43 TFs in K562 cell line

from ENCODE. As in (Patel and Stormo, 2014), for each TF, 1000

peaks in the length of 100–500 base pairs with the highest signifi-

cance score were collected as the positive set. On the other hand, the

choice of negative sequences can significantly affect the results of

DML methods (Maaskola and Rajewsky, 2014), for example, if we

simply choose intergenic regions that do not overlap with any peaks

as the negative set, the resultant motifs could be highly GC-rich, re-

flecting the general preference for GC-rich regions of some TFs. In

this paper, we firstly followed (Orenstein and Shamir, 2014; Setty

and Leslie, 2015; Wang et al., 2012; Yao et al., 2013) and obtained

a background sequence for each peak by randomly choosing a se-

quence of the same length and lies 0–200 nt from the edge on either

up or down strand.

4.1 Cross validation
Evaluations of different models for motif discovery in ChIP-seq data

are generally difficult, as the ground-truth motif instances are typic-

ally not known. Following (Agostini et al., 2014; Patel and Stormo,

2014; Siebert and Seding, 2016; Simcha et al., 2012), to quantita-

tively evaluate CDAUC, we adopted the ‘reference-free’ cross-

validation strategy. In other words, for each TF we took the corres-

ponding set of positive/negative sequences and partitioned them into

three sets (‘folds’) of roughly equal size, for each fold, a PWM was

learned on the other folds and then evaluated on the fold. We com-

pared the 3-fold cross-validated average AUCs of three methods on

43 collected datasets. Table 1 shows that in all cases, our approach

performed better than the other three methods.

When the ground truth motif is not known, an alternative metric

for assessing elicited motifs would be Centrimo P-value, which

measures the motif enrichment in central regions of the detected

peaks (Bailey and Machanick, 2012). Evaluations based on this met-

ric similarly show that CDAUC outperforms other compared meth-

ods (Supplementary Table S1).

To better illustrate the behavior of CDAUC, in Table 2 we also visu-

ally present the differences between the original DREME motif and

motifs optimized using CDAUC for three TFs, which show that the qual-

ity of motifs is improved mainly by changing preferred bases of PWMs.

4.2 Alternative choice of the negative set
Although experimental results in the previous subsection demon-

strate the advantages of CDAUC, flanking sequence is merely one
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4

(6,7) (7,3) (8,1) (9,4)(3,8)(1,5)
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1
4

3

y2=9.5

y1=3.5

(5,9)
(4,2)

2

y2=9.5
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Fig. 4. Illustration of a range tree for storing eight points, including (1,5), (3,8),

(4,2), etc. The first level is a BST defined on the first coordinate (colored in

red). Each vertex v of this tree stores a BST defined on the second coordinate

(colored in blue) of the points in the subtree of v. For example, in BST defined

on the first coordinate, the subtree of node ‘4’ contains two points: (9,4) and

(6,7), therefore this node would store a BST constructed according to the se-

cond coordinate of these two points

Algorithm 3. Range-tree-based implementation of line 1 of

Algorithm 2

Input: Positive set P, negative set N , current solution wk;i.

Output: The set v.

1. Use (19) to calculate ZP ¼ fðxS1
; yS1
ÞjS1 2 Pg and

ZN ¼ fðxS2
; yS2
ÞjS2 2 Ng.

2. Create a new set cZP which stores the unique elem-

ents of ZP .

3. Construct the range tree for cZP .

4. for all ðxS2
; yS2
Þ 2 ZN do

5. Use the constructed range tree to identify Y1
S2

and

Y2
S2

based on (21).

6. Traverse Y1
S2

and Y2
S2

and screen out the elements of

Y3
S2

.

7. end for

8. Calculate v using (17).

9. Return v.
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consideration of background set when finding motifs in ChIP-seq

datasets. In this section, we consider another widely used strategy

for constructing the negative data, which is to artificially generate

sequences by mimicking the positive data (Bailey, 2011; Grau et al.,

2013; Maaskola and Rajewsky, 2014; Tanaka et al., 2014). Here,

for each positive sequence, we used the ‘shuffle’ function of the

HMMER package (Finn et al., 2011) to generate 50 negative se-

quences with the same 1st order Markov properties, and repeated

the cross validation process. Meanwhile, as the data sets are highly

imbalanced, we also adopted the area under the precision-recall

curve (AUPRC) (Davis and Goadrich, 2006) as the additional evalu-

ation metrics. The final results consistently show that CDAUC per-

form better than other methods (Supplementary Tables S2 and S3).

4.3 Computational efficiency
To evaluate the time complexity of the proposed method, CPU time

required by different algorithms on the first four TFs are shown in

Figure 5. The data discussed in Section 4.2 are chosen for time

benchmarking due to their larger sizes. As the average computa-

tional time required by DREME on these datasets is 229 s, the re-

sults show that CDAUC is significantly faster than DIMO,

demonstrating also that CDAUC could be practically used to im-

prove the quality of motifs, without costing too much additional

computational time.

4.4 Refinements of PWMs inferred via CNNs
In this section, we use simulated data to evaluate the performance of

CDAUC for refining CNN-generated PWMs. The advantage of syn-

thetic data is that the ground-truth motifs are known is advance,

which makes it easier to investigate the potential limitations of

CNNs for identifying motifs.

4.4.1 Data preparation

For each time of simulation, we firstly sampled 10 000 intergenic

genomic regions of length 500 as the positive set, then generated

10 000 negative sequences using second-order Markov models

learned from the positive sequences. We then constructed three

motifs of length eight with a specific information content (IC) value

using the ‘polarization’ technique discussed in (Maaskola and

Rajewsky, 2014), these motifs were implanted into the positive se-

quences with probabilities of 90%, 80% and 70%, respectively. For

each IC value, we performed five simulations and reported the aver-

age performances.

Table 1. Cross-validated AUC comparison of various methods on 43 datasets

TF DREME DIMO HOMER CDAUC TF DREME DIMO HOMER CDAUC TF DREME DIMO HOMER CDAUC

ARID3 0.650 0.706 0.666 0.734 JUND 0.909 0.920 0.908 0.941 BLR1 0.555 0.615 0.624 0.704

ATF1 0.760 0.838 0.791 0.869 KAP1 0.603 0.633 0.592 0.665 BLR1NB 0.700 0.751 0.720 0.780

BACH1 0.882 0.901 0.880 0.940 MAFF 0.858 0.886 0.841 0.896 TBP 0.616 0.628 0.594 0.652

CCNT2 0.636 0.715 0.679 0.780 MAFK 0.889 0.906 0.885 0.917 TFIIB 0.678 0.691 0.695 0.717

CDPSC 0.775 0.824 0.801 0.841 MAX 0.815 0.863 0.798 0.870 TFIIF 0.702 0.714 0.668 0.725

CEBPB 0.836 0.931 0.842 0.945 MAZ 0.740 0.750 0.746 0.770 UBF 0.716 0.727 0.713 0.744

CHD2 0.794 0.873 0.777 0.886 MXI1 0.653 0.705 0.677 0.726 UBT 0.689 0.704 0.710 0.737

CMYC 0.706 0.797 0.731 0.827 NFYA 0.931 0.944 0.934 0.959 USF2 0.964 0.970 0.931 0.974

CORESTAB 0.690 0.758 0.716 0.774 NFYB 0.922 0.947 0.847 0.948 ZC3 0.665 0.683 0.681 0.720

CORESTSC 0.670 0.712 0.693 0.727 NRF1 0.929 0.962 0.951 0.967 ZNF143 0.617 0.686 0.592 0.752

CTCFB 0.781 0.801 0.792 0.811 P300 0.776 0.817 0.788 0.832 ZNF27 0.557 0.617 0.559 0.662

DEC1 0.830 0.885 0.841 0.894 P300SC 0.781 0.825 0.788 0.836 ZNF384 0.854 0.856 0.781 0.858

ELK1 0.885 0.899 0.832 0.912 RFX5 0.623 0.636 0.617 0.679 ZNFMIZ 0.753 0.789 0.753 0.811

HCFC1 0.607 0.773 0.637 0.805 SMC3 0.817 0.843 0.831 0.855

HMGN3 0.708 0.716 0.694 0.738 TAL1 0.798 0.868 0.797 0.883

Table 2. Visual comparison of motifs between the DREME and

CDAUC

TF Method Motif logo

CMYC CDAUC

DREME

NFYA CDAUC

DREME

CEBPB CDAUC

DREME
Fig. 5. Time comparison of DIMO and CDAUC by examining the training AUC

as a function of the computational time
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4.4.2 CNN model

We adopted the implementation discussed in (Zeng et al., 2016). We

also directly used the hypermeter set mentioned there, and randomly

sampled 1/4 of the data as the validation set for determining hyper-

parameters. As is suggested in (Alipanahi et al., 2015), we set the

number of PWMs and the PWM width both as 10, such that they

are larger than the ground-truth value and may thereby prevent the

training process from getting trapped at poor local minima.

4.4.3 Evaluation protocol

The PWMs were firstly learned using CNNs, then re-optimized

using DIMO and CDAUC, respectively. The outputs of three meth-

ods were then compared. Following (Kilpatrick et al., 2014;

Maaskola and Rajewsky, 2014), we quantify the performance for

predicting the motif positions using nucleotide-level Matthews cor-

relation coefficient (nCC) and site-level average precision (sAP). As

there are more PWMs than the true motifs, the performance for pre-

dicting each motif is measured by taking the maximum over the per-

formance of all PWMs. Formal descriptions of such an evaluation

protocol are presented in Supplementary Material S6.

The average performances of three methods for predicting the

underlying motifs are presented in Table 3. The results show that

as IC value decreases, the performance of CNN degrades rapidly.

This is expected, as degenerate motifs may generate more diverse

site sequences and thereby more easily mislead the CNNs. While

this problem cannot be completely solved by CDAUC, the results

still show that in all cases, it managed to significantly improve the

similarities of CNN PWMs to the ground-truth motifs.

5 Conclusion

In this paper, we propose a novel algorithm called CDAUC for opti-

mizing DML-learned motifs based on the area under the receiver-

operating characteristic curve (AUC) criterion, which has been

widely used in the literature to evaluate the accuracy of extracted

motifs. Experimental results on real world high-throughput datasets

illustrate the performance of the proposed algorithm for refining

motifs learned by DML methods.

Meanwhile, as the recently proposed CNN-based methods seem

to solve a very similar problem of discriminating two sets of se-

quences, we also attempt to clarify the difference between CNNs

and DMLs. The analysis in Section 2 and the experimental result in

Section 4.4 collectively suggest that it may be problematic to view

CNNs as motif learning methods that perform the same task as

DMLs. Meanwhile, DMLs may even be helpful for improving the

interpretability of CNNs. While this limitation of CNNs has (to our

best knowledge) not been noted in the literature before, similar

problems have been observed for other methods that also attempt to

infer the collective effect of multiple features on the TF binding. For

example, in k-mer-based SVM models, there can be a large number

of very similar k-mer features that are all significant for the predic-

tion task (Ghandi et al., 2014). To deal with such difficulties, SeqGL

(Setty and Leslie, 2015) and MIL (Gao and Ruan, 2017) similarly

adopt a DML method (HOMER) to interpret their outputs, while

gkmSVM (Ghandi et al., 2014) would cluster k-mers into PWMs for

further analysis, which could be viewed as a simplified version of

motif learning methods such as (Liu et al., 2016).

There are several directions in which we intend to extend this

work. Firstly, although PWM is the most commonly used model for

sequence motifs, there is growing evidence that more advanced mod-

els can significantly outperform PWM (Siebert and Seding, 2016), it

would be interesting to investigate AUC optimization of these

advanced models.

Secondly, it is also important to note that AUC is not necessarily

the most appropriate objective function for certain types of DML

problems. For example, the AUPRC adopted in Section 4.2 may be a

more informative metric for highly skewed data (He and Garcia,

2009; Kelley et al., 2016). It would thus be useful to extend CDAUC

to optimize other important metrics such as AUPRC.

Finally, as in this paper we focus on DML-related motif opti-

mization problems, the studies related to CNNs are only prelimin-

ary, and we plan to more thoroughly explore the pros and cons of

CNNs and DMLs in future works.

Acknowledgement

The authors thank the anonymous reviewers for their helpful comments and

suggestions.

Funding

This work was supported by the grants of the National Science Foundation of

China, Nos. 61672382, 61402334, 61520106006, 31571364, 61532008,

61472280, 61472173, 61572447, and 61373098, and partly supported by

the National High-Tech R&D Program (863) (2015AA020101).

Conflict of Interest: none declared.

References

Agarwal,P.K., and Erickson,J. (1999) Geometric range searching and its rela-

tives. Contemp. Math., 223, 1–56.

Agostini,F. et al. (2014) SeAMotE: a method for high-throughput motif dis-

covery in nucleic acid sequences. BMC Genomics, 15, 925.

Alipanahi,B. et al. (2015) Predicting the sequence specificities of DNA- and

RNA-binding proteins by deep learning. Nat. Biotechnol., 33, 831–838.

Bailey,T.L. (2011) DREME: motif discovery in transcription factor ChIP-seq

data. Bioinformatics, 27, 1653–1659.

Bailey,T.L., and Machanick,P. (2012) Inferring direct DNA binding from

ChIP-seq. Nucleic Acids Res., 40, 10.

Davis,J., and Goadrich,M. (2006) The relationship between Precision-Recall

and ROC curves. ICML. Association for Computing Machinery, pp.

233–240.

De Berg,M. et al. (2000) Computational geometry. Springer Berlin

Heidelberg.

Dror,I. et al. (2015) A widespread role of the motif environment in transcription

factor binding across diverse protein families. Genome Res., 25, 1268–1280.

Finn,R.D. et al. (2011) HMMER web server: interactive sequence similarity

searching. Nucleic Acids Res, 39, W29–W37.

Gao,W. et al. (2016) One-pass AUC optimization. Artif. Intell., 236, 1–29.

Table 3. Comparisons of various methods for predicting motif

positions

Metric IC CNN DIMO CDAUC

nCC 4 0.027 0.060 0.082

8 0.117 0.234 0.331

16 0.592 0.799 0.897

sAP 4 0.067 0.109 0.136

8 0.160 0.274 0.369

16 0.661 0.903 0.964

The best performance achieved by all evaluated methods are highlighted in

bold.

i250 L.Zhu et al.



Gao,Z., and Ruan,J. (2017) Computational modeling of in vivo and in vitro

protein-DNA interactions by multiple instance learning. Bioinformatics,

doi: 10.1093/bioinformatics/btx115.

Ghandi,M. et al. (2014) Enhanced regulatory sequence prediction using

gapped k-mer features. PLoS Comput. Biol., 10, 15.

Grau,J. et al. (2013) A general approach for discriminative de novo motif dis-

covery from high-throughput data. Nucleic Acids Res., 41, 11.

He,H., and Garcia,E.A. (2009) Learning from Imbalanced Data. IEEE Trans.

Knowledge Data Eng., 21, 1263–1284.

Heinz,S. et al. (2010) Simple combinations of lineage-determining transcrip-

tion factors prime cis-regulatory elements required for macrophage and B

cell identities. Mol. Cell., 38, 576–589.

Hsieh,C.-J., and Dhillon,I.S. (2011) Fast coordinate descent methods with

variable selection for non-negative matrix factorization. KDD. Association

for Computing Machinery, pp. 1064–1072. USA.

Ikebata,H., and Yoshida,R. (2015) Repulsive parallel MCMC algorithm for

discovering diverse motifs from large sequence sets. Bioinformatics, 31,

1561–1568.

Kelley,D.R. et al. (2016) Basset: learning the regulatory code of the accessible

genome with deep convolutional neural networks. Genome Res., 26,

990–999.

Kilpatrick,A.M. et al. (2014) Stochastic EM-based TFBS motif discovery with

MITSU. Bioinformatics, 30, i310–i318.

Lesluyes,T. et al. (2014) Differential motif enrichment analysis of paired ChIP-

seq experiments. BMC Genomics, 15, 1–13.

Li,L. et al. (2007) GAPWM: a genetic algorithm method for optimizing a pos-

ition weight matrix. Bioinformatics, 23, 1188–1194.

Liu,H. et al. (2016) Fast motif discovery in short sequences. ICDE. IEEE,

Piscataway, NJ, USA, pp. 1158–1169.

Maaskola,J., and Rajewsky,N. (2014) Binding site discovery from nucleic acid

sequences by discriminative learning of hidden Markov models. Nucleic

Acids Res., 42, 12995–13011.

Mason,M.J. et al. (2010) Identification of Context-Dependent Motifs by

Contrasting ChIP Binding Data. Bioinformatics, 26, 2826–2832.

McLeay,R.C., and Bailey,T.L. (2010) Motif enrichment analysis: a unified

framework and an evaluation on ChIP data. BMC Bioinformatics, 11, 165.

Narasimhan,H., and Agarwal,S. (2013) A structural SVM based approach for

optimizing partial AUC. ICML. International Machine Learning Society

(IMLS), pp. 516–524. New York, USA.

Orenstein,Y., and Shamir,R. (2014) A comparative analysis of transcription

factor binding models learned from PBM, HT-SELEX and ChIP data.

Nucleic Acids Res., 42, 10.

Patel,R.Y., and Stormo,G.D. (2014) Discriminative motif optimization based

on perceptron training. Bioinformatics, 30, 941–948.

Setty,M., and Leslie,C.S. (2015) SeqGL identifies context-dependent bind-

ing signals in genome-wide regulatory element maps. PLoS Comput. Biol.,

11, 21.

Siebert,M., and Seding,J. (2016) Bayesian Markov models consistently outper-

form PWMs at predicting motifs in nucleotide sequences. Nucleic Acids

Res., 44, 6055–6069.

Simcha,D. et al. (2012) The limits of de novo DNA motif discovery. PLoS

One, 7, 9.

Tanaka,E. et al. (2014) Improving MEME via a two-tiered significance ana-

lysis. Bioinformatics, 30, 1965–1973.

Valen,E. et al. (2009) Discovery of regulatory elements is improved by a dis-

criminatory approach. PLoS Comput. Biol., 5, 8.

Wang,J. et al. (2012) Sequence features and chromatin structure around the genomic

regions bound by 119 human transcription factors. Genome Res., 22, 1798–1812.

Weirauch,M.T. et al. (2013) Evaluation of methods for modeling transcription

factor sequence specificity. Nat. Biotechnol., 31, 126–134.

Yao,Z. et al. (2013) Discriminative motif analysis of high-throughput dataset.

Bioinformatics, 30, 775–783.

Zeng,H.Y. et al. (2016) Convolutional neural network architectures for pre-

dicting DNA-protein binding. Bioinformatics, 32, 121–127.

CDAUC i251


	btx255-TF4

