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Abstract 
The beneficial synergy between antimicrobial silver nanoparticles (AgNPs) and essential oils (EOs), with therapeutic effects that have been 
acknowledged and explored for a long time, opens the way towards developing new and promising alternatives for anti-infective therapies. 
With the aim to improve the cytocompatibility and stability of AgNPs and to overcome the volatilization of EOs, AgNPs conjugated with 
sage (Salvia officinalis) and cinnamon (Cinnamomum aromaticum) EOs were obtained in our study. The synthesis process was realized either 
by classical or ultrasound-assisted chemical reduction. Compositional and microstructural characterization of the as-obtained Ag@EO NPs 
was performed by X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and transmission electron 
microscopy (TEM). The biodistribution of Ag@EO NPs was evaluated on a mouse animal model. 
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 Introduction 
The impressive use of silver (Ag)-based nanosystems 

in modern society includes various applications, such as 
environment protection [1–3], energetic industry [4–6], 
electronics [7–9], detection platforms [10–12], pharma-
cological products [13–15] and implantable devices 
[16–18]. In particular, excellent mechanical properties and 
optical behavior, as well as intrinsic biocompatibility and 
anti-pathogenic effects, are characteristics that recommend 
silver nanoparticles (AgNPs) to be used in the development 
of specific and effective unconventional biomedical 
applications. Their size- and morphology-related features, 
alongside a versatile surface chemistry with impressive 
biofunctionality, are responsible for their interactions with 
biological structures. 

Even if incomplete and ambiguous data is available 
regarding the cytotoxic effects and antimicrobial mecha-
nisms of AgNPs, the following events were reported to 
occur following their interactions with eukaryotes and 
prokaryotes: (i) structural and functional impairment of 
cellular membrane after electrostatically-guided interaction 
of constituent phosphate-/thiol-enriched cellular biomolecules 
with AgNPs; (ii) inactivation and denaturation of vital 
macromolecules and disruption of energy-dependent cellular 
events due to internalization of AgNPs and uptake of free 

Ag+ ions; (iii) cellular oxidative damage due to intracellular 
formation of reactive oxygen species and free radicals 
[19–24]. 

Ag-based nanosystems represent a suitable choice to 
induce or potentiate the antimicrobial effects of clinically 
relevant biomedical materials and devices. Even if they 
possess remarkable therapeutic effects and intrinsic 
biocompatibility, relentless efforts were done to maximize 
the bioactivity of AgNPs and improve their stability. In 
this respect, a wide variety of capping agents and surface 
coatings were successfully evaluated, including inorganic 
or organic, natural or synthetic materials [25–28]. 

The classical chemical synthesis of AgNPs involves 
controlled electrochemical degradation of Ag salts in 
the presence of reducing agents and stabilizers [29, 30]. 
The process can be completed conventionally or by 
utilizing various external energy sources to conduct the 
chemical processes. The latter approach, known as the 
physicochemical synthesis of AgNPs, includes ultrasound-
assisted synthesis [31, 32] and electromagnetic-assisted 
synthesis (performed in the presence of ultraviolet light, 
visible light, γ-radiation, and microwave radiation) [33–36]. 

Given the intrinsic therapeutic properties of plant-
derived extracts, infusions and essential oils (EOs), their 
revaluation towards developing unconventional and 
effective pharmaceutical formulations is of great interest. 
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Their use as antimicrobial agents [37, 38], antioxidant 
systems [39, 40], anti-cancer platforms [41, 42] and wound 
dressings [43, 44] was reported. 

Sage (Salvia officinalis L.) and cinnamon (Cinnamomum 
aromaticum Nees) EOs were herein selected for the synthesis 
of EO-conjugated AgNPs (Ag@EO NPs). Depending 
on several environmental conditions and plant-related 
developmental factors, distinctive constituents were 
identified in sage EO. Thujone, camphor and eucalyptol 
were reported as major components that proved responsible 
for the bactericidal and antibiofilm activity of sage EO 
against various Gram-positive and Gram-negative pathogens 
[45–47]. The broad-spectrum antibacterial efficiency of 
cinnamon EO against drug-susceptible and drug-resistant 
bacteria is related to its major constituents, cinnamaldehyde 
and eugenol, which were reported to synergize and impair 
cellular membrane and interfere with vital cellular 
processes [48–50]. 

Aim 

In the present study, AgNPs were in situ conjugated 
with sage and cinnamon EOs, either by classical or 
ultrasound-assisted chemical reduction. We aimed to 
investigate the physicochemical features of Ag@EO NPs 
and to evaluate the impact of selected EOs and synthesis 
methods on their in vivo distribution. 

 Materials and Methods 
Materials 

The reagents required for the synthesis of Ag@EO 
NPs were purchased from Sigma-Aldrich (Merck Group, 
Darmstadt, Germany). All reagents were of analytical 
purity and used without further purification. Sage and 
cinnamon EOs were provided by a local supplier. 

Synthesis of Ag@EO NPs 

The chemical reduction of metallic salt (silver nitrate, 
AgNO3) was employed to obtain the Ag@EO NPs. For 
each experimental batch, two solutions were prepared, 
namely: (i) metallic precursor solution, obtained by 
dissolving AgNO3 in ultrapure water under magnetic 
stirring, at room temperature; and (ii) reducing-stabilizing 
solution, obtained by mixing D-glucose, sodium hydroxide 
and EO in ultrapure water under vigorous magnetic stirring, 
at 80ºC. The first solution was added drop by drop within 
the organic solution. The synthesis process was completed 
either under magnetic stirring (Ag@S and Ag@C samples) 
or in ultrasonic bath (Ag@SU and Ag@CU samples). 
The filtered precipitates were washed three times with 
ultrapure water then dried at room temperature. The as-
obtained powdery samples were subjected to compositional 
and microstructural analysis and biological evaluation. 

Characterization of Ag@EO NPs 

X-ray diffraction (XRD) 

The purity and cristallinity of all experimental powders 
were investigated using an XRD-6000 diffractometer 
from Shimadzu (Duisburg, Germany). All scans were 
recorded at room temperature, using CuKα radiation (λ = 
1.056 Å) for diffraction angles between 10–70º. 

Thermogravimetric analysis (TGA) 

Small amounts from each Ag@EO powdery sample 
were subjected to thermal treatment in normal atmosphere, 
from room temperature to 1000ºC, at a heating rate of 
1ºC/min. A DTG-TA-50H equipment from Shimadzu 
(California, USA) was used in this respect. 

Scanning electron microscopy (SEM) 

Initial data on the microstructure of EO-conjugated 
samples were obtained using the secondary electron beam 
(30 keV energy) of a Quanta Inspect F scanning electron 
microscope from FEI (Thermo Fischer Scientific, Oregon, 
USA). Before analysis, all samples were capped with a 
thin gold layer. 

Transmission electron microscopy (TEM) 

The intimate microstructure of EO-conjugated samples 
was investigated with a TecnaiTM G2 F30 S-TWIN 
transmission electron microscope equipped with selected 
area electron diffraction (SAED) accessory (FEI, Thermo 
Fischer Scientific). Before analysis, serial ethanol dilutions 
were obtained from each sample. 

In vivo distribution of Ag@EO NPs 

To evaluate the in vivo effects of synthesized NPs, 
three months old BALB/c mice were used as an animal 
model. Sterile volumes of 100 μL from each Ag@EO 
NPs suspension (1 mg/mL in ultrapure water) were 
administered into the jugular vein after anesthetization. 
Same volumes of saline solution were inoculated for control 
animals. All experiments were performed in duplicate. 
At two and 10 days after inoculation, general anesthesia 
was applied, followed by animal euthanasia and vital 
organs collection. The harvested organs (brain, myocardium, 
lung, liver, kidney, pancreas, and spleen) were treated 
with phosphate-buffered saline (PBS), preserved in 10% 
neutral buffered formalin (72 hours, room temperature) 
and prepared for paraffin processing. The resulted tissue 
fragments were treated with Hematoxylin (affinity for 
basophilic structures) and Eosin (affinity for acidophilic 
structures) staining protocol (HE). The as-obtained 
histological slides were examined with a Nikon Eclipse 
55i binocular microscope (Apidrag, Bucharest, Romania) 
coupled with a high-resolution Nikon DS–Fi1 camera 
from Apidrag. Optical micrographs were collected and 
processed by using the Image-Pro Plus 6.0 software 
(Media Cybernetics, Buckinghamshire, UK). 

 Results 
Characterization of Ag@EO NPs 

The X-ray diffractograms of obtained powders are 
included in Figure 1. Regardless of the type of EO and 
synthesis conditions, intense diffraction maxima at 2θ 
values of 38.2º, 44.3º and 64.5º were identified for all 
samples. In compliance with PDF No. 00-004-0783, the 
peaks correspond to (1 1 1), (2 0 0) and (2 2 0) diffraction 
planes of face-centered cubic (fcc) crystalline Ag. In the 
case of samples obtained with sage EO (Ag@S and 
Ag@SU), the presence of narrow peaks indicated bigger 
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crystallite sizes than for NPs conjugated with cinnamon 
EO. Using the Scherrer formula, the crystallite size was 

calculated as follows: 25.24 nm (Ag@S), 28.40 nm 
(Ag@SU), 12.30 nm (Ag@C) and 12.51 nm (Ag@CU). 

 
Figure 1 – X-ray diffractograms of Ag@EO NPs. Ag@EO NPs: Essential oil-conjugated silver nanoparticles. 

The thermal behavior of Ag-based powdery samples 
significantly depended on the type of EO used during 
synthesis (data not shown). In the case of AgNPs obtained 
in the presence of sage EO, a total weight loss of 2.443% 
and 1.824% was observed for Ag@S and Ag@SU, 
respectively. These results indicated the predominant 
metallic character of particles and the reduced amount of 
organic molecules conjugated onto the surface of these 
particles. In comparison, in the case of AgNPs synthesized 
in the presence of cinnamon EO, a total weight loss of 
48.339% and 40.625% was obtained for Ag@C and 
Ag@CU, respectively, which indicated an increased 
amount of cinnamon EO molecules conjugated onto the 
surface of the metallic particles. Regardless of the type 
of EO, the mass loss occurred as follows: (i) chemo-
desorption of surface water molecules (below 200ºC); 

(ii) evaporation and thermal degradation of abundant 
phytochemicals, namely monoterpenes and sesquiterpenes 
from sage EO and predominant phenylpropanoids and 
monoterpenes from cinnamon EO (between 200–400ºC); 
and (iii) thermal degradation of other terpenes from EOs’ 
composition (above 400ºC) [51, 52]. 

Initial microstructural information about the synthesized 
NPs was provided by SEM analysis (Figure 2). Aggregates 
of nanosized particles with a preferential spherical 
morphology were noticed, with only a few rod-shaped NPs 
being observed for the samples conjugated with sage 
EO. NPs of ~30 nm and ~20 nm were obtained when 
using sage (Ag@S, Ag@SU) and cinnamon (Ag@C, 
Ag@CU) EOs, respectively. Also, SEM micrographs 
evidenced that the use of cinnamon EO led to the formation 
of smaller NPs. 

 

Figure 2 – SEM micrographs  
of Ag@EO NPs. Ag@EO NPs: 
Essential oil-conjugated silver 
nanoparticles; SEM: Scanning 
electron microscopy. 
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TEM micrographs from Figure 3 reinforced the SEM 
analysis, with regards to the spherical morphology of all 
the synthesized EO-conjugated NPs, with few rod-shape 
NPs in the case of Ag@S and Ag@SU samples. The 
estimated physical particle size was determined as follows: 
~25 nm (Ag@S), ~27 nm (Ag@SU), ~16 nm (Ag@C) and 
~19 nm (Ag@CU). Regardless of the type of EO and the 
synthesis method, the high-resolution TEM (HR-TEM) 

images evidenced a core/shell structure for all NPs, with 
a uniform organic layer of ~2 nm and ~5 nm being noticed 
for NPs obtained by conventional reduction (Ag@S, 
Ag@C) and ultrasound-assisted synthesis (Ag@SU, 
Ag@CU), respectively. Also, the inset SAED patterns 
evidenced the presence of (1 1 1), (2 0 0), (2 2 0) and  
(3 1 1) diffraction planes of fcc Ag. 

 
Figure 3 – TEM micrographs of Ag@EO NPs. Ag@EO NPs: Essential oil-conjugated silver nanoparticles; TEM: 
Transmission electron microscopy. 

 
In vivo distribution of Ag@EO NPs 

After systemic administration of Ag@EO NPs and 
subsequent histological examination, preferential tissue 
retention of synthesized NPs was evidenced. 

No morphological alterations or ultrastructural modifi-
cations were noticed in the brain (Figure 4), myocardium 
(Figure 5) and pancreas (Figure 6) tissues, regardless of 
the testing time. Typical histological aspects were identified 
in these tissue fragments, namely (i) cells with prominent 
vesicular nuclei in the transverse sections of brain tissues, 
(ii) striated muscle fibers with oval-to-round nuclei in the 
longitudinal sections of cardiac tissues, (iii) polarized 
epithelial cells with central spherical nuclei within the 
pancreatic acini (exocrine pancreas) and well-defined 
and normal Langerhans islets (endocrine pancreas). Few 
arterioles and venules containing normal erythrocytes were 
observed for these tissue fragments, indicating preserved 
blood vessel integrity. Moreover, no foreign structures 
were identified in any of these tissues. 

In the case of hepatic (Figure 7) and pulmonary 
(Figure 8) tissues, dark-brown aggregates were present 
within tissue-specific resident macrophages, but isolated 
reduced-in-size aggregates were also identified within 
local blood vessels. A time-dependent tissue distribution 
of Ag@EO NPs was noticed. Even if such aggregates 
were identified within hepatic stellate macrophages 

(Kupffer cells) after both treatment times, the normal 
ultrastructure of liver tissues was not affected. The optical 
micrographs of lung sections evidenced the presence of 
Ag@EO NPs aggregates within pneumocytes and alveolar 
macrophages. Higher tissue distribution was noticed with 
longer treatment (10 days), accompanied by increased 
alveolar breakdown and inflammatory infiltrate. Smaller 
aggregates were observed for Ag@SU and Ag@CU 
samples. 

A particular distribution of Ag@EO NPs was observed 
in the case of renal tissues (Figure 9). Regardless of the 
type of EO and the synthesis method, dark-brown aggregates 
were identified after both testing times, their presence 
being exclusively evidenced in the blood vessels. It was 
clearly observed that Ag@EO NPs aggregates were smaller 
and had a significantly reduced presence after 10 days. 
No morphological and ultrastructural alterations were 
noticed for renal glomeruli, tubules and stroma. 

Major modifications were observed for splenic tissues 
(Figure 10), both at two and 10 days after injection. 
Ag@EO NPs aggregates were identified in a time-
dependent manner within the splenic red pulp. Even if no 
foreign structures were noticed within the white pulp of 
the spleen, significant hypertrophy was observed. This 
was due to Ag@EO NPs-activated overproduction of 
multilobed nucleated macrophages. 
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Figure 4 – Optical micrographs of brain tissues after 
two and 10 days of treatment with Ag@EO NPs (HE 
staining, 200×). Ag@EO NPs: Essential oil-conjugated 
silver nanoparticles; HE: Hematoxylin–Eosin. 

Figure 5 – Optical micrographs of cardiac tissues after 
two and 10 days of treatment with Ag@EO NPs (HE 
staining, 400×). Ag@EO NPs: Essential oil-conjugated 
silver nanoparticles; HE: Hematoxylin–Eosin. 

 

  
Figure 6 – Optical micrographs of pancreatic tissues 
after two and 10 days of treatment with Ag@EO NPs (HE 
staining, 400×). Ag@EO NPs: Essential oil-conjugated 
silver nanoparticles; HE: Hematoxylin–Eosin. 

Figure 7 – Optical micrographs of hepatic tissues after 
two and 10 days of treatment with Ag@EO NPs (HE 
staining, 400×). Ag@EO NPs: Essential oil-conjugated 
silver nanoparticles; HE: Hematoxylin–Eosin. 
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Figure 8 – Optical micrographs of pulmonary tissues 
after two and 10 days of treatment with Ag@EO NPs (HE 
staining, 200×). Ag@EO NPs: Essential oil-conjugated 
silver nanoparticles; HE: Hematoxylin–Eosin. 

Figure 9 – Optical micrographs of renal tissues after 
two and 10 days of treatment with Ag@EO NPs (HE 
staining, 400×). Ag@EO NPs: Essential oil-conjugated 
silver nanoparticles; HE: Hematoxylin–Eosin. 

 

 
Figure 10 – Optical micrographs of splenic tissues after 
two and 10 days of treatment with Ag@EO NPs (HE 
staining, 400×). Ag@EO NPs: Essential oil-conjugated 
silver nanoparticles; HE: Hematoxylin–Eosin. 

 Discussions 
The attractive and versatile functionality of AgNPs 

enable their revaluation for the development of new and 
improved biomaterials, biomedical devices, and biotech-
nologies. Alongside size [53, 54] and morphology [55, 
56], surface charge and reactivity [57, 58] are essential 
aspects responsible for specific interactions between AgNPs 
and cells, which determine tunable therapeutic effects. 

Impressive efforts have been lately oriented towards 
the use of plant-derived phytochemicals, including EOs, 
for the development of unconventional and performance-
enhanced therapeutic formulations. 

Volatility and degradation are important drawbacks of 
EOs [59, 60], therefore the herein proposed Ag@EO NPs 
represent a dual strategy to (i) improve the compatibility 
and stability of metallic NPs by the conjugation of EO 
molecules and (ii) improve the stability of EOs through 
the inorganic core. 

Sage and cinnamon EOs were selected in our study 
to obtain the Ag@EO NPs. The chemical reduction 
process was completed either under magnetic stirring 
(Ag@S, Ag@C) or sonochemical (Ag@SU, Ag@CU) 
conditions. Besides being versatile and facile processes, 
both synthesis strategies are efficient and reproducible, 
enable high yield synthesis and allow control over the 
size, morphology and surface chemistry of the final NPs 
in few steps or even one-step protocol [61, 62]. 

An early indicator on the successful AgNP synthesis 
was observed when the metallic precursor solution was 
added to the organic solution. A fast and gradual color 
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modification occurred, regardless of the process conditions 
(magnetic stirring or sonication). Dark-green and brown-
green final suspensions were obtained when sage and 
cinnamon EOs were used, respectively. This observation 
was correlated with the reduction of Ag+ to Ag0 and, 
consequently, to the formation of Ag@EO NPs [63, 64]. 

The XRD analysis confirmed the high purity of 
synthesized samples and the presence of metallic Ag with 
fcc crystallographic lattice [65, 66] as the sole crystalline 
phase of obtained powders. 

Regardless of the type of synthesis method, the thermal 
analysis revealed the predominant metallic character of 
NPs conjugated with sage EO (Ag@S, Ag@SU), whereas 
the use of cinnamon EO (Ag@C, Ag@CU) resulted in 
an increased amount of conjugated organic molecules. 
Current literature reports temperatures between 150–250ºC 
for complete volatilization and thermal decomposition 
of EOs [67–70]. Our TGA data proved the thermal 
stabilizing role of AgNPs on selected EOs. 

SEM and TEM micrographs evidenced the formation of 
nanosized particles with preferential spherical morphology. 
No substantial dimensional differences were noticed 
between particles obtained either by magnetic stirring or 
ultrasound-assisted reduction. Core/shell NPs with physical 
size of ~25 nm (Ag@S), ~27 nm (Ag@SU), ~16 nm 
(Ag@C) and ~19 nm (Ag@CU) were evidenced. 

In comparison with conventional reduction protocols, 
the sonochemical synthesis generally leads to the formation 
of smaller NPs due to cavitation effects, which determine 
faster and more intense reactions within transient “micro-
reactors” (ultrasound-generated bubbles within the aqueous 
solution), thus limiting growth and encouraging nucleation 
processes [71, 72]. Besides being thicker, the organic 
layers formed in the case of Ag@SU and Ag@CU were 
more dense and compact, which proved the beneficial 
role of ultrasound cavitation for the dispersion of EO’s 
molecules [73, 74] and resulted in a reduced particle 
aggregation. In contrast to other studies on the sono-
chemical synthesis of AgNPs [75, 76], the particle size 
of Ag@SU and Ag@CU was slightly increased, when 
compared with Ag@EO NPs obtained by conventional 
reduction. We asserted that this particular situation was 
due to (i) the reduced intensity of acoustic waves generated 
by the ultrasonic bath in comparison with those generated 
by the sonication probe and (ii) the thicker EO layer 
formed onto the particles, as the HR-TEM evidenced a 
much smaller inorganic core and a significantly thicker 
organic layer for Ag@SU and Ag@CU than in the case 
of conventionally synthesized Ag@EO NPs. 

Diffraction planes of fcc Ag were evidenced from 
SAED patterns, which was in compliance with XRD 
results and previous studies [77, 78]. Moreover, as the 
crystallite size estimated from XRD data was comparable 
with the particle size estimated from TEM results for all 
samples, we concluded that spherical monocrystalline 
Ag@EO NPs were successfully obtained in our study. 

The histological evaluation of vital organs harvested 
after systemic administration of Ag@EO NPs revealed 
preferential tissue distribution. Regardless of the type of 
EO and synthesis conditions, the treatment with Ag@EO 
NPs did not induce structural or functional modifications 
within the mouse brain, myocardium or pancreas. 

A time-dependent tissue distribution of Ag@EO NPs 
was noticed in the case of hepatic and pulmonary tissues. 
Dark-brown aggregates were identified within tissue-
specific resident macrophages after both treatment times. 
As shown by TEM images, Ag@SU and Ag@CU NPs 
had a much thicker organic layer onto their surfaces 
which, consequently, determined reduced aggregation and 
increased stability. This observation could explain the 
presence of smaller aggregates after both treatments. 
The normal ultrastructure of hepatic tissues was not 
affected after the treatment with Ag@EO NPs. The liver 
accumulation of AgNPs coated with positively charged 
coatings was previously reported in a fish model, accom-
panied by size-related inflammation and genotoxicity [79, 
80]. Toxic effects, evidenced by both liver inflammation 
and up-regulation of hepatotoxic markers, were reported for 
citrate-capped AgNPs [81]. Increased alveolar breakdown 
and inflammatory infiltrate were noticed after prolonged 
treatment with Ag@EO NPs. Increased pulmonary 
inflammatory infiltrate was also reported after treatment 
with AgNPs coated with citrate or polyvinylpyrrolidone. 
These treatments also caused time- and dose-depended 
ultrastructural and functional cardiovascular effects 
[apoptosis and oxidative deoxyribonucleic acid (DNA) 
damage in cardiomyocytes, coagulation alteration and 
thrombosis, respectively] [82]. 

Ag@EO NPs aggregates were evidenced within the 
blood vessels of renal fragments, but no morphological and 
ultrastructural alterations were identified at this level. 
The size and presence of such aggregates was significantly 
reduced after 10 days of treatment. Citrate-coated AgNPs 
were reported to alter kidney and liver functions in 
pregnant rats, accompanied by mild hepatic inflammation 
and minimal toxicity in fetuses [83]. 

Significant modifications were noticed within the spleen, 
after both testing times. A time-dependent presence of 
Ag@EO NPs aggregates was observed within the splenic 
red pulp, accompanied by the substantial hypertrophy of 
the splenic white pulp. The presence of AgNPs aggregates 
within spleen was previously reported after intravenous 
administration [84], but such aggregates were absent 
and normal histology of spleen was reported in the case 
of NPs coated with bacterial lactonase [85]. 

 Conclusions 
The development of safe and efficient AgNPs-based 

platforms for biomedical applications represents an 
attractive challenge, as the balance between cytocom-
patibility and therapeutic effects should be accurately 
and specifically tuned through their nanosize-related 
characteristics. Besides dimension and morphology, surface 
features of AgNPs play an essential role for the fabrication 
of new and effective pharmaceutical formulations. By using 
sage and cinnamon EOs, Ag@EO NPs were prepared 
within this study. Regardless of the synthesis process, 
which was performed either under magnetic stirring 
(Ag@S, Ag@C) or sonochemical (Ag@SU, Ag@CU) 
conditions, monocrystalline spherical NPs were obtained. 
Following their systemic administration in a BALB/c animal 
model, preferential tissue retention and biodistribution 
were revealed. The Ag@EO NPs were absent in the brain, 
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myocardium, and pancreas tissues. Their presence as 
aggregates was noticed within the hepatic and pulmonary 
tissues, with ultrastructure modifications being observed 
in the latter case. The presence of a more dense and 
thicker organic layer on the surface of the NPs obtained 
by ultrasound-assisted synthesis (Ag@SU, Ag@CU) 
determined reduced aggregation and resulted in less 
accumulation within these tissues. The presence of Ag@EO 
NPs aggregates was evidenced within the blood vessels of 
renal fragments, but no morphological and ultrastructural 
alterations were identified at this level. As expected, 
significant modifications were observed within the spleen, 
both after two and 10 days of treatment. By modifying 
and improving the surface of Ag@EO NPs, specific and 
non-toxic antimicrobial platforms for developing targeted 
treatment models against different ailments could be 
developed in the future. 
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