
Chordomas are rare and low-grade 
malignant solid tumours, despite 
their histologically benign appear-
ance, that arise in the bone from em-
bryonic notochordal vestiges of the 
axial skeleton, a  mesoderm-derived 
structure that is involved in the pro-
cess of neurulation and embryonic 
development. Chordomas occurring in 
the skull base tend to arise in the ba-
siocciput along the clivus. Three ma-
jor morphological variants have been 
described (classical, chondroid, and 
atypical/dedifferentiated). The patho-
genesis and molecular mechanisms 
involved in chordoma development 
remain uncertain. From a pathological 
standpoint, the microenvironment of 
a  chordoma is heterogeneous, show-
ing a  dual epithelial-mesenchymal 
differentiation. These tumours are 
characterised by slow modality of 
biologic growth, local recurrence, low 
incidence of metastasis rates, and 
cancer stem cell (CSC) phenotype. The 
main molecular findings are connect-
ed with brachyury immunoexpression 
and activation of the downstream 
Akt and mTOR signalling pathways. 
The differentiation between typical 
and atypical chordomas is relevant 
because the tumoural microenviron-
ment and prognosis are partially dif-
ferent. This review provides an insight 
into the recent and relevant concepts 
and histochemical markers expressed 
in chordomas, with special emphasis 
on dedifferentiated chordomas and 
their prognostic implications.
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Introduction

Chordomas are rare, aggressive, low-grade malignant solid tumours 
that arise in the bone from embryonic notochordal vestiges of the axial 
skeleton, a mesoderm-derived structure that is involved in the process of 
neurulation and embryonic development [1–14]. The sacrum represents 
the most common anatomical site of origin, accounting for about 50% 
of all cases, followed by the skull base region (spheno-occipital/nasal) in 
35% [5, 9, 15–20]. Skull base chordomas account for less than 0.2% of all 
intracranial neoplasms [5, 10, 21]. Recent studies suggest an incidence of 
chordoma of 0.08 cases per 100,000 with a peak incidence between 50-
60 years of age, which is higher in men over women 1 : 0.6 [3, 4, 15, 22–24]. 

Chordomas occurring in the skull base tend to arise in the basiocciput 
along the clivus, slightly inferior to the spheno-occipital synchondrosis 
or from the basisphenoid of the upper clivus, and typically are centred 
in the midline [6, 25–29]. Lateral growth of these neoplasms from their 
midline origin frequently results in secondary invasion of the cavernous 
sinus, which can be demonstrated radiologically in 54 to 75% of cases. 
Although these tumours are traditionally considered to be slow growing 
and histologically benign, they can be life-threatening. The disease is as-
sociated with poor survival due to the tendency to infiltrate the bone and 
high recurrence, carrying a dismal median survival time of approximately 
6 years [4, 30]. In a recent systematic meta-analysis with 467 patients, 
divided into three subgroups, taking into account their therapeutic man-
agement, overall survival, and disease-free survival: the overall survival 
(OS) and disease-free survival (DFS) rates after 5 years for patients with 
total resection but without radiotherapy were 92% and 94%, respective-
ly, and for those receiving adjuvant radiotherapy, the 5-year OS and DFS 
rates were 100% and 89%, respectively. Among the patients undergoing 
partial resection without adjuvant radiotherapy, the 5-year OS and DFS 
rates were 41% and 45%, respectively. However, in those receiving adju-
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vant radiotherapy after partial resection, the 5-year OS 
was 84% and DFS was 85% [31].

From a microscopic standpoint, chordoma is a mod-
erately mucin-secreting cellular neoplasm, lobulated 
and semi-transparent, composed of vacuolated phys-
aliferous cells arranged singly and in cords within 
a myxoid stroma, as a distinguishing feature, complete-
ly surrounded by normal-appearing bone.  Grossly, it 
can have a gelatinous surface, and inside the tumour 
is often soft with occasional translucent grey and blue 
areas, calcifications, focal haemorrhages, and cyst for-
mations [4, 32, 33].

Regarding histopathology, three variants of chordo-
ma are recognised (Fig. 1): conventional (classical or 
typical), chondroid, and dedifferentiated (atypical) [4, 
6, 24, 29, 34–40]. Classical chordomas appear as soft, 
greyish, lobulated tumours composed of groups of cells 
separated by fibrous septa. They have round nuclei and 
an abundant, vacuolated eosinophilic and periodic acid 

Schiff positive stain cytoplasm, embedded in hyaline 
cartilage-like stroma. Chondroid chordomas histologi-
cally display features of chordoma and chondrosarcoma, 
a malignant cartilage-forming tumour, and tend to occur 
almost exclusively in the skull base. Islands of cells char-
acterise the chordoid areas with abundant eosinophilic 
cytoplasm arranged in cords, nest, and sheets with mu-
cinous matrix. Physaliferous cells are occasionally ob-
served. The chondroid areas consist of single cells set in 
an acellular hyaline-like extracellular matrix, usually sur-
rounded by lacunar spaces. Chondroid chordoma shows 
a low-grade growth pattern, has a favourable long-term 
outcome, and tends to be less aggressive than typical 
chordomas. By contrast, dedifferentiated chordoma (va-
riety accounts for approximately 5% of cases) exhibits 
high-grade behaviour and an aggressive clinical course, 
growing rapidly and being more likely to metastasize [26, 
41–43]. While mitotic activity is rare in typical chordo-
ma, poorly differentiated chordoma shows high mitotic 

Fig. 1. Heterogeneity in chordoma variants: magnetic resonance images (MRI) and histopathology features, HE staining. A–C) Classic chor-
doma in a 76-year-old man. D–F) Chondroid chordoma in a 39-year-old man. B, E) Sagittal T1 MRI shows classic and chondroid chordomas, 
respectively. G–I) Dedifferentiated/atypical chordoma in a 62-year-old man. Images demonstrated intratumoural architectural and cytolog-
ical heterogeneity in atypical chordoma. Different tumour areas of the same tumour showed variable characteristics. G) Necrotic area. H) 
preoperative sagittal T1-weighted MRI shows a huge dedifferentiated chordoma invading clivus, upper cervical spine, nasopharynx, and 
oropharynx. I) Atypical cells
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activity (1–3/10 hpf – high power field) and high nucle-
ar-to-cytoplasmic ratio with prominent nucleoli [34, 44]. 
The poorly differentiated chordoma is a particularly ag-
gressive tumour with a predilection for the paediatric 
population and preferentially found in the skull base. 
Some authors postulated that dedifferentiated chor-
domas might arise secondary to sarcomatous transfor-
mation after radiotherapy [3, 22, 45]. The microenviron-
ment of a chordoma is heterogeneous, showing a dual 
epithelial-mesenchymal differentiation. These tumours 
are characterised by slow modality of biologic growth, 
local recurrence, low incidence of metastasis rates, and 
cancer stem cell (CSC) phenotype [2, 4, 7, 22, 45, 46]. 

At present, the treatment paradigm of chordoma is 
wide en bloc or gross total surgical resection plus adju-
vant proton-beam radiation [47, 48]; however, within the 
skull base, surrounding critical neurovascular structures 
and challenges in surgical access render clinical manage-
ment of these patients difficult [8, 12, 35, 49]. Magnetic 
resonance imaging (MRI) is used to visualise tumour 
invasion by the presence of atypical radiographic pat-
terns, including lateral extension, vascular encasement, 
cavernous invasion [11, 12, 21, 50, 51], suprasellar and 
subtemporal extension, and sphenoid-ethmoid-maxil-
lary sinus invasion. 

Generally, longer survival rates have been associat-
ed with more extensive tumour resection. Despite the 
histologically benign appearance, standard treatment 
remain ineffective and challenging because they are re-
sistant to radiation therapy and because maximal surgi-
cal resection is impossible in most cases [4, 10, 52, 53]. 
In terms of chemotherapy, no regimen has been found 
to be very effective. Nonetheless, substantial heteroge-
neity is observed in patient outcome, including clinical 
course, treatment response, and survival. 

Currently, the most useful prognostic factors in skull 
base chordoma are neurological deficits, preoperative 
Karnofsky performance scale score, metastasis, tu-
moural necrosis and apoptosis, Ki67 and p53 labelling 
indices, tumour differentiation, and unresectable status 
[2, 11, 22, 45, 43]. 

The differentiation between typical and atypical chor-
domas is relevant because the tumoural microenviron-
ment and prognosis are partially different. According to 
recent studies, the prognosis of patients with dediffer-
entiated chordoma is poor, and the majority of patients 
will experience local recurrence, or metastases, and will 
die of local progression within 6–12 months after diag-
nosis [2, 17, 34, 37, 42, 49, 54, 55].

A number of markers in chordomas have been dis-
covered recently in approaching chordoma variants with 
their potential future diagnostic and prognostic utility.  
Recent studies have indicated that different types of bio-
markers are relevant, such as brachyury, distinguishing 
between typical and dedifferentiated chordomas. This 
report provides an insight into the recent concepts and 
histochemical markers expressed in chordomas, with 
special emphasis on dedifferentiated chordomas and 
their prognostic implications.

Pathologic mechanisms and biological markers 
in chordomas: chordoma dedifferentiation

To date, studies have not revealed the fundamental 
mechanisms in the initiation and progression of chordo-
mas. Contemporary research in chordoma biology and 
pathogenesis is scarce. Hence, accurate radiologic diag-
nosis and better understanding of the pathology of skull 
base chordomas are of valuable prognostic significance 
[4, 55, 56]. Nonetheless, the exact correlation of molec-
ular data with specific pathological features in chordo-
ma subtypes is not well understood. Common genetic 
lesions in chordomas, but not pathognomonic, are loss 
of heterozygosity (LOH) of chromosomes 1p36, 9p, 10q, 
and 17p [56]. Although chordomas are usually sporadic, 
a few familiar cases have been described [8, 56, 57].

Chromosome loss of 1p36 was found to be the most 
frequent genetic abnormality, occurring in 75–85% of 
both sporadic and familiar chordomas [8, 57, 58]. Several 
groups have postulated that the notochord development 
transcription factor brachyury (uncertainly expressed in 
almost all chordomas and suggested as an oncogenic 
driver) could be a novel discriminating biomarker for 
chordoma subtypes. Along with brachyury, receptor ty-
rosine kinases, including PDGFR (platelet-derived growth 
factor receptor) – α and β, EGFR (epidermal growth fac-
tor receptor), and c-Met (also called hepatocyte growth 
factor receptor), are frequently expressed in chordomas, 
resulting in the activation of the downstream Akt (also 
known as Protein Kinase B) and mTOR (mammalian Tar-
get of Rapamycin) signalling pathways [49, 59–61]. 

Recent data implicates cathepsin K as a relevant me-
diator of proteolytic degradation in chordoma spread, 
and a potential therapeutic target to reduce tumour 
spread and recurrence. Furthermore, chordomas express 
mainly higher levels of upregulated genes for collagen II, 
aggrecan, fibromodulin, cartilage-linking protein, tran-
scription factor SOX9, fibronectin, MMP9 (matrix metal-
loproteinase 9), MMP19, CD24 antigen, podoplanin, sur-
vivin, periplakin, and discoidin domain receptor 1 [30, 
41, 52, 62–66]. Traditionally, CK (cytokeratin), EMA (ep-
ithelial membrane antigen), and S-100 protein are the 
immunohistochemical markers that have been used to 
substantiate a diagnosis of a chordoma [63].

At the chromosomal level, atypical chordomas are 
characterised by polyploidy complex karyotype that is 
associated with aggressive biological behaviour and 
a dismal prognosis [54]. Expression of traditional mark-
ers such as Ki67, a proliferative index that is expressed 
at all stages of mitosis except for G0, and p53 correlated 
with the recurrence of intracranial chordomas [10, 30].

Although chordomas are considered to be slow-grow-
ing notochordal cell tumours, dedifferentiated chordo-
mas behave like sarcomas due to their anaplastic/sarco-
matoid transformation, occurring in a multistep process 
that collectively involves molecular and oncogenic al-
terations [3, 4, 41, 52, 67, 68]. However, the molecular 
determinants contributing to the pathogenic evolution 
of a dedifferentiated chordoma and its relationship with 
classical chordomas are largely unknown. Accumulating 
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evidence has indicated that the dedifferentiated chor-
doma can develop de novo from notochordal remnants 
or years later from precursor classical chordoma. A re-
cent retrospective cohort study of 25 chordoma patients 
found that adverse patient outcome is significantly as-
sociated with spindle cell sarcomatoid feature and intra-
tumoural necrosis [68]. 

Until now, no molecular features have been proven 
conclusive in establishing prognosis in skull base chor-
domas, but the protein expression levels of cadherins, 
catenins [69–72], matrix metalloproteinases (MMPs), 
cathepsin K, cathepsin B, and urokinase-type plasmino-
gen activator are related to the invasion of skull base 
chordoma, and these levels may affect treatment effect 
and consequently affect the prognosis. Cathepsin K, 
a well-known osteoclastogenesis marker, is a member 
of the papain family of cysteine proteases that is ex-
pressed by osteoclasts, which plays an important role in 
bone resorption, and is associated with tumour invasion 
and poor prognosis. Cathepsin K overexpression in chor-
domas is implicated in invasion and migration of the tu-
mour [53, 59]. Unfortunately, there are no data about the 
role of cathepsin K on dedifferentiated chordomas. 

Jambhekar et al. in recent study found that dediffer-
entiated chordomas possess areas of conventional chor-
doma, with CK and vimentin immunostaining, and jux-
taposed with unequivocal sarcomatous elements, most 
frequently resembling malignant fibrous histiocytoma, 
that revealed EMA positivity [63]. Furthermore, in an im-
munohistochemical and DNA flow cytometric research 
of four dedifferentiated chordomas, authors found that 
spindle cells had an aneuploidy-multiploid DNA content 
and showed weak staining for cytokeratin (CK) and EMA, 
but increased in the staining for vimentin, as compared 
with the conventional chordoma regions in the same tu-
mours [73]. Conversely, Gil et al., through a cytogenetic 
analysis of three variants of clival chordoma, found that 
sarcomatous areas of dedifferentiated chordomas are 
negative for the epithelial markers such as CK and EMA 
[73]. A more recent study reported that conventional and 
transitional chordomas were immunoreactive for EMA, 
CK, and S-100, despite an absence of the same markers 
in the centre of the sarcomatous areas [42]. Choi et al. 
reported a case report of an atypical chordoma in which 
most of the epithelial components of classical chordoma 
were strongly positive for CK, EMA, and S-100 protein, 
although in the sarcomatous elements there was neg-
ative staining for CK and EMA, but immunoreactive for 
vimentin and alpha1-anti-chymo-trypsin [74]. 

Recent chordoma cell line Western blot and immuno-
histochemistry analysis revealed that dedifferentiated 
cells expressed high levels of platelet-derived growth 
factor, high surface expression of cancer stem cell mark-
er CXCR4, but absent or low level of brachyury and CKs 
[52]. 

Brachyury is apparently the marker having the best 
sensitivity (98%) and specificity (100%), while the vast 
majority of markers have a variable immunoexpression 

[62]. Brachyury, meaning short tail in Greek, is the tran-
scription factor protein product of a T-box gene, which 
plays an important role in the formation of the normal 
mesoderm and notochord in humans [41, 62], and in 
epithelial tumours. Brachyury overexpression promotes 
epithelial-to-mesenchymal transition (EMT), a reversible 
biological process that occurs in epithelial cells, induc-
ing stem-like features such as motility, invasiveness 
[70], and resistance to conventional genotoxic agents 
[66, 72]. Paradoxically, silencing of brachyury expression 
in brachyury-positive human neoplasm cells induces 
downregulation of mesenchymal markers and upregula-
tion of epithelial markers, with concomitant loss of cell 
migration and extracellular membrane (ECM) invasion 
[66]. Nevertheless, based on retrospective analyses of 
patients with colorectal, breast [75], lung, and hepato-
cellular carcinoma, brachyury expression has been asso-
ciated with poor prognosis [41, 61, 66, 76]. 

Although studies have shown that brachyury over-
expression is essential for the survival chordoma cells, 
and have allowed their differentiation from chondrosar-
comas, with relatively high sensitivity and specificity, is 
not associated with prognosis [33]. Interestingly, chon-
drosarcomas are mesenchymal neoplasms with positive 
staining for vimentin and S-100 protein but frequently 
do not express CK or EMA, and have good prognosis 
when treated with surgery and proton beam irradiation 
[26]. Surprisingly, brachyury triggers overexpression of 
EMT-associated proteins including N-cadherin, snail, 
slug, and twist families [61]. In lung cancer, brachyury 
induces upregulation of N-cadherin and vimentin [65]. 
Twist, a protein with a basic helix-loop-helix structure 
and EMT regulator, acts independently of snail to sup-
press E-cadherin and to upregulate N-cadherin, and has 
been found to be elevated in various types of neoplasm, 
including gastric cancer and melanoma [66]. Snail is 
a primary suppressor of E-cadherin expression, and en-
codes a transcriptional repressor that, along with tran-
scription factors of the ZEB, slug, and twist families, is 
a mediator of EMT [61]. Transforming growth factor β 
(TGF-β) induces the nuclear localisation of snail through 
Smad2/3 pathways [77, 78]. Interestingly, chordoma 
cells express many of the markers of mesenchymal cells 
typically induced with brachyury upregulation in oth-
er tumour types, including decreased E-cadherin levels 
and increased N-cadherin and vimentin levels [72]. In 
fact, a study of clival chordomas has shown that E-cad-
herin and N-cadherin expression presented an inverse 
immunoexpression. Thereby, E-cadherin to N-cadherin 
shift plays a pivotal role in cancer progression and dis-
mal prognosis, probably caused by the transition from 
a less invasive to an aggressive tumour phenotype [70]. 
Strikingly, atypical chordomas demonstrate negative or 
low levels of EMA, CK, and brachyury expression [52]. 
Conversely, Barresi et al. in a previous study found that 
brachyury expression represents a unique specific diag-
nostic marker for local and metastatic atypical chordo-
ma [79]. In summary, regarding recent and contradictory 
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data about brachyury expression, we can conclude that 
chordomas are a heterogeneous pathology, and the 
mechanism by which brachyury overexpression pro-
motes epithelial-to-mesenchymal transition involved in 
motility and invasiveness as a negative feature of neo-
plasm development is ambiguously absent or scantly 
expressed in atypical chordomas, and needs further in-
vestigations [3, 14, 24, 36, 76, 78, 80]. 

Apart from the distinction between typical and atyp-
ical chordomas, an emerging issue is the definition of 
prognostic aspects based on molecular and histopatho-
logical features, which might help clinicians to define 
the best therapeutic strategies. 

The authors declare no conflict of interest.
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