Brief Definitive Report

INFLUENCE OF *Fv-1* ALLELES ON CELLULAR EXPRESSION OF gp70*

BY JWU-SHENG TUNG, EDWARD A. BOYSE,‡ AND FUNG-WIN SHEN

From the Memorial Sloan-Kettering Cancer Center, New York 10021

Variants of gp70 (glycoprotein-70), which is the major envelope protein of C-type mouse virus and is also expressed on plasma membranes, can be identified immunogenetically by the type-specific antigens Gix and Ec. (Ec is the type-antigen of a species of gp70 formerly designated X-gp70 [1, 2].) Gix antigen occurs on cells of normal mice that are not overt producers of virus, and its expression is then governed by two unlinked mendelian genes, Gv-1 and Gv-2 (3). In contrast, Ec^+ gp70 has been found only in virus-producing mice (2), suggesting that its expression may be associated with production of virus or by genes that influence the production of virus. Accordingly we investigated whether expression of Ec^+ gp70 by thymocytes of AKR mice depends on alleles at the Fv-1 locus which control the replication of N-tropic and B-tropic virus (4).

Thymocytes of various inbred, congenic and hybrid mice were typed for presence or absence of Ec⁺ gp70 by gel electrophoresis of material precipitated by anti-X.1 serum (5), which recognizes exclusively Ec⁺ gp70 (2), from lysates of ¹²⁵I-labeled thymocytes. The results, summarized in Table I and illustrated in Fig. 1, indicate that expression of Ec⁺ gp70 on thymocytes requires the *Fv-1ⁿ* allele, which is permissive for replication of N-tropic virus.

The salient findings are as follows: (a) The thymocytes of AKR and of congenic AKR-H-2^b mice, both Fv-1ⁿ, express Ec⁺ gp70 (Fig. 1, tracks 2 and 4), whereas the thymocytes of AKR-Fv- 1^{b} and AKR-H- 2^{b} :Fv- 1^{b} do not (Fig. 1, tracks 6 and 8); thus substitution of the allele $Fv-1^{b}$ for $Fv-1^{n}$ in AKR mice suppresses Ec⁺ gp70. (b) The thymocytes of AKR- $H-2^b$ mice express Ec⁺ gp70 (Fig. 1, track 4), whereas the thymocytes of AKR- $H-2^{b}$: Fv-1^b do not (Fig. 1, track 8); thus substitution of the allele $H-2^{b}$ for $H-2^{k}$ in AKR mice, although it greatly delays the onset of leukemia (7), does not demonstrably affect expression of Ec⁺ gp70. (c) The hybrid mouse $(B6-Fv-1^n \times$ AKR)F1, genotype Fv-1ⁿ/Fv-1ⁿ, expresses Ec⁺ gp70 (Fig. 1, track 10), whereas the congenic hybrid mouse $(B6 \times AKR)F_1$, genotype $Fv-1^b/Fv-1^n$, does not (Fig. 1, track 12); this is in accord with the dominance of $Fv-1^{b}$ for suppressed replication of Ntropic virus (4). (d) Neither B6 mice (genotype $Fv-1^{b}$) nor B6- $Fv-1^{n}$ congenic mice express Ec^+ gp70 (Fig. 1, tracks 14 and 16); thus $Fv-1^n$ is not the structural gene for Ec^+ gp70, and the action of Fv-1ⁿ in permitting expression of this gp70 species in AKR mice evidently depends on the same mechanism that facilitates replication of N-tropic virus of the type ascribed to the loci Akv-1 and Akv-2 (8-10). (e) The congenic mouse strain C57L-Akvp, Gix⁺:Fv-1ⁿ (11), and strain 129, Gix⁺:Fv-1^{nr}, do not express

^{*} Supported by grants CA-08748 and CA-16599 from the National Cancer Institute.

[‡] American Cancer Society Research Professor of Cell Surface Immunogenetics.

⁹⁸⁰ J. EXP. MED. © The Rockefeller University Press • 0022-1007/80/04/0980/04 \$1.00 Volume 151 April 1980 980-983

Genetic background	Ec ⁺ gp70 phenotypes of thymocytes			
	Positive	Number of mice tested§	Negative	Number of mice tested§
AKR (Fv-1 ⁿ)	AKR	10	AKR-Fu-1 ^b	3
	AKR- <i>H-2</i> ^b	3	AKR-H-2 ^b :Fv-1 ^b	3
B6 (Fv-1 ^b)			B6	12
			B6-Fv-1"	5
Hybrid (F ₁)	B6-Fv- $l^n \times \text{AKR} (Fv-l^n/Fv-l^n)$	3	B6 × AKR $(F_{v-1}^{h}/F_{v-1}^{n})$	3
Other			C57L-Akvp	4
			129	11

 TABLE I

 Ec* gp70 Phenotypes* of Thymocytes of Various Inbred and Hybrid Mice‡

* See Fig. 1: based on presence or absence of a band in the position characteristic of gp70 in sodium dodecyl sulfatepolyacrylamide gel electrophoresis (SDS-PAGE) of material precipitated from lysed ¹²⁵I-labeled thymocytes by anti-X.1 serum. Anti-X.1 serum, which recognizes the antigen now called Ec, is made by immunizing (BALB/c × B6)F₁ hybrid mice with the leukemia BALB.RL δ 1 (5).

[‡] Aged 6-8 wk; the AKR-Fv-1^b and AKR-H-2^b:Fv-1^b groups included also mice up to 9 mo of age, at which time the thymocytes still did not express Ec⁺ gp 70.

§ Each test performed with a single thymus.

 Ec^+ gp70 (Fig. 1, tracks 18 and 20); this further indicates that expression of Ec^+ gp70 depends on conjunction of $Fv-1^n$ with loci of the Akv-1 and Akv-2 type that are associated with high output of virus.

In addition to the data for precipitations with anti-X.1 serum, Fig. 1 includes results with goat antiserum to gp70 of Rauscher-MuLV (odd numbered tracks). This group-specific anti-gp70 serum precipitates gp70 from AKR- $Fv-1^b$ and from AKR- $H-2^b$: $Fv-1^b$ thymocytes (Fig. 1, tracks 5 and 7); the lesser density of these bands in comparison with AKR and AKR- $H-2^b$ (Fig. 1, tracks 1 and 3) can be explained by absence of Ec⁺ gp70, the residual bands being composed of other gp70 type-variants.

It would certainly be helpful to know whether mouse strains in which Ec^+ gp70 is expressed differ from strains in which Ec^+ gp70 is unexpressed or suppressed (Table I) in respect to the susceptibility to the spontaneous or induced leukemogenesis, but this question has not yet been sufficiently studied.

Summary

Type-variants of gp70 (glycoprotein-70), which is the major envelope protein of Ctype mouse virus and is also found in plasma membranes, are identified immunogenetically by the antigens Gix and Ec. Cellular expression of Gix⁺ gp70 does not depend on production of virus, but expression of Ec⁺ gp70 (formerly X-gp70) has been observed only in AKR and other strains of mice that produce large amounts of virus throughout life. To test the inference that cellular expression of Ec⁺ gp70 is secondary to production of virus we examined the effect of Fv-1 alleles, which govern the replicability of N-tropic and B-tropic C-type virus, on the expression of Ec⁺ gp70 on thymocytes. By typing thymocytes of Fv-1-congenic mice for Ec⁺ gp70 we found that manifestation of the Ec⁺ gp70 phenotype requires the $Fv-1^n$ allele, which is permissive for replication of N-tropic virus produced by AKR and other virusproducing mouse strains. Substitution of the $Fv-1^b$ allele for the $Fv-1^n$ allele abolishes demonstrable expression of Ec⁺ gp70 by AKR thymocytes at ages up to 9 mo, the oldest AKR mice tested.

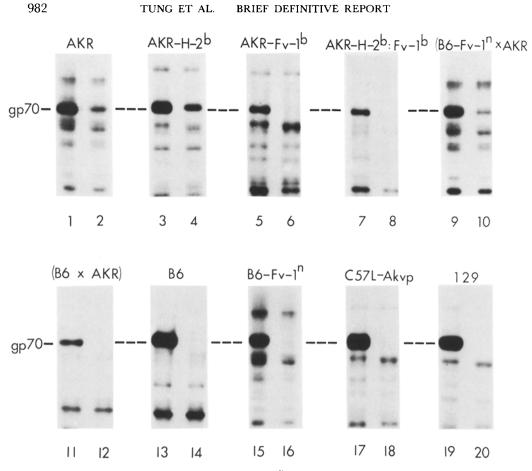


FIG. 1. SDS-PAGE of material precipitated from ¹²⁵I-labeled thymocyte lysates by group-specific goat anti-Rauscher-MuLV-gp70 serum (first of each pair of tracks; odd numbers) and by the type-specific antiserum anti-X.1 (second of each pair of tracks, even numbers). The method of the SDS-PAGE was as described (6) except for substitution of *Staphylococcus aureus* (Pansorbin; Calbiochem-Behring Corp., American Hoechst Corp., San Diego, Calif.) for anti-Ig. Each pair of tracks relates to a single thymus; the numbers of mice tested, of the genotypes indicated, are shown in Table I.

We thank Dr. R. Lerner for goat anti-Rauscher-MuLV-gp70 serum, Dr. E. Fleissner for critical reading of this manuscript, and Ms N. Gobeo and Ms R. Engel for technical assistance.

Received for publication 2 November 1979 and in revised form 9 January 1980.

References

- 1. Tung, J.-S., and E. Fleissner. 1980. Amplified env and gag products on AKR cells. Origin from different murine leukemia virus genomes. J. Exp. Med. 151:975.
- 2. Tung, J.-S., F.-W. Shen, E. Fleissner, and E. A. Boyse. 1976. X-gp70: a third molecular species of the envelope protein gp70 of murine leukemia virus, expressed on mouse lymphoid cells. *J. Exp. Med.* 143:969.
- Stockert, E., L. J. Old, and E. A. Boyse. 1971. The G_{IX} system: a cell surface allo-antigen associated with murine leukemia virus; implications regarding chromosomal integration of the viral genome. J. Exp. Med. 133:1334.

- 4. Lilly, F., and T. Pincus. 1973. Genetic control of murine viral leukemogenesis. Adv. Cancer Res. 17:231.
- 5. Sato, H., E. A. Boyse, T. Aoki, C. Iritani, and L. J. Old. 1973. Leukemia-associated transplantation antigens related to murine leukemia virus. The X.1 system: immune response controlled by a locus linked to H-2. J. Exp. Med. 138:593.
- 6. Tung, J.-S., A. Pinter, and E. Fleissner. 1977. Two species of type C viral core polyprotein on AKR mouse leukemia cells. *J. Virol.* 23:430.
- 7. Boyse, E. A., L. J. Old, and E. Stockert. 1972. The relation of linkage group 1X to leukemogenesis in the mouse. *In RNA Viruses and Host Genome in Oncogenesis*. P. Emmelot and P. Bentvelzen, editors. North Holland Publishing Co., Amsterdam. 171.
- Rowe, W. P. 1972. Studies of genetic transmission of murine leukemia virus by AKR mice. I. Crosses with Fv-1ⁿ strains of mice. J. Exp. Med. 136:1272.
- 9. Rowe, W. P., and J. W. Harley. 1972. Studies of genetic transmission of murine leukemia virus by AKR mice. II. Crosses with Fv-1^b strains of mice. J. Exp. Med. 136:1286.
- Chattopadhyay, S. K., W. P. Rowe, N. M. Teich, and D. R. Lowy. 1975. Definitive evidence that the murine C-type virus inducing locus Akv-1 is viral genetic material. *Proc. Natl. Acad. Sci. U. S. A.* 72:906.
- 11. Ikeda, H., W. P. Rowe, E. A. Boyse, E. Stockert, H. Sato, and S. Jacobs. 1976. Relationship of infectious murine leukemia virus and virus-related antigens in genetic crosses between AKR and the *Fv-1* compatible strain C57L. J. Exp. Med. 143:32.