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Abstract: Dichomitus squalens is an emerging reference species that can be used to investigate white-rot
fungal plant biomass degradation, as it has flexible physiology to utilize different types of biomass as
sources of carbon and energy. Recent comparative (post-) genomic studies on D. squalens resulted in an
increasingly detailed knowledge of the genes and enzymes involved in the lignocellulose breakdown
in this fungus and showed a complex transcriptional response in the presence of lignocellulose-
derived compounds. To fully utilize this increasing amount of data, efficient and reliable genetic
manipulation tools are needed, e.g., to characterize the function of certain proteins in vivo and
facilitate the construction of strains with enhanced lignocellulolytic capabilities. However, precise
genome alterations are often very difficult in wild-type basidiomycetes partially due to extremely low
frequencies of homology directed recombination (HDR) and limited availability of selectable markers.
To overcome these obstacles, we assessed various Cas9-single guide RNA (sgRNA) ribonucleoprotein
(RNP) -based strategies for selectable homology and non-homologous end joining (NHEJ) -based
gene editing in D. squalens. We also showed an induction of HDR-based genetic modifications by
using single-stranded oligodeoxynucleotides (ssODNs) in a basidiomycete fungus for the first time.
This paper provides directions for the application of targeted CRISPR/Cas9-based genome editing in
D. squalens and other wild-type (basidiomycete) fungi.

Keywords: Dichomitus squalens; CRISPR/Cas9; genome editing; ribonucleoprotein; single-stranded
oligonucleotides

1. Introduction

Plant biomass degrading filamentous fungi are essential nutrient cyclers in terrestrial
environments and important producers of enzymes and metabolites, for example, in
different industrial sectors [1]. Due to their ecological and societal relevance, the number
of whole genome-sequenced fungal species and strains is exponentially increasing together
with post-genomic studies [2]. To effectively utilize these data to further understand
fundamental physiological processes in fungi and to expand their use in biotechnology,
precise and versatile methods for manipulation of fungal genomes are needed [3].

The discovery of CRISPR/Cas9 (clustered regularly interspaced short palindromic
repeats/CRISPR-associated protein-9 nuclease form Streptococcus pyogenes) and its appli-
cation to genome engineering [4], have revolutionized research on several scientific areas
in less than a decade. The success of this technology is based on the ability of the Cas9
nuclease to recognize and cut a specific DNA sequence in the genome. This specificity
is ensured by a single RNA molecule (i.e., guide RNA) that can be customized to target
any genomic location in proximity to the protospacer adjacent motif (PAM). To survive
the resulting double strand breaks (DSBs) the edited organism must alter its DNA so that
it is no longer recognizable by the CRISPR-associated nuclease. This is mediated by the
endogenous DSB repair systems.

In filamentous fungi, DSBs are dominantly repaired by error-prone, non-homologous
end joining (NHEJ) [5–7] that often leads to indels and frame shifts within the target
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sequence. When a DNA sequence with homology close to the DSB (a so-called donor DNA,
dDNA) is available, DSB can also be corrected through homologous recombination, often
called homology directed recombination (HDR). HDR-mediated recombination allows
for precise gene knockouts/knock-ins and is generally more predictable, and thus better
suited, for targeted genome engineering. However, the frequency of HDR events is critically
low in filamentous fungi leaving the process of targeted integration of DNA to be very
inefficient [8]. Deletion of genes involved in NHEJ pathways, such as the ku70/ku80
gene, has been shown to result in high HDR frequency in both filamentous ascomycete
and basidiomycete fungi [5,9–12]. Therefore NHEJ-deficient strains are often used as a
background for genetic manipulations.

To date, CRISPR/Cas9-based editing tools have been adapted for a number of well-
studied ascomycete and basidiomycete species [13–16]. The development of these tools has
opened new possibilities, e.g., to accelerate the discovery of novel secondary metabolites
through the characterization and activation of previously unstudied biosynthetic gene
clusters [17], molecular breeding of cultivated mushrooms [14] and functional analysis of
not only individual genes but also large gene families [18], just to mention few.

The described CRISPR/Cas9-based strategies in filamentous fungi include, e.g., genomic
integration of Cas9 and single chimeric guide RNA (sgRNA) encoding sequences [7,16,19,20],
transient expression of Cas9 and sgRNA from a non-replicating plasmid [13,14,21,22],
in vitro expression of guide RNA (gRNA) [15,23], expression of Cas9 from a self-replicating
plasmid containing AMA1 (autonomous maintenance in Aspergillus) sequence [16] or
Ustilago maydis ARS element [24] and delivery of in vitro assembled ribonucleoprotein
(RNP) complexes that consist of Cas9 and gRNA [15]. However, in vivo Cas9 expression
has been shown to cause unwanted phenotypes, such as delayed growth [25], further
rearrangements or off-target mutations [26] and even toxic effects in host cells [27,28].
Transformed plasmids could also be degraded by endogenous nucleases into small DNA
fragments, which may increase unwanted on- and off-target insertions in host cells [29].
In contrast, RNP-based genome editing is not limited by the efficiency of Cas9 and gRNA
expression in vivo and it may protect gRNA from degradation [30]. As the RNPs are
rapidly degraded after the transient exposure of the cells to Cas9, the chance of further
rearrangements or off-target events that lead to unintended and nonspecific mutations is
also lower [15].

Despite these recent developments, genetic tools for most filamentous fungal species
are still poorly established or unavailable. For instance, there is little work showing ef-
fective strategies to induce HDR when NHEJ-deficient strains are not available. This is
particularly true for wood-degrading, polyporous basidiomycete fungi that hold a largely
untapped potential for plant biomass-related applications [31]. In this study, we assessed
different methods for CRISPR/Cas9-based gene editing in the wild-type Dichomitus squalens
strain. D. squalens is a transformable, wood-degrading fungus and a highly suitable refer-
ence species to investigate molecular mechanisms behind plant biomass degradation in
white-rot basidiomycetes [32–34]. Here, we adapted a co-targeting strategy based on pre-
assembled Cas9-sgRNA RNPs for selectable homology and NHEJ-based gene editing in
D. squalens. To our knowledge, this is the first report on a successful induction of HDR-
based genetic modifications using single-stranded oligodeoxynucleotides (ssODNs) in a
basidiomycete fungus.

2. Materials and Methods
2.1. Strains and Growth Conditions

The wild-type (WT), monokaryotic D. squalens strain CBS464.89, derived from the WT
dikaryon D. squalens FBCC312, was obtained from the FBCC-HAMBI culture collection
(www.helsinki.fi/hambi/ accessed on 1 March 2018) and maintained at 28 ◦C on 2% (w/v)
malt extract, 1.5% (w/v) agar (MEA) plates. The cultures for protoplast preparation were
performed as previously described [33]. Transformants were selected on regeneration agar
with 18–25 µg/mL geneticin (G-418, Roche, Mannheim, Germany) or 0.5–2 µg/mL carboxin
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(Sigma-Aldrich, St. Louis, MO, USA) or 1–2 mg/mL 5-fluoroorotic acid (5-FOA, Thermo
Scientific, Vilnus, Lithuania) and 20 mM uridine (Molekula, Darlington, UK). The positive
transformants were subcultured on MEA plates containing selective pressure and then
maintained on MEA. For growth assays, mycelia-covered plugs (0.5 cm in diameter) from a
freshly grown MEA plate were used to inoculate a low-nitrogen, asparagine-succinate (LN-
AS, pH 4.5) medium with 1.5% (w/v) agar [35] and 25 mM of glucose, xylose, arabinose or
galactose as a carbon source. Media of the uridine auxotrophic mutants were supplemented
with 20 mM uridine. The strains used in this study are listed in Table 1.

Table 1. Dichomitus squalens strains used in this study.

D. squalens Strains Description Genotype Reference

CBS464.89 (WT) Wild-type (WT)-derived
monokaryon. [36]

CBS464.89 ura3MUT_A Uridine auxotroph. ura3 n.504_565del in WT. This study.

CBS464.89 ura3MUT_B Uridine auxotroph. ura3 n.103_517del in protein ID:
915108 and n.69_363ins in WT. This study.

CBS464.89 sdi1MUT_A Carboxin-resistant strain. sdi1 p.H240L in WT. This study.

CBS464.89 sdi1MUT_B Carboxin-resistant strain. sdi1 p.H240L in WT. This study.

CBS464.89 ku80MUT_2A Carboxin-resistant strain with
missense mutation in ku80. sdi1 p.H240L, ku80 p.G88S in WT. This study.

CBS464.89 ku80MUT_2B Carboxin-resistant and
NHEJ-deficient strain.

sdi1 p.H240L, ku80 p.G88S and
p.Y95X in WT. This study.

CBS464.89 ku80MUT_1A Carboxin-resistant and
NHEJ-deficient strain.

sdi1 p.H240L, ku80 p.P19S and p.S21X
in WT. This study.

CBS464.89 ku80MUT_1B Carboxin-resistant and
NHEJ-deficient strain.

sdi1 p.H240L, ku80 p.V16F, p.P19S
and p.S21X in WT. This study.

CBS464.89 ku80MUT_3A Carboxin-resistant and
NHEJ-deficient strain. sdi1 p.H240L, ku80 p.Y135X in WT. This study.

CBS464.89 ku80MUT_3B Carboxin-resistant and
NHEJ-deficient strain.

sdi1 p.H240L, ku80 p.Y135X and
W142X in WT. This study.

CBS464.89 lcc3MUT_A Carboxin-resistant strain with
lcc3 knockout.

sdi1 p.H240L, lcc3 p.Q72X and p.K80X
in WT. This study.

CBS464.89 lcc3MUT_B Carboxin-resistant strain with
lcc3 knockout.

sdi1 p.H240L, lcc3 p.Q72X and p.K80X
in WT. This study.

CBS464.89 mnp2MUT_A Carboxin-resistant strain with
mnp2 knockout. sdi1 p.H240L, mnp2 p.C39X in WT. This study.

2.2. Construction of Synthetic Guide RNA

All genetic modifications were designed with D. squalens CBS464.89 v1.0 genome
and annotation (https://mycocosm.jgi.doe.gov accessed on 15 July 2018). The CRISPR
sites (i.e., the target-specific CRISPR RNA or crRNA sequences) were identified using the
Geneious R11 v11.1.4 software [37] and assessed based on their location (exons preferred),
on-target activity [38] and off-target specificity score [39]. Since the cleavage efficiency of
a CRISPR sequence at its target depends on many factors and is not yet well understood,
one to three sequences per gene were selected for gRNA synthesis (Table S1). The guide
RNAs (gRNAs), each containing a target complimentary crRNA and an auxiliary trans-
activating crispr RNA (tracrRNA), were in vitro transcribed using the GeneArt™ Precision
gRNA Synthesis kit (Thermo Scientific) and custom primers (Table S2) according to the
manufacturer’s instructions.

https://mycocosm.jgi.doe.gov
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2.3. Assembly of Cas9-gRNA Ribonucleoproteins and D. squalens Transformation

For formation of ribonuceoprotein (RNP) complexes, a commercial Cas9 nuclease
containing a nuclear localization signal (Cas9-NLS; Thermo Scientific) was mixed with
an in vitro synthesized gRNA in equimolar concentrations and a total volume of 10 µL in
nuclease-free water. The Cas9-gRNA RNPs were formed after 10 min of incubation in RT
and were stable in RT for ~1 h. The functionality of RNPs was tested in vitro by mixing
~900 ng of PCR-amplified DNA fragment (~1 kb) surrounding the CRISPR/Cas9 cut site
with pre-assembled RNP complexes and incubating for 30 min at 37 ◦C. To digest Cas9,
1 U of Proteinase K was added and the reaction was incubated for 15 min at RT. Samples
were visualized on 1% agarose gel.

For the in vitro RNP-mediated gene editing, 3 µg Cas9 and 600 ng gRNA were com-
plexed into RNPs and transformed to ~2 million D. squalens protoplasts in STC (1.33 M
sorbitol, 10 mM Tris-HCl of pH 7.5, 50 mM CaCl2). To induce homologous recombination,
a repair template, i.e., the donor DNA (dDNA), was co-transformed with RNPs at concen-
trations indicated below. The PEG-mediated transformation was performed as previously
described [33], except that aurintricarboxylic acid ammonium salt (ATA) was omitted in
the RNP experiments as it has been shown to lead to inactivation of Cas9 [15].

2.4. Construction of Donor DNA

Two classical homology-based repair temples, i.e., dDNA with antibioticres selection
marker surrounded by the flanking regions of a gene of interest, were constructed for
deletion of the D. squalens ku80 gene (protein ID: 828988). First, the ~1.7 kb upstream and
downstream ku80 flanking regions were amplified with Phusion™ High Fidelity DNA
polymerase (Thermo Scientific, Vilnus, Lithuania) using custom primers (Table S3) and
D. squalens CBS464.89 gDNA as a template. The G-418 resistance cassette, containing the
neomycin phosphotransferase II encoding gene nptII driven by the Flammulina velutipes
GPD promoter, was amplified from the pFungiway8 plasmid [40] with primers containing
appropriate overhangs. To assemble the linear ku80 deletion cassette (~5 kb), the three
fragments were connected by fusion PCR amplification with nested primers (Figure S1A).
The split marker ku80 deletion cassette was constructed by connecting the partial G-418
resistance cassette sequence with upstream (~2.9 kb) and downstream (~2.6 kb) flanking re-
gions of the ku80 gene (Figure S1B). The 448 bp overlap in the G-418 resistance cassette part
of the sequence allows recombination of the split marker inside the cells. Approximately
10 µg of linear or split-marker dDNA was used for transformation with Cas9-gRNA RNPs.

For construction of a ~2 kb microhomology cassette, G-418 resistance cassette was
amplified from pFungiway8 plasmid with custom primers carrying 40 bp long microhomol-
ogy arms complementary to the flanking regions of the ku80 gene (Table S3, Figure S1C).
Approximately 10 µg of microhomology dDNA was co-transformed with dual Cas9-gRNA
RNPs for gene deletion in WT D. squalens.

Custom ssODNs were synthesized (Eurofins Genomics, Konstanz, Germany) and used
as dDNA-inducing single nucleotide changes in the target loci (Table S4). The nucleotide
changes were designed to (a) cause missense or nonsense mutations that lead to truncation
of targeted protein, (b) introduce or mutate restriction sites for rapid verification of edited
strains and (c) alter the PAM to prevent Cas9 from re-cutting the target sequence once
the desired edit has been introduced at the locus. A total of 5–10 µg of ssODNs were
co-transformed with Cas9-gRNA RNPs for a single gene knockout in WT D. squalens.

2.5. Analysis of D. squalens Mutants

To verify edits at the targeted locus, genomic DNA was extracted from randomly selected
D. squalens transformants with extraction buffer (2% N-cetyl-N,N,Ntrimethylammonium bro-
mide (CTAB), 100 mM Tris-HCl, 1.4 M NaCl, 20 mM EDTA and 0.2% β-mercaptoethanol)
and purified with chloroform-isoamyl alcohol (24:1) according to Chang et al. [41] and quan-
tified by NanoDrop™ One Microvolume UV-Vis Spectrophotometer (Thermo Scientific).



Biomolecules 2021, 11, 1526 5 of 15

The ~1000 bp long DNA region surrounding the Cas9 cut was amplified by a PCR with
GoTag® Green Master Mix (Promega, Madison, WI, USA) and custom primers (Table S5),
according to the manufacturer’s instructions. For strains with mutated or inserted restriction
sites, the amplicons were digested with FastDigest enzymes (Thermo Scientific, Vilnus,
Lithuania) according to the manufacturer’s instructions and visualized on 1% agarose gel.
Mutants with desired restriction pattern were amplified again, this time using Phusion™
High-Fidelity DNA polymerase (Thermo Scientific, Vilnus, Lithuania), and the PCR products
were Sanger sequenced (Macrogen, Amsterdam, The Netherlands) to confirm edits at the locus.
The generated chromatograms were manually proofread using Chromas v. 2.4.4 software.

To confirm the stability of the CRISPR-created edits, the mutant strains we repeatedly
cultivated over four generations on 2% MEA plates, after which DNA was extracted and
amplified with custom primers as described above. The PCR products from the fourth
generation strains were Sanger sequenced to assess the stability of the edits.

3. Results and Discussion
3.1. RNPs Are Functional In Vivo and Introduce Double Strand DNA Breaks

In this work we evaluated different methods for CRISPR/Cas9-based gene editing
in the WT D. squalens (Figure 1). First, we tested whether Cas9 could be delivered into
D. squalens protoplasts using PEG-mediated transformation for introduction of double
strand breaks (DBS) in the target sequences determined by in vitro synthesized gRNAs.
The orotidine 5′-phosphate decarboxylase (OMP decarboxylase, EC 4.1.1.23), encoded
in fungi by the ura3/pyrG gene, catalyzes the conversion of orotidine 5′-phosphate to
uridine 5′-phosphate in the de novo pyrimidine biosynthesis pathway [42]. Inactivation
of ura3/pyrG leads to easily distinguishable phenotypes (uridine/uracil auxotrophy and
5-FOA resistance) and provides a well-selectable marker for further gene editing. Therefore,
we chose to target this gene with the CRISPR/Cas9 system in WT D. squalens. The OMP
decarboxylase orthologue in D. squalens (ura3, protein ID: 954994) was identified from a bi-
directional protein sequence homology search using previously characterized pyrG/URA3
genes from the white-rot fungi Pleurotus ostreatus [43] and Ganoderma lucidum [44] as a query.

The pre-assembled RNP mixtures targeting the first, second or third exon of ura3
were transformed independently (a single RNP per transformation) and collectively (dual
RNPs per transformation) into WT D. squalens protoplasts. This resulted in >100 colonies,
including two fast growing transformants with strong resistance to 5-FOA and uridine
auxotrophy. The knockout mutants, named ura3MUT_A and ura3MUT_B, originated from a
transformation in which both the first and third exon of the ura3 gene were targeted simul-
taneously (Figure 2). Sanger sequencing confirmed that both mutants had insertions and
deletions (indels) in the ura3 sequence near the programmed Cas9 cuts (Figure 2) that are
characteristic to the error-prone DSB repair by NHEJ. Additionally, sequencing unraveled
that the ura3MUT_A had a 61 bp deletion near CRISPR site #119 (Figure S2A), suggesting that
only one RNP was delivered to the nucleus during transformation. Efficiency of RNP deliv-
ery into fungal protoplasts with subsequent translocation to the nucleus is challenging and
it has previously been reported to result in low genome editing efficiency in the ascomycete
species Penicillium chrysogenum [15] and Trichoderma reesei [30]. The addition of surfactants
is one option to improve cell membrane permeability during transformation, and Triton
X-100 was shown to significantly increase the efficiency of RNP delivery in PEG-mediated
transformation in T. reesei [30]. Furthermore, NHEJ has the disadvantage of introducing
random insertions and translocations that affect neighboring genes [12]. We also observed
this as the second mutant, ura3MUT_B, had a 414 bp long deletion between CRISPR sites
#137 and #119 and an additional 294 bp insertion (Figure S2B) that was identified as a
fragment of a neighboring gene (protein ID: 915108) that was annotated as a putative
meiotic cell division protein.
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Based on these results, we concluded that although RNPs introduced DSBs by the
Cas9 nuclease at the expected site, which lead to loss-of-function mutations when repaired
by NHEJ in WT D. squalens, the extremely low frequency of NHEJ (<1% gene targeting
efficiency) prevents it from being a useful method in the absence of an easily identifiable
phenotype. This is in line with the previous observation on the low efficiency of NHEJ-
directed repair in the basidiomycete fungus Schizophyllum commune after introduction of
CRISPR/Cas9-mediated DSBs [45].

We did not observe any D. squalens colonies with spontaneous uridine auxotrophy
appearing without CRISPR/Cas9-mediated mutagenesis at the ura3 locus. Among the
remaining slow growing 5-FOA resistant transformants, few randomly selected colonies
were still able to grow on LN-AS minimal medium plates without uridine (data not shown),
thus indicating leaky selection when 1 mg/mL 5-FOA is used. To increase selectivity, we
recommend using higher concentrations of 5-FOA and, e.g., 2 mg/mL 5-FOA seem to
inhibit growth of WT D. squalens mycelium (data not shown).

3.2. Co-Transformation of a Long Homology-Based Repair Cassette Does Not Induce HDR in WT
D. squalens

Next, we tested whether gene deletions could be created in WT D. squalens via HDR.
With the general preference for NHEJ over the HDR DNA repair system, reaching workable
levels of HDR is a major challenge in higher fungi. The Ku70/Ku80 protein complex is
involved in the NHEJ repair pathway, and one of the common approaches to enrich
HDR in filamentous fungi is the construction of ku70/ku80 mutants in which NHEJ is
reduced [6,10,12]. However, the addition of dDNA with a certain amount of homology to
CRISPR/Cas9 experiments has been shown to induce HDR-based mutations in asco- and
basidiomycete fungi without the need for construction of NHEJ-deficient mutants [45–47].

To study whether the addition of dDNA to RNP transformation could induce HDR-
driven mutations in WT D. squalens, we chose to target its ku80 orthologue with pre-
assembled Cas9 RNPs. The orthologue of the ku80 gene, encoding a putative protein
involved in NHEJ (ku80, protein ID: 828988), was identified from the D. squalens genome
with a bi-directional protein sequence homology search using the Ku80 sequence from the
S. commune genome [10] as a query. We constructed and tested two classical homology-
based gene deletion dDNA cassettes, linear and split marker, with ~1.6 kb ku80 flanking
regions surrounding the nptII selection marker conferring geneticin resistance (Figure S1).
Despite several attempts with both linear and split cassettes, we were not able to obtain
transformants in which a Cas9-introduced cut at the ku80 locus would have been repaired
by the incorporation of the supplied template. Since the delivery of Cas9 to the nucleus
was not 100% effective in our previous experiment, in which ura3 was targeted with the
pre-assembled RNP mixtures, it is likely that the delivery of 3–5 kb long dDNA constructs
could be similarly problematic.

In an attempt to decrease the donor size, we constructed a microhomology repair tem-
plate [46], with nptII selection marker flanked by ~40 bp long DNA sequences homologous
to ku80 flanking regions, and co-transformed it to WT D. squalens with two RNPs targeting
Cas9 to the ends of the ku80 gene (Figure S1C). Despite the dDNA size of <2 kb, and
although in several ascomycete species flanking regions of 30–60 bp have been shown to
induce HDR in CRISPR/Cas9 systems [15,16,20], we did not obtain any geneticin resistant
colonies using this method. From these results, we concluded that the presence of a long
dDNA does not increase HDR rates in WT D. squalens.

3.3. Presence of a Short Oligonucleotide Repair Template Induce HDR-Based Gene Editing up to 60%

In order to investigate if co-transformation of shorter repair templates induces HDR-
driven events in WT D. squalens, we designed 60–120 bp long single-stranded oligonu-
cleotide (ssODN) donors, which were delivered to protoplasts with the pre-assembled RNP
complexes. With this approach, we aimed to create nucleotide changes in an iron–sulphur
protein subunit of succinate dehydrogenase encoding gene sdi1. Previous studies showed
that the substitution of a histidine residue for leucine within the third cysteine-rich clus-
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ter of that gene confers resistance to fungicide carboxin in U. maydis [48]. The succinate
dehydrogenase orthologue in D. squalens (sdi1, protein ID: 927354) was identified from
a bi-directional protein sequence homology search using Sdi1 sequences from the basid-
iomycete fungi Lentinula edodes [49] and P. ostreatus [50] along with the ascomycete species
Magnaporthe oryzae [47] as a query. The alignment of Sdi1 amino acid sequences from
these species showed that the histidine residue that was targeted for carboxin resistance is
conserved among these species, thus making it a strong candidate for a point mutation.

The ssODN donors with varying length were designed to create a missense mutation
H240L in D. squalens sdi1 and two silent mutations in the protospacer-adjacent motif (PAM)
and MfeI restriction site to facilitate the verification of transformants (Figure 3A). WT
D. squalens protoplasts were co-transformed with in vitro assembled RNPs and 5 µg of
ssODNs and selected on carboxin containing medium. Resistant colonies appeared after
six days of growth, confirming that sdi1 editing leads to carboxin resistance in D. squalens.
The majority of resistant colonies (28) resulted from a transformation in which gRNA
directing Cas9 near the targeted histidine residue (CRISPR site #40) and 120 bp long
ssODN #1 donor were present (Figure 3). A much lower number of resistant colonies
appeared when the same CRISPR site was targeted with 60 bp long ssODN #4 donor
(two colonies) and when the more distant CRISPR site #71 was targeted with 120 bp long
donor (one colony). This not only suggests that the length of the ssODN but also the
distance between the modification and the cut site are important factors that need to be
optimized for efficient editing events.
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Restriction digestion assay indicated the introduction of the desired sequence changes
at the sdi1 locus in ~55% transformants (17/31). This was further confirmed by Sanger
sequencing of the restriction analysis based on five positive and one negative transformant,
all of which were shown to have identical H240L missense mutation introduced by RNP-
based targeted mutagenesis via HDR (Figure 3C). Accordingly, the desired mutation in
the MfeI restriction site was present in five out of six sequenced sdi1 mutants, indicating
that the actual incidence of HDR-based gene edits is close to 60% or higher. To our
knowledge, this is a first report of ssODN being successfully used to induce HDR-based
genetic modifications in a basidiomycete fungus. Previously, ssODNs have been shown to
mediate highly efficient CRISPR gene editing in the ascomycetous Aspergillus species when
transformed together with a self-replicating plasmid expressing Cas9 and sgRNAs [51].

Interestingly, four out of six transformants had the designed mutation in the neighbor-
ing PAM and only one transformant in the further located PAM sequence. This suggests
that the mutation frequency strongly decreases when the distance between the modification
and the cut site is more than 40 bp. Additionally, we did not observe carboxin-resistant
D. squalens colonies appearing from a transformation in which Cas9 RNPs were used
without the addition of ssODNs, i.e., from NHEJ-based DNA repair events, confirming
our observations on extremely low incidence of not only HDR but also NHEJ-based repair
events in WT D. squalens.

3.4. Coediting Allows Selection of Mutants with Edits at the Gene of Interest in the Wild-Type
D. squalens

To be able to simultaneously edit two loci using ssODN donors, we tested whether
selection for sdi1H240L mutants could result in identification of HDR-based mutations at a
second locus in WT D. squalens. Coediting with ssODNs has been shown to be functional,
e.g., in mammalian cells [52] and some ascomycetes [47,53]. For the second target, we chose
to knockout the ku80 gene. For that we introduced two STOP codons in the first and the
third exon and one STOP codon on the second exon of this gene (Figure 4A). Protoplasts
were transformed with RNPs targeting both sdi1 and ku80, along with respective 120 bp
long donor ssODNs, and selected with carboxin. In total 10 µg of ssODNs were used,
corresponding to 5 µg for repair at both loci. Restriction digests indicated that ~20% of the
carboxin-resistant transformants had nonsense mutations at the ku80 locus in one of the
targeted exons. Sanger sequencing further confirmed that the desired edits were introduced
in five out of six positively identified mutants. This demonstrated that coediting can be
successfully used to enrich for mutations at the second locus in WT D. squalens and it
also enables identification of transformants based on the marker that has been mutated
alongside the target loci.

Similarly to previous results with single locus targeting, the mutations closer to the
predicted Cas9 cut had higher frequency of being incorporated to the genome. For example,
during editing of the second exon of ku80, the mutations leading to incorporation of the
BamHI restriction site at the PAM sequence were more common than the nonsense mutation
Y95X, designed 27 bp from the Cas9 cut site (Figure 4B). Among the sequenced D. squalens
mutant strains, five had nonsense mutations in the coding sequence of the ku80 gene that
were designed to truncate the encoded protein. These included two strains (ku80MUT_1A

and ku80MUT_1B) with the S21X mutation in the first exon, one strain (ku80MUT_2B) with
the Y95X mutation in the second exon and two strains (ku80MUT_3A and ku80MUT_3B) with
the Y135X or Y135X-W142X mutation in the third exon (Table 1). The ku80 mutants were
not observed to have growth defects and were otherwise phenotypically indistinguishable
from the WT strain (Figure 4C and data not shown).
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To overcome the cut-to-mutation distance correlation, we increased the amount of the
donor ssODNs supplied during transformation. For that, we coedited sdi1 along with a
laccase encoding gene lcc3 (protein ID: 59186). Laccases are multi-copper oxidases that have
various suggested biological roles including participation in lignocellulose degradation [31].
Due to their broad substrate specificity, laccases also are attractive biocatalysts for a wide
range of biotechnology applications. The previous studies have shown that lcc3 is highly
expressed by D. squalens in various cultivation conditions [32,34,54], which made it an
interesting target to study its role in vivo in more detail. The protoplast mixture was
supplied with 7 and 10 µg of ssODNs for the repair of cuts introduced in the sdi1 and
lcc3 loci, respectively, while the total amount of Cas9 and gRNA used to assemble RNPs
remained unchanged. In this case, we chose to use a higher amount of dDNA for lcc3 to
enrich for edits at this locus among carboxin-resistant colonies. Out of 10 carboxin-resistant
transformants, two showed the restriction pattern correlating with EcoRI incorporation at
the lcc3 locus, which was later confirmed by Sanger sequencing (Figure 5A). Interestingly,
both lcc3MUT_A and lcc3MUT_B knockouts had the desired nonsense mutations Q72X and
K80X located 40 and 16 bp from the predicted Cas9 cut, respectively. This suggests that
the amount of ssODNs could be an important factor when dealing with increasing cut-to-
mutation distances during HDR-mediated gene editing with pre-assembled RNPs.

We further confirmed these results by using the same set-up for the coediting of sdi1
with the mnp2 gene (protein ID: 578774). Manganese peroxidases (MnPs) are key enzymes
for lignin degradation and uniquely produced by white-rot fungi [31]. As the D. squalens
MnP2 encoding gene has been reported to be highly expressed in several wood and other
plant biomass containing cultures [32,34,54,55], we were interested to target it to obtain a
strain that possibly has an altered ability for lignocellulose conversion. In this case, one
out of 10 carboxin-resistant transformants showed the expected EcoRI restriction pattern.
Sanger sequencing revealed that the mnp2MUT_A had a nonsense mutation C39X introduced
22 bp from the predicted Cas9 cut (Figure 5B). Furthermore, all CRISPR-created edits, which
we obtained by using ssODN repair templates, were stable over four generations of the
mutant strains as confirmed by Sanger sequencing (data not shown).

While repair accuracy for edits at increased cut-to-mutation distance increased with
higher amounts of ssODNs in the coediting experiments, we did not observe higher target-
ing efficiencies for lcc3 and mnp2. Although careful optimization of sgRNAs and ssODNs
is necessary, this could also be linked to the accessibility of the targeted genes/regions in
the chromatin as we observed mutation efficiencies at the second locus between 10 and
60%, when other genes were coedited in the WT D. squalens (data not shown). For example,
regions of low transcriptional activity have been suggested to complicate the direction of
Cas9 by sgRNA [23].

Our study demonstrated that precise genome alterations in D. squalens could be
obtained by CRISPR/Cas9-based RNP-mediated editing. To our knowledge, induction
of HDR-driven genetic modifications by ssODNs in a basidiomycete species has not been
previously reported. We showed that shorter dDNA (e.g., 120 bp ssODN) co-transformed
with RNPs induced HDR-mediated gene editing with the efficiency of up to 60% at a single
locus and 20% at dual loci in WT D. squalens, which indicates that the method presented here
provides an opportunity to develop a genome editing system in non-reference filamentous
fungal species, e.g., without available NHEJ-deficient strains. In addition, the chemical
synthesis of these relatively short oligonucleotide templates can be considered cost effective,
supporting the feasibility of this approach. The future work will concentrate on further
optimization of the coediting strategy presented here to increase its efficiency, which could
allow, e.g., multiplexing of several loci. In addition, the NHEJ-deficient D. squalens ku80
knockout strains obtained here provide opportunities for their use as parental strains for
genetic modifications with likely improved HDR frequency.
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4. Conclusions

In this study we showed that CRISPR/Cas9-based editing with pre-assembled Cas9-
sgRNA RNPs enables precise genome alterations in the basidiomycete white-rot fungus
D. squalens, for which NHEJ-deficient strains were not available before. We also presented a
successful induction of HDR-based genetic modifications by using ssODNs for the first time
in a basidiomycete fungus, and demonstrated successful coediting of two loci using ssODN
donors. This opens up new possibilities to study gene function and develop improved
strains for biotechnology applications in D. squalens that is an interesting reference species
for white-rot wood degradation. In addition, the methods presented here can most likely
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be adapted to, e.g., other plant biomass degrading basidiomycete fungi, for which very
limited tool sets are often available for genetic modifications.
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10.3390/biom11101526/s1. Figure S1: construction of HDR-based donor DNA for repair of DNA
breaks introduced by gRNA/Cas9 RNPs at ku80 locus; Figure S2: Sanger sequencing of D. squalens
ura3MUT_A and ura3MUT_B strains; Table S1: sequences of CRISPR/Cas9 guides; Table S2: PCR
primers used for guide RNA synthesis; Table S3: primers used to construct homology-based repair
temples for ku80 deletion; Table S4: sequences of ssODNs; Table S5: primers used for verification of
edited loci.
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