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Abstract: A growing body of research has implicated DNA methylation as a potential 

mediator of the effects of maternal smoking in pregnancy on offspring ill-health. Data were 

available from a UK birth cohort of children with DNA methylation measured at birth,  

age 7 and 17. One issue when analysing genome-wide DNA methylation data is the 

correlation of methylation levels between CpG sites, though this can be crudely bypassed 

using a data reduction method. In this manuscript we investigate the effect of sustained 

maternal smoking in pregnancy on longitudinal DNA methylation in their offspring using a 

Bayesian hierarchical mixture model. This model avoids the data reduction used in previous 

analyses. Four of the 28 previously identified, smoking related CpG sites were shown to 

have offspring methylation related to maternal smoking using this method, replicating 

findings in well-known smoking related genes MYO1G and GFI1. Further weak associations 

were found at the AHRR and CYP1A1 loci. In conclusion, we have demonstrated the utility 

of the Bayesian mixture model method for investigation of longitudinal DNA methylation 

data and this method should be considered for use in whole genome applications. 
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1. Introduction 

Epigenetics, the study of genome modifications not involving changes in the nucleotide sequence, 

offers the potential to identify molecular mechanisms by which environmental and lifestyle exposures 

may affect health [1,2]. Epigenetic mechanisms include DNA methylation, histone modifications and 

microRNA, all of which act in concert to regulate gene expression [3]. DNA methylation, the addition 

of methyl groups to nucleotide bases, is the most stable and most readily quantifiable epigenetic mark 

and has thus become the most widely studied. Recent technological advances have allowed the 

application of genomic technologies to epigenetics, facilitating the large scale generation of quantitative 

DNA methylation data across the genome [4].  

Maternal smoking during pregnancy has been shown to expose the foetus to the harmful chemicals 

resulting from maternal use of tobacco through placental transfer and has been associated with reduced 

birthweight [5] and preterm birth [6]. Suboptimal growth has in turn been linked to increased risk of 

cardiovascular disease, diabetes mellitus type 2, dyslipidemia and end-stage renal disease in adulthood [7], 

which may adversely affect reproductive health of offspring [8], and may affect intelligence and cognitive 

development [9]. Despite these risks to newborns (as well as known risks of tobacco smoking for the 

mothers), in England about 12% of pregnant women are still smoking at the time of delivery [10],  

with similar prevalence reported in other western, high-income countries [11,12]. Cigarette smoke is 

known to be associated with DNA methylation [13–15], and since higher DNA methylation levels in the 

foetus have also been demonstrated in the genes involved in developmental processes [16,17] associated 

with maternal smoking during pregnancy, this seems to indicate a mediating role of epigenetic processes. 

Interestingly, data indicate that the effect of in utero exposure on foetus’ DNA methylation is stronger 

when the mother smoked past 18 weeks than when the mother stopped smoking earlier in pregnancy; 

perhaps when knowledge of the pregnancy occurred [18]. 

It has also been shown that early cessation of smoking can reverse (some of) the environmentally 

responsive influences on birthweight and lower the risk of preterm birth [19], and this aligns with data 

indicating that DNA methylation may be reversible. However, certain methylation patterns related to 

maternal smoking during pregnancy can still be observed in peripheral blood of offspring as children 

and adolescents [20,21] implying, for smoking, lasting effects. There has been relatively little work 

modelling methylation changes over time [22–25], but these lasting effects are still to be confirmed since 

at present it cannot be excluded that (some of) the observed effects could have been the result of postnatal 

exposure to environmental tobacco smoke from, for example, second hand smoke, or from adolescents 

smoking themselves [26–28]. 

A previous study, based on the Accessible Resource for Integrated Epigenomic Studies (ARIES)  

data [29] from the Avon Longitudinal Study of Parents and Children (ALSPAC) [30,31], and conducted 

by some of the authors involved in this work, evaluated the association between maternal persistent 

smoking during pregnancy and DNA methylation at birth, childhood and adolescence, taking into 
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account postnatal effects of environmental tobacco smoke exposure [24]. The authors observed differential 

methylation at 15 CpG sites in seven gene regions (AHRR, MYO1G, GFI1, CYP1A1, CNTNAP2, KLF13 and 

ATP9A) at birth [24]. Of these, GFI1, KLF13 and ATP9A showed reversibility of methylation at later time 

points, while AHRR, MYO1G, CYP1A1 and CNTNAP2 showed persistent perturbed patterns throughout 

childhood and adolescence. Six of these seven gene regions confirmed findings from other EWAS 

(Epigenome-Wide Association Studies) [16,17], and the top hit, cg05575921, was also previously 

associated with maternal smoking and methylation of DNA in both cord and neonatal blood [16]. 

Cg05575921 is located at the AHRR gene and has been widely reported as a smoking responsive DNA 

methylation locus [16,26].  

An important limitation of this study was that even though only 28 CpG sites (of over 485,000) were 

identified as being differentially methylated, because of localized clustering of CpG sites in gene regions 

further selection of seven sites (one per gene) was made, and Richmond et al. focussed on the seven top 

CpG sites; one in each of seven identified gene regions: AHRR (cg05575921), MYO1G (cg22132788), 

GFI1 (cg09935388), CYP1A1 (cg05549655), CNTNAP2 (cg25949550), KFL13 (cg26146569),  

and ATP9A (cg07339236).  

Taking all differentially methylated sites forward would have resulted in convergence problems as a 

result of the collinearity within data, which (in general) will result in models not converging or,  

if they do to result in inflated estimates and standard errors [32]. The latter can be addressed by including 

some form of penalization to the models, and the BMM described here does this in a Bayesian context 

by a priori assuming that maternal smoking during pregnancy has no effect on a proportion of CpG sites. 

We explore whether in the context of such highly correlated, cross-sectional, data that required two 

dimensionality reduction steps, a Bayesian mixture model (BMM) previously developed for the analyses 

of gene-environment interactions [32], and subsequently also evaluated in the context of highly 

correlated environmental exposure mixtures [33], may be beneficial. More specifically, we evaluate 

whether the use of the BMM results in improved inferences by not including the second dimensionality 

reduction step; thereby opening up the possibility that the original single site analyses may have resulted 

in false positive findings, because of high correlation with a causal CpG site, or in missed hits as a result 

of a collapse of information [34].  

2. Experimental Section 

2.1. Data 

These analyses are based on the dataset used by Richmond et al. [24], and include genome-wide DNA 

methylation data collected from children at birth (cord blood) and at ages 7 and 17 (whole blood) 

available from the Accessible Resource for Integrated Epigenomic Studies (ARIES) [29]. This study is 

nested within the Avon Longitudinal Study of Parents and Children (ALSPAC), which is described in 

detail elsewhere [30,31]. 916 of 1018 ARIES mother-offspring pairs had repeated methylation data 

which successfully passed quality control and of these 790 also had data on self-reported sustained 

smoking during pregnancy while of these again 744 also had complete covariate data. In unadjusted 

analysis conducted in [24], 15 CpG sites fell below the 1.07 × 10−7 Bonferroni threshold for significance 

and 28 CpG sites fell below the 0.05 false discovery rate cut-off. Where CpG sites fell below the 



Int. J. Environ. Res. Public Health 2015, 12 14464 

 

Bonferroni threshold for significance and the association between sustained smoking and methylation 

was positive, we defined these sites as “hypermethylated”. Where CpG sites fell below the Bonferroni 

threshold for significance and the association between sustained smoking and methylation was inverse,  

we defined these sites as “hypomethylated”. We used multiple imputation to impute all missing data so that 

we could perform analyses on all 916 mother-child pairs. Since the parameter estimates from the BMM have 

a non-Gaussian distribution, they cannot be combined using Rubin’s rules. Hence we present results from 

one imputation, with four complementary sets of results given in online supplementary material.  

Whole-genome DNA methylation was determined using the Illumina Infinium© HumanMethylation450 

(HM450) BeadChip for methylation of over 485,000 key CpG sites [35]. In the original analyses by 

Richmond et al. unadjusted analyses identified 28 CpG sites that fell below the false discovery rate (FDR) 

cut-off of 0.05 [24] which were located in seven genes.  

2.2. Statistical Methods 

The hierarchical BMM has previously been described in detail [32,33], but in summary describes a 

standard logistic model with all variables of interest (methylation of each CpG site (s)) and relevant 

confounders (γ1… γn) included in the same model (hierarchical level 1 of the model) for individual i:  

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝛼 + 𝛽1𝑥𝑖1 +⋯+ 𝛽𝑆𝑥𝑖𝑆 + 𝛾1𝑥𝑖1 +⋯+ 𝛾𝑛𝑥𝑖𝑛  

In addition to the assumption that maternal smoking during pregnancy has no effect on a proportion 

of CpG sites, we further assume a common prior for the effect sizes of the CpG sites that are affected by 

maternal smoking during pregnancy as well as prior distribution with its mass close to zero for those 

sites that are not affected by maternal smoking (level 2).  

Level 3 of the model describes the prior distribution of an indicator variable (T) that takes the value 

1 if maternal smoking is associated with differential methylation at the CpG site and the value 0 if there 

is no association.  

This BMM describes a model in which maternal smoking during pregnancy has an effect on 

methylation in a proportion π of the measured CpG sites with the remaining proportion (i.e., 1–π) of 

measured sites arising from a distribution with its mass close to zero (e.g., no effect). The proportion is 

included as the level 3 indicator value (T), and we define the Bayesian prior for T such that it has an 

independent Bernoulli distribution with the probability of “success” defined as the a priori hypothesized 

number of affected CpG sites (i.e., π). In our example, we choose to fix this value because we have the 

results of previous analyses [24] which identified seven affected genes of 28 CpG sites (i.e., we define 

prior probability π as 25%).  

We assume the effect of maternal smoking on methylation for each site arises from a mixture 

distribution that describes a relatively uninformative prior normal distribution N(0,σs
2) such that the 

Odds Ratio (OR; exp(β)) lies between 0.20 and 5 with probability 90% when T = 1, and, similarly,  

the parameter distribution N(0,σns
2) for unaffected CpG sites (i.e., T = 0) is set such that the Odds Ratio 

lies in the range 0.98–1.02 with 90% probability. The latter has been chosen, similar to previous work 

using this methodology, to account for residual confounding in the model. Specifically, level 2 can be 

described for each CpG site (s) as: 

𝛽𝑠|𝑇𝑠
𝑆, 𝜎𝑆

2~𝑁(0, 𝑇𝑠
𝑆𝜎𝑆

2 + (1 − 𝑇𝑠
𝑆)𝜎𝑛𝑠

2 )  
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If we then average out over the mixture states, we obtain the mixture model results: 

𝛽𝑠|𝜋𝑠, 𝜎𝑆
2, 𝜎𝑛𝑠

2 ~𝜋𝑆𝑁(0, 𝜎𝑆
2) + (1 − 𝜋𝑆)𝑁(0, 𝜎𝑛𝑠

2 )  

Each model is run for 50,000 samples after a 50,000 burn-in using Markov Chain Monte Carlo 

(MCMC) simulation. To reduce autocorrelation between the samples the MCMC chain was thinned by 

a factor 2. In these analyses we a priori assume that there is evidence of an association if the indicator 

variable shows that an association is present in more than 50% of the iterations of the MCMC chain, 

with an association present in a higher proportion of samples indicating stronger evidence of true 

association. Additionally, 95% credible intervals excluding unity are interpreted as stronger evidence 

for true association. Following recommendations in [32] multiple (n = 2) chains were run; one with 

starting values T = 0 and each regression parameter also set initially to zero and a second chain with all 

T’s set to 1, to enable assessment of mixing. Convergence was analyzed graphically based on trace, 

density and autocorrelation plots, as well as mathematically based on Brooks-Gelman-Rubin diagnostic 

statistics and MCMC errors. Additional sensitivity analyses were conducted specifying a prior 

probability π of 50% (which can be interpreted as an absence of prior information and thus a  

50% probability for each CpG to be affected).  

The WinBUGS syntax for the BMM is provided in Online Supplementary Material. 

The model also includes known (from [24]) confounding factors only. We further used independent 

surrogate variable analysis (ISVA) [36] to obtain the top 20 independent components of variation.  

These account for confounding due to position and/or batch effects, as well as changing cell type 

proportions which are to be expected when moving from cord blood to whole blood. The components 

have a priori been assigned an uninformative normal distribution.  

Similar to the analyses in Richmond et al. [24], also because the methodology has not yet been developed 

for longitudinal analyses, we conducted three cross-sectional analyses at birth, age 7 and age 17. 

Note that in contrast to previous applications of the BMM in which any number of (correlated) 

environmental and/or genetic factors were assumed to result in increased odds of developing the disease of 

interest, in this context we take the approach that the dependent variable (Y) is maternal smoking, and that 

maternal smoking is associated with the set of “candidate” CpG sites; the independent variables (X).  

Thus we can fit one logistic model, and use this with the BMM approach to identify all the sites which are 

associated with smoking. From a causal perspective this is erroneous because of the directionality of the 

exposure-effect pathway—however, we are here primarily interested in associations rather than causation, 

to illustrate how the BMM might be used in epigenetic practice. Associations can be estimated even if the 

direction of causality is wrong—e.g., correlations (and their associated p-values) are unaffected by the 

direction of causality. This approach is analogous to that described in [37]. The alternative approach to the 

BMM would be to fit a linear regression model to each candidate CpG site, with maternal smoking as the 

exposure (as was done in [24]).  

3. Results 

After imputation, the imputed ARIES dataset of the 916 pairs used in these analyses included  

110 sustained smokers (Table 1). 110 sustained smokers during pregnancy (range in imputed sets 2–5 is  

98–113) corresponds to 12%, which is comparable to the 11.5% in the non-imputed set [24] and similar to 
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the population percentage reported previously for England [10]. Non-smoking mothers had, on average, 

higher education and higher social class than sustained smokers, were older on average, and were more likely 

to have smoking partners. Non-smoking mothers also drank alcohol more often on average, but had a higher 

percentage that stopped drinking after 18 weeks of gestation. Richmond et al. further describe [24] that, 

compared to the core ALSPAC sample, the ARIES offspring were more likely to be singletons, had a higher 

birth weight and had a longer gestation. The ARIES mothers were older at the time of delivery, had,  

on average, a higher education and were from a higher social class. They were also more likely to have drunk 

alcohol during pregnancy, but were less likely to have reported to have smoked in this period.  

Results of the methylation analyses using the BMM are shown in Table 2 for the first imputed dataset. 

The results for the remaining four imputed datasets are similar (online Supplementary Materials).  

Four of 28 CpG sites remain differentially methylated at birth in cord blood as a result of maternal smoking 

during pregnancy in 87%, 87%, 72% and 73% of samples, respectively (after adjustment for all other CpG 

sites and other confounding factors). One hypermethylated CpG site is located on the MYO1G gene 

(cg12803068) and three hypomethylated sites are located on the GFI1 gene (cg09935388, cg06338710, 

cg09662411). There are further indications of differential methylation of the cg05575921 site on the AHRR 

gene, cg14179389 also on GFI1 and the cg22549041 site located on the CYP1A1 gene, but these signals are 

less strong and detected in 68%, 51% and 59% of MCMC samples, respectively.  

The differential methylation of cg12803068 on the MYO1G gene as a result of sustained maternal 

smoking during pregnancy remains consistent throughout childhood and adolescence, while the associations 

with methylation of GFI1, and to a lesser extent CYP1A1 and AHRR, have either disappeared at age  

7 (cg05575921, cg 14179389, cg063387100 and cg09662411) or slowly reversed (cg09935388) from birth 

until 7 years of age and further from 7 until the end of adolescence; both in effect size and in probability of 

observing an effect in the MCMC samples. Cg22132788 (MYO1G) is not differentially methylated at birth, 

but weak evidence of hypomethylation as a result of sustained maternal smoking is present at ages 7 and 17. 

Similarly, weak evidence of hypomethylation of cg18092474 (CYP1A1) is shown at age 17 only. 

No associations between sustained smoking during pregnancy and DNA methylation were observed 

for KLF13, ATP9A, and CNTNAP2. 

Each models took around 15 hours to run on a 64 bit system with a3.10 GHz processor and 8 Gb 

RAM. Diagnostics indicate good convergence with MC errors for all CpG site parameters <5% of 

parameter standard deviation (range 0.4%–2.0%) (Figure 1). Trace plots suggested good mixing, 

acceptable posterior densities clearly showing prior distributions for the null and non-null distributions. 

Brooks-Gelman-Rubin diagnostic statistics were stable near 1 indicating good convergence of the two 

mcmc chains. Autocorrelation existed, but was significantly reduced after thinning. Results were similar 

for the other imputed datasets. Diagnostic plots are shown graphically for the posterior cord blood results 

of CpG site (cg12803068) in Figure 2; shown for illustration and selected because it was the CpG site 

affected at all ages. 

Sensitivity analysis indicated that prior choice of π (0.25 vs. 0.50) did not affect odds ratios or credible 

intervals, but did lead to increased probabilities for effect (Online Supplementary Material Table S1). 

As such, if, like in our analyses, the probability of effect (T) was used to signify effect, the choice of the 

prior for the Bernoulli distribution of T is important and should therefore be explicitly described.  
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Table 1. Demographic characteristics of imputed ARIES dataset 1. 

Characteristic 

ARIES Dataset 1 (Missing Data Imputed) ARIES Dataset (*) 

Sustained Smoker Non-Smokers Sustained 

Smoker 

Non-Smokers 

N % N % % % 

Sustained maternal smoking during 

pregnancy 

110 12.0 804 87.9 11.5 88.5 

Maternal education       

 CSE/vocational 37 33.6 114 14.2 33.0 13.9 

 O-level 46 41.8 257 32.0 40.9 32.7 

 A-level 18 16.4 249 31.0 18.2 30.4 

 Degree 9 8.2 184 22.9 8.0 23.1 

Maternal age       

 <25 years 32 29.1 58 7.2 30.8 7.6 

 25–30 40 36.4 313 38.9 37.4 39.2 

 >30 years 38 34.5 433 53.9 31.9 53.2 

Alcohol       

 Non-drinker 43 39.1 269 33.5 40.9 34.2 

 Drank before 18 weeks  

 gestation 

5 4.5 122 15.2 5.7 15.6 

Still drinking at 18 weeks of gestation 62 56.4 413 51.4 53.4 50.2 

Paternal smoking  83 75.5 177 22.0 79.1 21.4 

Household social class (manual labour) 38 34.5 72 9.1 35.4 8.8 

* N varies according to completeness of data on baseline characteristics; see Richmond et al [24]. 
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Figure 1. Monte Carlo (MC) errors for each CpG site’s model parameter (β1 to β28) as percentage of posterior parameter standard deviations; 

for cord blood imputed dataset 1 only. 
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Figure 2. Diagnostic plots: trace plot (A); posterior density plot (B); Brooks-Gelman-Rubin (BGR) statistic plot (C); and autocorrelation plots 

in the absence of thinning (D1) and for thinning = 2 (D2)—for cord blood imputed dataset 1 CpG site cg12803068.  
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Table 2. Results of the hierarchical Bayesian mixture model in cord blood, at age 7 and age 17 years for imputed dataset 1. 

CpG Site Chromosome Gene Region Position 

Cord blood Age 7 Years Age ~17 Years 

Prob. of Effect  

(T) 1 
OR 2 95% Cred. Limit 3 Prob. of Effect (T) OR 95% Cred. Limit Prob. of Effect (T) OR 95% Cred. Limit (T) 

cg05575921 5 AHRR 373 378 0.68 0.49 0.13–1.02 0.33 0.85 0.27–1.36 0.34 0.84 0.28–1.31 

cg22132788 7 MYO1G 45 002 486 0.37 1.26 0.83–4.16 0.53 1.57 0.95–5.80 0.55 1.61 0.97–5.85 

cg12803068 7 MYO1G 45 002 919 0.87 2.70 0.99–7.52 0.98 4.31 1.30–10.98 0.94 3.33 1.00–8.69 

cg09935388 1 GFI1 92 947 588 0.87 0.36 0.12–1.01 0.57 0.65 0.22–1.02 0.43 0.76 0.27–1.05 

cg14179389 1 GFI1 92 947 961 0.51 0.67 0.20–1.06 0.39 0.79 0.25–1.18 0.36 0.82 0.26–1.23 

cg18146737 1 GFI1 92 946 700 0.38 0.80 0.26–1.14 0.24 0.99 0.48–1.84 0.24 0.99 0.50–1.82 

cg05549655 15 CYP1A1 75 019 143 0.26 1.05 0.54–2.49 0.27 1.04 0.56–2.43 0.25 1.05 0.59–2.45 

cg06338710 1 GFI1 92 946 187 0.72 0.54 0.20–1.02 0.20 1.02 0.68–1.75 0.22 0.95 0.49–1.29 

cg12876356 1 GFI1 92 946 825 0.48 0.72 0.24–1.04 0.20 1.02 0.69–1.73 0.28 0.89 0.40–1.13 

cg25949550 7 CNTNAP2 145 814 306 0.25 0.98 0.45–1.84 0.25 0.98 0.45–1.89 0.26 0.97 0.44–1.86 

cg11902777 5 AHRR 3 68 843 0.25 0.99 0.46–1.92 0.26 0.98 0.46–1.95 0.25 0.99 0.47–1.94 

cg12101586 15 CYP1A1 75 019 203 0.48 1.47 0.94–5.20 0.41 1.33 0.88–4.48 0.33 1.17 0.76–3.45 

cg18316974 1 GFI1 92 947 035 0.22 0.98 0.51–1.68 0.25 0.96 0.42–1.72 0.24 0.97 0.45–1.69 

cg26146569 15 KLF13 31 637 592 0.40 0.77 0.24–1.13 0.30 0.88 0.32–1.35 0.24 1.03 0.60–2.19 

cg07339236 20 ATP9A 50 312 490 0.26 0.95 0.41–1.73 0.25 0.97 0.44–1.83 0.26 0.96 0.42–1.77 

cg09662411 1 GFI1 92 946 132 0.73 0.48 0.15–1.02 0.20 1.01 0.64–1.67 0.21 1.04 0.73–1.93 

cg18092474 15 CYP1A1 75 019 302 0.28 1.11 0.79–2.74 0.25 1.06 0.67–2.44 0.54 1.55 0.97–5.11 

cg04180046 7 MYO1G 45 002 736 0.33 1.18 0.76–3.49 0.34 1.20 0.77–3.79 0.42 1.32 0.85–4.36 

cg25189904 1 GNG12 68 299 493 0.41 0.76 0.23–1.16 0.34 0.85 0.28–1.32 0.24 0.99 0.49–1.87 

cg04598670 7 ENSG00000225718 68 697 651 0.28 0.90 0.36–1.34 0.26 0.94 0.40–1.51 0.24 0.99 0.51–1.76 

cg27629977 2 CTNNA2 80 531 633 0.25 1.03 0.56–2.29 0.26 1.01 0.50–2.11 0.25 0.99 0.47–1.97 

cg10835306 9 NOTCH1 139 396 760 0.33 0.85 0.31–1.21 0.27 1.07 0.64–2.50 0.25 0.93 0.41–1.40 

cg00483459 3 ALS2CL 46 735 782 0.34 0.85 0.28–1.29 0.24 1.01 0.53–2.07 0.27 1.08 0.63–2.70 

cg22549041 15 CYP1A1 75 019 251 0.59 1.69 0.97–5.77 0.39 1.28 0.87–4.06 0.32 1.16 0.77–3.28 

cg22937882 5 AHRR 4 05 774 0.29 1.12 0.71–3.06 0.26 0.95 0.40–1.65 0.25 0.99 0.48–1.89 

cg11196333 1 CHI3L1 203 154 370 0.49 0.69 0.21–1.07 0.28 1.08 0.67–2.67 0.29 1.12 0.73–2.98 

cg00624799 15 ZNF710 90 605 618 0.28 0.92 0.36–1.54 0.25 0.97 0.44–1.82 0.26 1.01 0.51–2.16 

cg00560284 12 SPATS2 49 783 222 0.27 0.95 0.40–1.70 0.25 0.99 0.48–1.94 0.25 1.00 0.48–1.99 

1 Probability of effect is the proportion of MCMC samples in which the BMM indicator value (T) indicated an association between sustained maternal smoking during 

pregnancy and differential methylation at the specific CpG site. Probability >50% was to determine association; 2 Odds Ratio; 3 95% Credible Interval. 
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4. Discussion 

We have shown that a Bayesian mixture model can be a useful statistical method to assess the effect of 

sustained maternal smoking during pregnancy on DNA methylation without the need of a further data 

reduction step to address correlated variables (after initial selection of 28 differentially methylated CpG 

sites); similar to its previously evaluated application for highly correlated data in the context of  

gene-environment interaction [32] and environmental exposure mixture studies [33].  

We replicated the findings in Richmond et al [24] and similarly identified CpG sites in the MYO1G 

and GFI1 genes to be hyper- and hypomethylated, respectively, as a result of sustained maternal smoking 

during pregnancy. These findings are also consistent with other previous publications indicating 

differential methylation between smokers and non-smokers [26,27,38]. This fits with biological 

evidence indicating that Myosin 1G (MYO1G) is involved in regulation of cell elasticity and associated 

with class 1 unconventional myosin expressed in hematopoietic cells, while growth factor independent 

1 transcription repressor, encoded by the GFI1 gene, plays a role in developmental disorders including 

hematopoiesis and oncogenesis. We further replicated, although the evidence from the BMM was less 

strong, effects on CYP1A1 methylation as well as for hypomethylation of the cg05575921 site on the 

AHRR gene: AHRR mediates dioxin toxicity and this particular CpG site confirms previous findings also 

showing DNA methylation as a result of maternal smoking in cord and neonatal blood [16]. CYP1A1 is 

involved in metabolism of polycylic aromatic hydrocarbons (PAHs) resulting from (e.g.,) tobacco 

smoking, and these are known to adversely influence lung cancer risk [39].  

We did not replicate the hits located on the KL13, ATP9A, and CNTNAP2 genes reported by Richmond 

et al. [24]. Recent data similarly did not show differential methylation of CpG sites on KL13 and ATP9A in 

Dutch children, but contrary to our findings did identify CNTNAP2 [38], while contrary to the BMM results 

ATP9A was also identified as a smoking responsive locus in a recent study in Norway [17]. 

Although the results of these analyses and those reported by Richmond et al. [24] largely overlap 

there are some differences, for which there are two likely explanations: either the hits that were not 

replicated using the BMM may have been false positive findings in the original analyses as a result of 

CpG site selection and correlations between sites, or the BMM results include several type II errors as a 

result of model specification or insufficient statistical power. The former is supported by results of a 

study in which BMM performance was evaluated using simulated datasets with comparable variable 

distributions and correlations to those of the epigenetic data analysed here, and which indicated that the 

occurrence of type I errors was minimal [33]. At the same time, the simulations showed that type II 

errors in the BMM cannot be excluded based on these analyses alone; replication in other studies in this 

respect will be important.  

Cellular heterogeneity between cord blood and whole blood is one limitation of the current analysis. 

Cell type proportions are different in these two tissue types and this change over time could account for 

changes in methylation observed over the same period. In ARIES the cell type proportions were not 

measured, so we were unable to directly account for this possibility. However, we used independent 

surrogate variable analysis to obtain components of variation which are likely to account for the changes 

in cell type proportions over time.  

Another limitation of these data is tissue specificity because, in epigenetic research, levels of 

methylation vary between tissue types. In the current study we have blood sample methylation but it 
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may be have been more informative had we been able to test the effect of smoking on methylation using 

other tissue types such as, for example, saliva or bronchial epithelium [40].  

Although we have demonstrated the benefits of using a BMM to analyse moderately to highly 

correlated epigenetic data, an important limitation of the use of this methodology is that, in contrast to 

conventional, frequentist methods, obtaining the results from 100,000 MCMC iterations can take quite 

a long time. A further issue is that the use of the mixture model results in skewed, non-Gaussian,  

model parameters and as a result Rubin’s rules for combination of the results of the five imputed datasets 

do not apply (this can also be incorporated in the model, but for the purpose of these analyses we chose 

to present the results individually for each set) [41]. Thirdly, it has been shown that the ratios of the 

variances for the priors should not be too large since this may result in poor convergence of the Markov 

chain as a result of the sampler getting “stuck” at one of the T states [42]. As indicated by our model 

diagnostics our a priori choice for relatively uninformative prior for non-null effects (OR range 0.2–5) 

compared to that for null effects (OR range 0.98–1.02) resulted in good convergence, but in those 

situations where this is not the case more informative priors with smaller variance may be a solution.  

And finally, in these analyses we only included the 28 CpG sites with differential methylation. 

Preferably, no a priori variable selection should be conducted, but the performance of this BMM has 

not yet been evaluated beyond several hundreds of included variables [32,33] falling short of the over 

485,000 key CpG sites on the Illumina Infinium© HumanMethylation450 (HM450) BeadChip. 

We could have extended the BMM to include methylation from the CpG sites at all the three 

timepoints in once model, rather than three separate models. However, this might have been complicated 

by the fact that the priors for the same CpG site would need to be allowed to be correlated. Alternative 

statistical methods to the BMM could have been used to model the longitudinal nature of these data, 

such as for example generalized linear mixed models (GLMM) or generalized estimation equations 

(GEE). The GLMM and GEE models can model DNA methylation across three time points, allowing 

changes in DNA methylation with time to be estimated. However, since there are 28 CpG sites,  

this would require 28 different models, leading to issues of power and false positive rates.  

The ARIES data are unique in having three serial measures of DNA methylation across childhood 

and adolescence on 1018 children. Together with a plethora of information on both mothers and children 

contained in the ALSPAC cohort, the data used for analysis are a major strength of this article.  

Future work could include the application of the BMM approach to other exposures or sources of DNA 

methylation variation within this data series as well as in other cohort studies. 

Further improvements of the BMM would lie in the addition of another hierarchical level that allows 

for correlation of methylation of CpG sites within CpG islands [43] or located within the same genes,  

as well as further expansion of this framework for longitudinal analyses. In these analyses we used three 

cross-sectional models to compare methylation patterns at birth, age 7 and in adolescence, but with better 

characterization of the dynamic elements of the human methylome [44], longitudinal analyses will help 

to better elucidate persistent and reversible effects of (environmental) exposures as well as critical 

periods of effect [45].  

This study demonstrated that the use of the BMM can be a useful addition to the statistical 

methodologies to analyse epigenetic datasets. Here we showed that the identification of specific 

differentially methylated CpG sites related to sustained maternal smoking during pregnancy was 

comparable to those identified in Richmond et al. [24], but did not require a second pre-analysis data 
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reduction step in which potentially important sites could be missed because they were not included. 

Moreover, the mixture model applied by Richmond et al. indicated some possibly false positive findings, 

most notably those for the KL13 and ATP9A genes, which is in line with findings elsewhere [38]. 

However, although the BMM greatly reduced the occurrence of type I errors, because type II errors 

cannot be excluded we recommend using this methodology in addition to other statistical methods rather 

than using it as a replacement.  

5. Conclusions  

These analyses demonstrated the benefits of using the BMM for analyses of CpG sites deemed to be 

epigenome-wide significant in downstream analyses in a Bayesian context rather than (arbitrarily) 

focusing on the top CpG sites in each gene region which may miss other interesting CpG sites,  

and as such this method may be useful for prioritising CpG sites in other large-scale EWAS studies. 
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