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To capitalize on the vast potential of patient genetic information to aid in assuring drug safety, a substantial effort is needed in
both the training of healthcare professionals and the operational enablement of clinical environments. Our research aims to satisfy
these needs through the development of a drug safety assurance information system (GeneScription) based on clinical genotyping
that utilizes patient-specific genetic information to predict and prevent adverse drug responses. In this paper, we present the
motivations for this work, the algorithms at the heart of GeneScription, and a discussion of our system and its uses. We also
describe our efforts to validate GeneScription through its evaluation by practicing pharmacists and pharmacy professors and its
repeated use in training pharmacists. The positive assessment of the GeneScription software tool by these domain experts provides
strong validation of the importance, accuracy, and effectiveness of GeneScription.

1. Introduction

The utilization of a clinical patient’s genetic data to aid dia-
gnostic and prognostic healthcare represents the ultimate
achievement of fifty years of genomic research. However,
some operational, ethical, and educational challenges hinder
the implementation of a societal-scale clinical genotyping
system even though the technologies to carry out clinical
genotyping do exist. To overcome these hurdles, we have
developed a data management system (GeneScription) that
utilizes patient-specific genotyping to predict and prevent
adverse drug responses and thus supports the prescription
drug process from physician to pharmacist to consumer. The
system uses specific allelic variables associated with drug
metabolism, as well as other common laboratory tests, to
identify patients that are predisposed to an adverse drug
reaction, and make recommendations as to the best course of
action for a particular drug and patient. The GeneScription
system represents the first software system of its kind in
that it supports a key component of healthcare (prescription
drugs) that is not ethically constrained by the prediction

and prognosis of serious disease through patient-specific
DNA variance and is therefore acceptable to the healthcare
consumer.

Moreover, since most practicing physicians and phar-
macists were trained long before the utilization of human
genomic information was seriously considered as a compo-
nent of healthcare, educating these healthcare professionals
is paramount to the future clinical genotyping adoption.
To address this need, GeneScription also provides in depth
training for the user (physician or pharmacist) to better
understand the link between DNA (genes), drug metabolism
(enzymes), and the risk of adverse drug responses within
prescription medicine. The system includes (1) a population
of mock patients having in many cases a specific genetic
predisposition for an adverse drug response and (2) all
drugs approved by the United States Food and Drug
Administration.

In the following, we first provide motivation for the
development of the GeneScription system and describe
others’ related work. We then proceed to an explanation
of the algorithms upon which we base GeneScription and
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a description of the results related to our development
efforts. We next have a discussion of our research before
concluding with a summary of this paper and an exploration
of future work.

2. Motivation

The Institute of Medicine estimates that 7,000 deaths occur
annually due to adverse drug reactions (ADRs) [1]. Other
studies have suggested that in the hospital setting 6.7% or
over 2 million hospitalized patients experience ADRs with
over 100,000 of those patients succumbing to ADRs [2],
making ADRs the 4th leading cause of death in the United
States. In addition, data suggest that serious adverse drug
reaction events have doubled in the last decade [3]. Based on
this evidence, ADRs are one of today’s leading, preventable
public health issues, and the number of ADR events will
likely continue to grow in the future.

ADRs associated with the therapeutic treatment of
disease in many cases are coupled with elevations in plasma
drug concentrations. Alterations in drug metabolism directly
influence plasma concentrations. For example, CYP2D6 and
CYP2C9 mutations have been associated with elevations
in concentrations in paroxetine [4] and warfarin [5]
levels, respectively. Therefore, increasing the accessibility
and utility of genomic screening for CYP polymorphisms
(drug metabolism enzymes) will reduce ADRs. In fact,
this utility is already widely recognized in that some drug
labels now provide explicit directions that the drug’s use is
contraindicated in cases involving the presence of variant
alleles, such as thioridazine and CYP2D6 poor metabolizers
[6].

In addition, response to drug therapy varies markedly
across therapeutic areas. For example, the estimated response
rate to the selective serotonin reuptake inhibitors (SSRIs)
used in the treatment of depression is 60% [7]. The resistance
to the antiplatelet drug clopidogrel has been estimated to
be up to 30% [8]. Clopidogrel is a prodrug that requires
CYP2C19 bioactivation [9]. Pharmacogenomic screening
can both reduce the rate of ADRs and also enhance overall
therapeutic response to drug therapy by identifying patients
deficient in prodrug bioactivation processes.

Despite the clear benefits, many factors have contributed
to obstacles that limit the translation of genomic data to
routine use in patient care. Concerns over privacy, security,
and ethical issues are just a few of the issues that have
limited this translation from “bench to bedside.” To address
these concerns in the GeneScription system, we target
known single nucleotide polymorphisms (SNPs) in P450
metabolizing enzymes, and GeneScription stores only the
relevant information for these SNPs; we do not collect any
other information related to genomic anomalies.

As we discussed in Section 1, another limiting factor
is related to education. It is crucial to educate healthcare
professionals within the realm of clinical genomics to
facilitate the future of this powerful approach to improve
medical outcomes [10–12]; this too is being addressed by the
GeneScription project.

3. Related Work

Having established the significance of our research, we now
turn to a discussion of related work. In this section, we
briefly address system-related considerations as well as the
state-of-the-art with regard to current systems similar to
GeneScription.

3.1. System Considerations. The implementation of a
societal-scale personalized medicine system—one of the
ultimate goals of the application of pharmacogenomics
to current healthcare practices—must first satisfy several
preexisting conditions and requirements before widespread
adoption is possible. As provided in [12], gaps exist in the
several areas that must be addressed before a societal-scale
personalized medicine system; these areas include the
availability of cost-effective high-throughput DNA analysis
technology, the establishment of point-of-care utilization of
genomics, and the establishment of translational research
linkages between patient genotype data and healthcare. Each
of these aspects has an effect on the characteristics that a
societal-scale personalized medicine system will exhibit; we
refer interested readers to [12].

3.2. Current Systems. The application of technology to
healthcare has resulted in the development of clinical deci-
sion support systems (CDSS), many of which are currently
in use today. Such systems have been shown to prevent
errors, improve quality of care, reduce costs, and save
personnel time. The effectiveness of such systems has been
quantified, with one study of nearly 100 implementations
citing an increase in performance of practitioners in 64%
of the instances, an increase in performance in 40% of
diagnostic systems, 76% of remainder systems, 62% of
disease management systems, and 66% of drug-dosing or
prescribing systems [13]. However, despite this and other
studies implicating the potential of CDSSs to improve the
quality of care, such systems have not gained widespread
use outside of large academic medical centers and integrated
delivery systems [14]. An extensive review of the known
CDSSs is beyond the scope of this paper; as described in
[15], notable systems include the Regenstrief Medical Record
System [16], Epic Systems [17], McKesson Horizon Expert
Orders [18], Cerner Millennium [19], and VistA from the
United States Veterans Administration [20]. In addition,
a number of standards-based approaches exist, including
Arden Syntax [21] and Guideline Interchange Format (GLIF)
[22], as do service models such as the Shareable Active
Guideline Environment (SAGE) [23] and the System for
Evidence-Based Advice through Simultaneous Transaction
with an Intelligent Agent across a Network (SEBASTIAN)
[24]. None of the known clinical decision support systems
currently integrate drug safety assurance with clinical geno-
typing in the manner in which GeneScription does.

4. Methods

We now focus on the methods that we use in the develop-
ment of the GeneScription software and present the scientific
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basis and algorithmic processes that we utilize in GeneScrip-
tion. The approach that we employ is largely a result of first
applying a categorization to the aspects of pharmacotherapy
that are most relevant to a particular patient. Then, within
those categories, we leverage the most precise known and rel-
evant pharmacokinetic (PK) equations to provide guidance
to the user.

For prodrug conversion conflicts, if data is available that
quantifies the extent of conversion to the parent compound,
a multiplier is calculated and used in dosage computation.
This multiplier is typically determined from either the
average dose needed by a patient harboring the variant allele
or the extent to which enzymatic activity is altered. For
example, as given by Marinaki et al. [25], for the conversion
of the prodrug azathioprine to the active metabolite 6-
mercaptopurine. Otherwise, such as in the case of patients
harboring CYP2D6 variant alleles and the conversion from
codeine to morphine, the system cannot yet reliably provide
accurate pharmacokinetic calculations [26]. In this case, the
user is alerted that conversion from the prodrug to the target
drug may be altered and the target drug’s mechanism of
action as a result could be affected.

If a variant results in the production of a null enzyme,
this is treated in a similar way. If information exists about the
extent to which metabolism is affected, then that information
is used to calculate an appropriate dosage. This can be
accomplished using a multiplier as described previously
for prodrug conversion, such as in the calculation of an
appropriate clopidogrel dosage in patients harboring the
CYP2C19∗2 allele [27]. Otherwise, the user is warned of the
risk of altered metabolism as this could result in drug toxicity,
or in the case of a prodrug, the possibility that normal dosing
may not result in therapeutic blood plasma levels due to
decreased bioconversion.

In the case that the patient harbors variants that do
not produce null enzymes and the drug prescribed is not a
prodrug, we employ the most accurate in vivo quantification
of the influence of metabolic variants present in the patient’s
genotyping test results. From a high-level, this can be
described as the dynamic composition of a personalized
pharmacogenomic algorithm [28]. Sequence variation at the
allelic level as defined by Den Dunnen and Antonarakis [29]
can be specified at the nucleotide or amino acid sequence
(protein) levels. For example, in the case of warfarin
metabolism and the variant CYP2C9∗2, there exists clinical
metabolic data at the suballele level (∗2A, ∗2B, and ∗2C) that
is used in lieu of more general CYP2C9∗2 data [30].

If no data is available at the allelic level, group studies
of patients exhibiting variant metabolic function are then
used. Depending on the variant, these are typically classified
as “poor metabolizer” (PM) or “ultra metabolizer” (UM)
studies. These studies typically either provide multipliers
that describe the average changes noted in peak plasma
concentrations, quantify the necessary differences in dosage,
or may provide alternative values for pharmacokinetic
calculations, such as decreased clearance values or increased
half-life [31]. If no match is made, then the system uses
a 33% or 66% increase in drug half-life and expected
peak plasma concentration to project and estimate drug

metabolism. That is, if the patient harbors a single nucleotide
polymorphism (SNP) and is heterozygotic (one variant
and one normal/wild-type copy is present), the 33% rule
is applied; if the patient is homozygotic (both copies are
variants), then the 66% rule is applied.

In every appropriate situation, the system visually alerts
the user to the presence of variant alleles. In Algorithms 1, 2,
and 3, we present the GeneDrugMatch, Graph, and Create-
DoseCurve algorithms that implement the aforementioned
approach. Of particular note are (1) and (2) that we use in
calculating the peak plasma concentration, as found in [31].
In (1), we base our calculation on a single compartment
model and a first-order pharmacokinetic process [31]; as
for (2), we use the equation therein in our calculation of
the peak plasma concentration found in (1). A few addi-
tional comments are necessary. Specifically, the peak plasma
concentration (C0

p or Cmax) is calculated by extrapolation to
t = 0. However, as computation is not possible using t = 0,
we use t = 0.00000001 instead. Secondly, after calculating
the peak plasma concentration, it is plotted according to the
provided value for the drug’s time to peak concentration.

Calculation of drug plasma concentration

Cp = F ×D

Vd ×W
×
(
e−kt

)
, (1)

where Cp = drug plasma concentration (µg/mL), F =
bioavailability (%), D = drug dosage (mg), Vd = volume of
distribution (L/g), W = patient weight (kg), k = rate constant
for elimination (hr−1), and t = time (hr).

Fraction of drug removed from central compartment per
unit of time

k = 0.693
t1/2

, (2)

where t1/2 = drug half-life (hr).
In addition, we refer to a series of tables and data

structures in our algorithms, and we provide the abbreviated
schemas for the tables and the components of the data
structures in Figures 1 and 2, respectively. GeneScription
contains data for all drugs approved by the Food and Drug
Administration [32] and currently uses fictitious patients
to mitigate privacy concerns. In addition, GeneScription
includes hyperlinks to the studies that determine the multi-
plier and other attribute values employed by GeneScription.
We collect and validate the study data that we place in
GeneScription by leveraging our project’s domain experts to
evaluate and approve the use of said data; we elaborate on
data collection and validation later in this paper.

Note that Figure 1 provides only a subset of the tables’
columns; moreover, the tables in Figure 1 are a small
subset of the tables found in the implementation of the
GeneScription system. In these tables and records, the data
type for a column is a string unless marked with an
∗ denoting an integer data type serving as an identifier
or a ∧ denoting a float data type. Additionally, please
notice that the DrugInteraction record to which we refer in
the GeneDrugMatch algorithm (Algorithm 1) replicates the
structure of the DrugInteraction table in Figure 1, and hence
we do not provide this repetitive information in Figure 2.
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DrugInteraction

Drug∗

GenericName

Form

Delivery

DrugMetabolite

HalfLife∧

PeakTime∧

VolDistribution∧

Bioavailability∧

Effective concentration∧

Toxic concentration∧

PoorMetabolizerMultiplier∧

(a)

DrugEnzyme

DrugMultiplier

Drug∗

Allele∗

Allele2∗

Allele

Allele∗

AlleleEffectInvivo

AlleleEffectInvitro

Drug∗

Enzyme∗

Multiplier∧

(b)

Figure 1: Tables (∗ denotes an identifier. ∧ denotes float).

Drug

Drug∗

Patient

Patient∗

GenericName Form Delivery Enzyme∗

Allele∗ Allele2∗

Dose∧

Weight∧

Figure 2: Data structures (∗ denotes an identifier. ∧ denotes float.).

As for software development methods, we used a stan-
dard lifecycle and accepted best practices such as version
control and code reviews. In particular, given the always
evolving nature of pharmacogenomics, we needed agile
development methods that enabled a feedback loop in
which the domain experts provided frequent feedback to the
development team that the development team then in turn
incorporated into the software.

Subsequent to the inception of the concept, we used
rigorous requirements discovery/prototyping cycles that
enabled us to quickly collect, verify, and refine requirements
with our team’s domain expertise. These cycles were short
and frequent, and because of our approach, it was more
important to initially define and collect requirements than
to optimize at this point in the development process. Never-
theless, scalability and optimization were not ignored at this
juncture; instead, final decisions on issues affecting scalabil-
ity and optimization were postponed as long as possible.

In addition, prototyping did require us to develop
components that were later not used; this allowed us to
speed requirements discovery but did not directly contribute
to operational software. However, since it was paramount
that we quickly integrate feedback from our team’s domain
experts and thereby tighten our cycles, we accepted this
tradeoff. As for development tools, Visual Studio.NET

Framework 2.0 and Microsoft Access were chosen for
the prototype as they provided the quickest avenue to a
functional prototype using technology readily available.

The discovered requirements were substantial and
included typical needs such the ability to store, relate, and
allow the user to interact with and display large amounts of
information containing complex relationships in a way that
does not burden the user or overload them with information
that is not needed. In addition, we uncovered requirements
that are very particular to the area, such as an understanding
of the factors that determine the relationship between the
prescribed drug dosage and drug effect.

After requirements discovery and prototyping, we pro-
ceeded to validate the requirements by engaging focus
groups that consisted of fifth and sixth year pharmacy
school students, pharmacy school educators, and practicing
pharmacists. The results from these focus groups were
then incorporated into the final, nearly “production-ready”
prototype, and this final prototype served as the input
into our efforts in the development of an enterprise-scale
system. The resulting enterprise-scale system serves as the
basis for both the educational system as well as the societal-
scale operational system. We developed the enterprise-scale
version of GeneScription using Microsoft Visual Studio 2008
and Expression Blend 3, and it is a Silverlight 3 application
that uses Entity Framework and LINQ,.NET RIA services,
Domain services, and the Windows Communication Foun-
dation (WCF) on the client side as well as ASP.NET 3.5,
Internet Information Services 7, SQL Server 2008, and
Windows Server 2008 Datacenter Edition on the server side.

5. Results

We now turn from a description of our methods to an
examination of our results. Since the utilization of clinical
genotyping for the purposes of drug safety assurance is not
routinely practiced in healthcare for reasons that include
the current absence of cost-effective high-throughput DNA
analysis technology (as mentioned in the Section 3), the
validation of the utility of the GeneScription software in
a clinical environment is currently not feasible. However,
the software has been evaluated by practicing pharmacists
and pharmacy professors, and repeatedly used for training
pharmacists in the drug dispensing laboratory in the School
of Pharmacy at Ohio Northern University (ONU). Results
from a pre- and postsurvey of participants in the clinical lab-
oratory training environment at ONU where GeneScription
was utilized for training in personalized medicine showed
that all participants “strongly agreed” that genomic data
can be used to determine the optimal dose of a drug and
demonstrated a significantly increased willingness to submit
DNA data for genetic profiling as well as an increased
understanding of the manner in which DNA analysis is
completed. Since these participants have expert knowledge in
pharmacology and pharmaceutics, their positive assessment
of this software tool provides strong validation in the absence
of real-world clinical healthcare opportunities for software
assessment.
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Input: patient record (P) and drug record (D) for user-selected drug
Output: user messages, calculated dose-response curves
(1) DI← new DrugInteraction record (Figure 1)
(2) Mult, Dec, Inc← 0
(3) if no row exists in DrugEnzyme (DE) table where DE.Enzyme = D.Enzyme & DE.Drug = D.Drug then
(4) output “No Interaction Detected”
(5) else
(6) DI← row from DrugInteraction table (DIT) where DIT.GenericName = D.GenericName & DIT.Form =

D.Form & DIT.Delivery = D.Delivery
(7) if DI.DrugMetabolite is not null then
(8) output “ProDrug Interaction Detected”
(9) else
(10) output “Interaction Detected”
(11) Mult←Multiplier from DrugMultiplier (DM) where DM.Allele1 = P.Allele1 & DM.Allele2 = P.Allele2 &

DM.Drug = D.Drug {null if no match}
(12) if Mult is not null then
(13) Graph(DI, P.Weight, D.Dose, Mult)
(14) else if DI.PoorMetabolizerMultiplier is not null then
(15) Mult← DI.PoorMetabolizerMultiplier
(16) Graph(DI, P.Weight, D.Dose, Mult)
(17) else
(18) for all alleles in Allele (A) that match patient’s alleles (P.Allele or P.Allele2) do
(19) if A.AlleleEffectInvivo = ↑then
(20) Inc← Inc + 1
(21) else if A.AlleleEffectInvivo = ↓then
(22) Dec← Dec + 1
(23) end if
(24) end for
(25) if Inc ≥ 1 or Dec ≥ 1 then
(26) Mult← 1 + (Inc ∗ 0.33) − (Dec ∗ 0.33)
(27) Graph(DI, P.Weight, D.Dose, Mult)
(28) else
(29) output “Not Enough Information to Graph”
(30) end if
(31) end if
(32) end if
(33) end if

Algorithm 1: GeneDrugMatch algorithm.

Input: drug interaction record (DI), patient’s weight (Weight), drug dose (Dose), multiplier (Mult)
Output: normal and selected patient dose-response curves, minimum effective and toxic concentration lines
(1) Create selected patient dose-response curve by calling CreateDoseCurve(DI, Weight, Dose, Mult)
(2) Create normal patient dose-response curve by calling CreateDoseCurve(DI, Weight, Dose, 1)
(3) Create minimum effective concentration line by using DI.EffectiveConcentration as Y coordinate
(4) Create minimum toxic concentration line by using DI.ToxicConcentration as Y coordinate
(5) return curves and lines

Algorithm 2: Graph algorithm.

In Figure 3, we illustrate a few important aspects of the
enterprise-scale version of the GeneScription system, which
is available in its entirety at http://www.genescription.com/.
Before arriving at the information presented in Figure 3,
the user would have selected a patient and then a drug,
and if warranted by the patient’s genetic profile in concert
with the selected drug, GeneScription would then detect an
interaction and warn the user. Next, the user would have

the opportunity to view the current dose curve and select an
alternate dose. After selecting an alternative, the user would
then see the dose curve that is associated with the alternate
dose. Figure 3 depicts the result of this step and includes
a user-selected dosing alternative (in the figure, 6 mg), the
“normal” (i.e., a patient not harboring a variant allele) and
selected patient dose curves, and the minimum effective
(denoted as MEC in the figure) and toxic (denoted as MTC

http://www.genescription.com/
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Input: drug interaction record (DI), patient’s weight (Weight), drug dose (Dose), multiplier (Mult)
Output: a 2-dimensional curve
(1) k←.693/DI.Halflife
(2) Calculate peak plasma concentration (PPC) using Dose, DI.Bioavailibility, DI.VolDistribution, Weight, k (1)
(3) if Mult /= 1 then
(4) PPC← PPC ×Mult
(5) DI.Halflife← DI.Halflife ×Mult
(6) end if
(7) Plot 1st part of curve using DI.PeakTime, PPC (Table 1)
(8) if Mult ≥ 1 then
(9) Halflife5X ← last X + (DI.Halflife × 10)
(10) else
(11) Halflife5X ← last X + ((DI.Halflife × 10)/Mult)
(12) end if
(13) while (X + (DrugInteraction.Halflife/5)) < Halflife5X do
(14) X ←X + (DrugInteraction.Halflife/5); Y ←Y× 0.9
(15) Add (X,Y) to curve
(16) end while
(17) return 2-dimensional curve

Algorithm 3: CreateDoseCurve algorithm (X and Y refer to coordinates in curve).

Table 1: Points in first part of dose curve.

Sequence X Y

1 .05 PT .005 PPC

2 .1 PT .12 PPC

3 .15 PT .23 PPC

4 .2 PT .36 PPC

5 .25 PT .50 PPC

6 .3 PT .66 PPC

7 .35 PT .75 PPC

8 .4 PT .82 PPC

9 .45 PT .87 PPC

10 .5 PT .90 PPC

11 .55 PT .92 PPC

12 .6 PT .94 PPC

13 .65 PT .96 PPC

14 .70 PT .97 PPC

15 .75 PT .98 PPC

16 .80 PT .99 PPC

17 .85 PT .993 PPC

18 .90 PT .996 PPC

19 .95 PT .998 PPC

20 1.0 PT 1.0 PPC

21 1.05 PT .998 PPC

PT = % of peak time
PPC = % of peak plasma concentration.

in the figure) concentrations. Of primary importance in
the alternative, normal, and selected patient curves are the
peak plasma concentrations denoted by the respective curves’
highest Y coordinates or “peaks.” Note that in the alternative
and normal cases, their peaks sit below the minimum toxic
concentration level while the selected patient’s peak stands

well above the minimum toxic concentration level; this is
the condition that would have triggered the warning to the
user. Although not shown in Figure 3, GeneScription would
also present (1) the patient’s clinical (such as weight) and
genotypic data and (2) the drug’s pharmacokinetic data
including links to pertinent data on PharmGKB [33].

6. Discussion

Having reported on our construction of the GeneScription
system, it is important to reiterate that GeneScription is
based on a “hierarchical” approach in that for each case
(i.e., each patient and drug combination under scrutiny),
we apply the most selective method in our hierarchy for
determining the extent of the “drug-gene” interaction and
only use a less selective method if a more selective one
is not appropriate. In essence, GeneScription evolves as
the body of knowledge concerning SNPs evolves. In fact,
new research emerged during the course of our imple-
mentation efforts, and GeneScription quickly incorporated
this new knowledge after careful vetting by our team of
experts.

In addition to the need to adapt rapidly to an ever evolv-
ing body of knowledge, the GeneScription system must deal
with a host of nontechnical considerations if it is to achieve
the widespread adoption to which it aspires. We mentioned
some of these considerations in Section 3, and in this
section, we elaborate briefly on a few of these considerations,
beginning with the ethics that surround the use of clinical
genotyping in drug safety assurance. The ethical concerns
to genotyping in the clinic, which are also applicable to
electronic health records in general, include privacy and
security. The benefits of incorporating genotyping (genetic
information) in therapeutics and medicine are questioned
when the risk of “information abuse” is considered. For
example, a patient may be unwilling to utilize the benefits of



ISRN Bioinformatics 7

Plasma drug concentration versus time
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Figure 3: Dose curves with minimum effective and toxic concentrations.

genotyping if they fear that their employer and/or insurance
provider can utilize the same information to (accurately or
inaccurately) predict the patient’s future health status. This
dilemma involves both societal and genetic components.
At the genetic level, the validity of extrapolative health
assessment based solely on genotypic data has not been
broadly established and is limited to a few known genetic
diseases. Yet, it should be noted that the risk of adverse drug
response based on known SNPs in drug metabolism enzymes
has been established [12], and represents a benefit of clinical
genotyping that could be realized in the short-term. At the
societal level, studies such as [34, 35] indicate that the public
has concerns related to the capacity of clinical genotyping
to possibly introduce racial or class inequalities in access
to treatment. For a fuller treatment of the ethical concerns
surrounding clinical genotyping, please review [36] in [37].

Beyond ethical concerns, the education of current health-
care professionals and patients in genomics and genetics
is essential for wide adoption of clinical genotyping in
drug safety assurance. As with the application of any new
technology, especially those affecting such a critical service
as healthcare, in an actual commercial application there
will be hesitation toward initial acceptance. Success of
the GeneScription system rests firmly on the availability
of information, training, and education for all potential
stakeholders. Patients need to understand the manner in
which we use their genomic data, and as this system
requires the input of data inherently of a personal nature,
patients must trust the system. As we discussed earlier,
in the use of genomic data as applied to drug safety,
the indication that a patient would be predisposed to
an adverse drug effect does not implicate an association
with other health risks. This creates a situation where all
interested parties benefit from this knowledge and reduces
the level of understanding and education needed to make

informed decisions [12]. Hence, the specific application of
clinical genotyping toward drug safety represents an optimal
environment for initial consideration and implementation of
personalized medicine. Before the advent of clinical geno-
typing, numerous studies indicate that the close involvement
of the patient in drug therapy can greatly affect the success
of the outcome ([38–40] among many). Ultimately, this
must be repeated in the context of clinical genotyping for
drug safety assurance to enable the degree of adoption
warranted by the promise of the GeneScription system.
GeneScription, though, is in a unique position in that it not
only functions as an operational system but also is intended
to assist stakeholders in understanding the application of
clinical genotyping to drug safety assurance, and hence the
GeneScription system can play an extremely active role in its
own acceptance.

Another obstacle relates to data collection and validation
as noted in the previous section. Lack of consensus on how
best to manage patients with SNPs altering drug metabolism
or drug targets further hinders the adaptation of clinical
genotyping in the everyday practice of medicine. We propose
the formation of the Pharmacogenetic National Committee
(PNC) on the use of genetic information for the pharmaco-
logic management of disease which would meet annually to
establish pharmacogenetic dosing guidelines. A critical mass
of information accumulated on pharmacogenetic dosing has
generated the need for consensus dosing guidelines. The
formation of the PNC is predicated on (1) the need for a
clear and concise guideline that would be useful to clinicians,
(2) the publication of numerous observational studies and
clinical trials relating to pharmacogenetic dosing, and (3) the
clear recognition that pharmacogenetic dosing is not being
utilized to its maximum potential. Systems like GeneScrip-
tion will assist in building the consensus needed to make clin-
ical genotyping a major component of everyday patient care.
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7. Conclusion

In this paper, we provided motivation for the development of
the GeneScription system and discussed others’ related work,
including an overview of related clinical decision support
systems. We also explained in detail the algorithms that
are at the core of the GeneScription system and described
our efforts throughout the implementation process. We then
reported our results from the evaluation of GeneScription
by practicing pharmacists and pharmacy professors and the
feedback provided by the repeated use of GeneScription for
training pharmacists in the drug dispensing laboratory in the
School of Pharmacy at Ohio Northern University. Addition-
ally, we included a discussion of aspects of GeneScription
that are pertinent to its successful use and adoption; this sec-
tion contained details concerning the ethical and educational
considerations related to GeneScription’s adoption.

GeneScription continues to evolve to meet the accuracy
requirements dictated by the ever changing landscape of
SNP research. We are also in the process of extending
GeneScription to mobile device platforms such as the Apple
iPhone and developing some additional education tools
to assist in advancing the adoption of GeneScription in
particular and more generally clinical genotyping for drug
safety assurance.
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