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expression in mice are more closely associated
with the subsequent osteogenic response than the peak
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Abstract

Summary Osteocyte sclerostin is regulated by loading and
disuse in mouse tibiae but is more closely related to subsequent
local osteogenesis than the peak strains engendered.
Introduction The purpose of this study was to assess the
relationship between loading-related change in osteocyte
sclerostin expression, local strain magnitude, and local bone
modeling/remodeling.

Methods The right tibiae of 19-week-old female C57BL/6
mice were subjected to non-invasive, dynamic axial loading
and/or to sciatic neurectomy-induced disuse. The sclerostin
status of osteocytes was evaluated immunohistochemically,
changes in bone mass by micro-computed tomography, new
bone formation by histomorphometry, and loading-induced
strain by strain gauges and finite element analysis.

Results In cortical bone of the tibial shaft, loading
engendered strains of similar peak magnitude proximally
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and distally. Proximally, sclerostin-positive osteocytes
decreased and new bone formation increased. Distally,
there was neither decrease in sclerostin-positive osteocytes
nor increased osteogenesis. In trabecular bone of the
proximal secondary spongiosa, loading decreased
sclerostin-positive osteocytes and increased bone volume.
Neither occurred in the primary spongiosa. Disuse in-
creased sclerostin-positive osteocytes and decreased bone
volume at all four sites. Loading reversed this sclerostin
upregulation to a level below baseline in the proximal
cortex and secondary spongiosa.

Conclusion Loading-related sclerostin downregulation in
osteocytes of the mouse tibia is associated preferentially
with regions where new bone formation is stimulated rather
than where high peak strains are engendered. The mecha-
nisms involved remain unclear, but could relate to peak
surface strains not accurately reflecting the strain-related
osteogenic stimulus or that sclerostin regulation occurs after
sufficient signal processing to distinguish between local
osteogenic and non-osteogenic responses.

Keywords Disuse - Finite element analysis - Mechanical
loading - Mechanical strain - Osteocyte - Sclerostin

Introduction

Habitual loading has a profound influence on bone mass
and architecture mediated by the effects on resident bone
cells of the dynamic changes in local mechanical strain
engendered [1]. In general, high or unusually distributed
strains stimulate increases in new bone formation, and thus
a more robust structure, whereas low strains, as seen in
disuse, are associated with bone resorption and a weaker
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one. The high incidence of fragility fractures in postmen-
opausal women suggests a failure of this natural regulatory
process since continued functional loading is accompanied
by loss of bone tissue and an increase in bone fragility.

The recent identification of sclerostin as a molecule
preferentially secreted by osteocytes [2—4] that appears to
be regulated by bone’s mechanical environment [5—11] has
attracted considerable interest, particularly because
sclerostin-neutralizing antibodies engender a prolonged
osteogenic response [12, 13]. The mechanism by which
mechanical strain could exert its effect through sclerostin is
envisaged to be by inhibition of the Wnt-signaling pathway
[14-16]. Exposure to mechanical strain, by suppressing
sclerostin production, would increase the osteogenic effect
of the Wnt pathway. This is consistent with the situation in
genetically modified mice where deficiency in functional
sclerostin expression is linked to increased bone formation
and bone mass [8, 17], as it is in humans with sclerosteosis
[18, 19] or van Buchem disease [20, 21]. Polymorphic
variation in the SOST locus coding for sclerostin has also
been shown to contribute to the genetic regulation of areal
bone mineral density and fracture risk [22]. In patients with
hip fracture, sclerostin-positive osteocyte staining appears
to increase more sharply with osteonal maturation than in
non-fracture controls [23].

In the present study, we assessed whether sclerostin
regulation in osteocytes is directly linked to local changes
in the magnitude of peak strains engendered by mechanical
loading. To do this, we used the mouse unilateral tibia axial
loading model [24, 25] and measured loading-related
changes in osteocyte sclerostin expression in both cortical
and trabecular bone. These changes were then compared to
the local strains engendered and the subsequent local bone
modeling/remodeling. Our data suggest that loading-related
changes in osteocyte sclerostin expression are more closely
associated with the subsequent osteogenic response than the
peak strains engendered.

Materials and methods
Animals

Virgin, female C57BL/6 mice at 7-8 weeks of age were
purchased from Charles River Laboratories, Inc. (Margate,
UK) and group-housed in sterilized polypropylene cages
with free access to water and a maintenance diet containing
0.73% calcium, 0.52% phosphorus, and 3.5 [U/g vitamin D
(RM1; Special Diet Services Ltd., Witham, UK) in a 12-
h light/dark cycle, with room temperature at 21°C+2°C.
The mice were used for experiments when almost skeletally
mature at 19 weeks of age. All procedures complied with
the UK Animals (Scientific Procedures) Act 1986 and were
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reviewed and approved by the ethics committee of the
Royal Veterinary College (London, UK).

In vivo external mechanical loading

The apparatus and protocol for axial loading of the
mouse tibia have been reported previously [24-26]. Non-
invasive, dynamic loads [0.1 s trapezoidal-shaped pulse
(period 0.025 s loading, 0.05 s hold, and 0.025 s
unloading); 10 s rest time between each pulse; 40 cycles/
day] were applied between the right flexed knee and ankle
under isoflurane-induced anesthesia (approximately 7 min/
day). This rest time enhances the osteogenic potential of
loading [27]. The flexed joints are positioned in concave
cups; the upper cup, into which the knee is positioned, is
attached to the actuator arm of a servo-hydraulic loading
machine (Model HC10; Zwick Testing Machines Ltd.,
Leominster, UK) and the lower cup to a dynamic load cell.
The servo-hydraulic mechanism of the loading machine
operates to apply controlled dynamic compressive loads
axially to the tibia. The left non-loaded tibia was used as
an internal control, as has previously been validated in the
present model [25] and confirmed by others in the rat ulna
axial loading model [28]. Normal activity within the cages
was allowed between loading periods. In the present study,
a peak load of 13.5 N was selected since this has
previously been shown to induce significant bone gain
through an increase in bone formation at both cortical and
trabecular sites [7, 25].

Assessment of loading-induced strain

Single element strain gauges were attached ex vivo, in a
longitudinal orientation, to the proximal lateral tibial shaft
of similar 19-week-old female C57BL/6 mice. These
showed that a peak load of 13.5 N engendered a peak
longitudinal strain of approximately 1,800 pe in that
region. Since the mouse tibia is not large enough to permit
attachment of multiple gauges, the predictions of the
normal strain distribution throughout the bone induced by
loading were extended to full bone normal strain character-
izations using finite element (FE) analysis. A voxel-based
FE model (voxel size, 40 pum) was constructed by
processing the micro-computed tomography (LCT) images
using a computer program developed in house in the
Department of Orthopaedics and Sports Medicine, Univer-
sity of Washington [29]. The bone material properties were
assumed to be homogeneous, linear, and isotropic (Young’s
modulus, 17 GPa; Poisson’s ration, 0.3) in order to
approximately match the above strain gauge reading. FE
analysis was implemented, as previously reported [29-31],
at the proximal and distal sites in cortical bone of the tibiae
(37% and 75% of the bone’s length from its proximal end,
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respectively) and trabecular bone sites 0.01-0.05 mm
(mainly primary spongiosa) and 0.05—1.00 mm (secondary
spongiosa) distal to the growth plate of the proximal tibiae.
For the analysis of cortical bone, the transverse section of
the bone was divided into regions parallel to the neutral
axis equating to different magnitudes of strain in tension or
corresponding strains in compression.

“Loading” experiments

Where loading was to be related to sclerostin regulation, the
right tibiae of mice (n=6) were subjected to loading on two
consecutive days. Left non-loaded control and right loaded
tibiae were collected 24 h after the second period of
loading. These bones were dissected free of soft tissue,
fixed in 10% buffered formalin, and decalcified in formic
acid (Immuncal; Decal Chemical Corp. Tallman, NY, USA)
for immunohistochemistry.

Where loading was to be related to changes in bone
modeling/remodeling, loading was applied to the right tibiae of
an additional six mice on three alternate days per week for
2 weeks (days 1, 3, 5, 8, 10, and 12). High doses of calcein
(50 mg/kg; Sigma Chemical Co., St. Louis, MO, USA) and
alizarin (50 mg/kg; Sigma Chemical Co.) were injected intra-
peritoneally on the first and last days of loading (days 1 and 12),
respectively. At 21 weeks of age (day 15), the mice were
euthanized and their left and right tibiae were collected and fixed
in 70% ethanol for pCT analysis and histomorphometry.

“Disuse/loading” experiments

Where sclerostin regulation in the tibiac was to be assessed in
the situation of disuse, mice were subjected to unilateral sciatic
neurectomy or sham sciatic neurectomy (day 1). Sciatic
neurectomy was performed by resecting a 3- to 4-mm segment
of the right sciatic nerve posterior to the hip joint under
isoflurane-induced anesthesia. Eight mice with right sciatic
neurectomy were randomly divided into two groups; the right
tibiae of one group (n=4) received loading on days 3 and 4,
while the other group (n=4) received no artificial loading.
Since surgical intervention could potentially increase sclero-
stin expression [32, 33], an additional six mice received right
sham sciatic neurectomy without artificial loading to act as
controls. Both the left and right tibiae of all the mice were
collected on day 5 (24 h after the second period of loading),
dissected of soft tissue, fixed in 4% paraformaldehyde, and
decalcified in 14% EDTA for immunohistochemistry.

To assess the site-specific degree of bone loss after
sciatic neurectomy, six mice received right sciatic neurec-
tomy and were sacrificed 3 weeks later (at 22 weeks of age)
without having received any artificial loading. Their left
and right tibiae were collected and fixed in 70% ethanol for
pCT analysis.

Sclerostin immunohistochemistry

Sclerostin was immunolocalized at (1) proximal and distal
sites in the cortical bone of the tibiae (37% and 75% of the
bone’s length from its proximal end, respectively) and (2)
primary and secondary spongiosa in trabecular bone of the
proximal tibiae, in decalcified, wax-embedded 8-um trans-
verse sections using an indirect immunoperoxidase method as
reported previously [7]. Goat polyclonal anti-mouse sclero-
stin (0.2 mg/ml; R&D Systems, Abingdon, UK) and
biotinylated rabbit anti-goat (0.013 mg/ml; Dako, Ely, UK)
were used as the primary and secondary antibodies,
respectively. All antibodies were diluted in 10% rabbit
serum (Sigma Chemical Co.) in calcium and magnesium-
free phosphate-buffered saline (Gibco, Paisley, UK). The
same concentration of goat IgG was substituted for the
primary antibody to provide a negative control. The
detection of sclerostin was achieved using a vector ABC
kit (Vector Laboratories, Burlingame, CA, USA) with
diaminobenzidine as a substrate. The immunolabeled sec-
tions were photographed using a Leica DMR microscope
(Leica Microsystems, Heidelberg, Germany). The numbers
of sclerostin-positive and total osteocytes were counted, and
the changes in osteocyte sclerostin expression by loading
and/or sciatic neurectomy-related disuse were calculated as
percentage changes compared to the control tibia for each
animal [(right loaded—left control)>100/left control] at the
proximal and distal sites of cortical bone and in the primary
and secondary spongiosa of trabecular bone. At these two
cortical sites, the percentages of sclerostin-positive osteo-
cytes were also measured at regions corresponding to
different levels of strain determined by FE analysis.

uCT analysis

All tibiae analysed by puCT (SkyScan 1172; SkyScan,
Kontich, Belgium) were scanned with a pixel size of
5 pm. Images of the whole bones were reconstructed
with SkyScan software and three-dimensional structural
analyses were performed for (1) 0.5-mm long sections at
the proximal and distal sites in cortical bone of the tibiae
(37% and 75% of the bone’s length from its proximal
end, respectively) and (2) trabecular bone sites 0.01—
0.05 mm (mainly primary spongiosa) and 0.05-1.00 mm
(secondary spongiosa) distal to the growth plate of the
proximal tibiae. The parameters evaluated included
cortical bone volume and trabecular bone volume/tissue
volume (BV/TV).

Histomorphometry

After scanning by pCT, the bones were dehydrated and
embedded in methyl methacrylate as previously described
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[25]. Transverse segments were obtained by cutting with an
annular diamond saw. Images of calcein- and alizarin-
labeled bone sections were visualized using an argon
488 nm laser and a HeNe 543 nm laser, respectively, on a
confocal laser scanning microscope (LSM 510; Carl Zeiss
Microlmaging GmbH, Jena, Germany) at similar cortical
regions as the FE analysis, sclerostin immunohistochemis-
try, and pCT analysis. Using Imagel] software (version
1.42; http://rsbweb.nih.gov/ij/), periosteal and endosteal
labels and inter-label bone areas were measured as
loading-related newly formed bone area at regions

Fig. 1 Relationship between a *
mechanical loading-related
changes in osteocyte sclerostin
expression and magnitudes of
local strain engendered vs. sub-
sequent osteogenesis in cortical
bone. a Transverse loading- :
induced strain distribution by FE \
analysis at the proximal and

distal sites (37% and 75% of the
bone’s length from its proximal
end, respectively) of the tibia. |
Bone area was divided into five ,
regions parallel to the neutral

axis (region 0) corresponding to f +1
different magnitudes of strain in
tension (region +I) or compres- b
sion (regions —I to —III). b
Representative transverse
fluorochrome-labeled images at
the proximal and distal sites of
the left control and right loaded
tibiae. Green: calcein label
injected on the first day of
loading. Red: alizarin label
injected on the last day of
loading. ¢ Loading-related in-
crease in newly formed bone C
area and decrease in sclerostin-
positive osteocytes in each of
the five regions (corresponding
to different strain magnitudes) at
the proximal and distal sites.
Bars represent the means+=SE
(n=6). *p<0.05 vs. region 0

Proximal— §§—

Distal —% —

Proximal

Left control

Loading-related increase in
newly-formed bone area
(%[x107])

Loading-related decrease in
sclerostin-positive osteocytes
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corresponding to different levels of strain determined by
FE analysis and were normalized to cortical bone area in
each region.

Statistical analysis

All data are shown as the means+SE. Statistical analysis
was performed by one-way ANOVA followed by a post hoc
Dunnett T3 test or paired ¢ test using SPSS for Windows
(version 17.0; SPSS Inc., Chicago, USA) and p<0.05 was
considered statistically significant.
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Results
Effects of mechanical loading

Figure la shows images of the loading-induced strain
distribution as determined by FE analysis. Transverse
sections of the tibia at the proximal and distal cortical
sites are shown with the strain distribution across the section
divided into five regions parallel to the neutral axis according
to strain magnitude [region +I (+480 to +1,760 pe), region 0
(—480 to +480 ), region —I (—480 to —1,760 pe), region —1I
(—1,760 to —3,040 pe), and region —III (3,040 to —4,960 p¢)].
In region 0 of the proximal section, there was no
difference in new bone formation between left control
and right loaded tibiae. In regions +I, —II, and —III, there
were significant loading-related increases in new bone
formation, reaching a 75-fold increase in region —III. The
magnitude of loading-related decrease in the percentage
of sclerostin-positive osteocytes mirrored the amount of
loading-related osteogenesis (Fig. 1). In contrast, there
was no significant effect of loading on either new bone
formation or the percentage of sclerostin-positive osteo-
cytes in any region of the distal sections.

In trabecular bone of the proximal tibia, FE analysis
suggested that loading-induced strain levels were lower
in the primary spongiosa than in the secondary spongiosa
(Fig. 2a). In the secondary spongiosa but not in the
primary spongiosa, there was a loading-related decrease in
the percentage of sclerostin-positive osteocytes (Fig. 2b)
and a loading-related increase in trabecular BV/TV
(Fig. 2c¢).

Effects of sciatic neurectomy-induced disuse

Sciatic neurectomy was associated with a higher
percentage of sclerostin-positive osteocytes in cortical
bone at both the proximal and distal sites of the tibial
shaft (Fig. 3a, b) and in trabecular bone of both the
primary and secondary spongiosa of the proximal tibia
(Fig. 4a, b). In the cortical bone, it was notable that it was
not only the osteocyte cell bodies but also the canalicular
network which was strongly immunostained for sclero-
stin shortly after sciatic neurectomy (Fig. 3a). In contrast,
sham sciatic neurectomy had no effects on osteocyte
sclerostin expression in either cortical bone (proximal;
control 60%=1% vs. sham 58%=+1%, distal; control 64%
+1% vs. sham 61%=+1%) or trabecular bone (primary;
control 76+£2% vs. sham 72+2%, secondary; control
72%+4% vs. sham 74%=1%). Cortical bone volume at
the proximal and distal sites (Fig. 3c) and trabecular BV/
TV in the primary and secondary spongiosa (Fig. 4c)
were all significantly decreased 3 weeks after sciatic
neurectomy.

a 2000 1 [] Average
Il Maximum
1500 1
Loading-induced
tensile strain 1000
(pe)
500 -
o <4
-500 1

Loading-induced

compressive strain -1000 -
(ue)
-1500 -
-2000 -
Primary Secondary
b 0T——
-25 1

Loading-related change in
sclerostin-positive osteocytes -50 -
(%)

75 1

-100 -
Primary Secondary

c 45

30 *

Loading-related change in
trabecular BV/ITV 15 1
(%)

T

-15-

Primary Secondary

Fig. 2 Relationship between mechanical loading-related changes in
osteocyte sclerostin expression and magnitudes of local strain
engendered vs. subsequent changes in bone mass in trabecular bone.
a Loading-induced tensile and compressive strain magnitudes,
predicted by FE analysis, in the primary and secondary spongiosa of
the proximal tibia. b Loading-related change in sclerostin-positive
osteocytes in the primary and secondary spongiosa of the proximal
tibia. ¢ Loading-related change in trabecular BV/TV in the primary
and secondary spongiosa of the proximal tibia. Bars represent the
means+SE (n=6). *p<0.05

Loading reversed the sciatic neurectomy-induced
increases in the percentage of sclerostin-positive osteo-
cytes in the cortical bone of both the proximal and distal
sites (Fig. 3a, b) and in the trabecular bone of both the
primary and secondary spongiosa (Fig. 4a, b). However,
loading reduced the percentage of sclerostin-positive
osteocytes to a level significantly lower than that in
controls only in the proximal cortical region and the
secondary spongiosa.
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Fig. 3 Disuse-related changes a
in osteocyte sclerostin expres-
sion and bone mass in cortical
bone. a Sclerostin immunoloc-
alization in transverse sections
at the proximal and distal sites
(37% and 75% of the bone’s
length from its proximal end,
respectively) of the left control,
right immobilized, and right
immobilized then loaded tibiae.
Bar=50 um. b The percentage
of sclerostin-positive osteocytes
at the proximal and distal sites
of the left control, right immo-
bilized, and right immobilized

Control

Proximal

Siatic neurectomy

Sciatic neurectomy + loading

then loaded tibiae. Bars repre- Distal
sent the means+SE (n=4). ¢
Cortical bone volume at the
proximal and distal sites of the
left control and right immobi-
lized tibiae. Bars represent the
means=SE (n=6). *p<0.05. C
control, SN sciatic neurectomy, b c
L loading <
= 1007 * * —~ 060
8 * * E
2
> E *
8 751 * | | o 0451
i ] E *
° [ |
S 50 > 030
= £
g 5
ué.- 25 E 0.154
¢ 5
2 o = %
* C SN C SN+L C SN C SN+L c SN c SN
Proximal Distal Proximal Distal
Discussion significant reduction in sclerostin expression, to below that

In the present study, we used the mouse unilateral tibia
axial loading model [24, 25] to assess the effects of loading
on both cortical and trabecular bone compartments in vivo.
In cortical bone, short periods of dynamic loading, in
addition to that engendered by habitual physical activity,
were associated with decreased osteocyte sclerostin staining
and increased bone formation and bone volume at the
proximal but not the distal site. In contrast, reduced loading
due to sciatic neurectomy resulted in an increase in the
percentage of sclerostin-positive osteocytes and decreased
bone volume at both sites. In trabecular bone, exposure to
the same artificial loading regimen induced a decrease in
osteocyte sclerostin staining and an increase in bone
volume in the secondary but not the primary spongiosa.
Sciatic neurectomy-related disuse caused an increase in
osteocyte sclerostin staining and a decrease in bone volume
in both primary and secondary spongiosa. The effects of
sciatic neurectomy-related disuse on both cortical and
trabecular bone were reversed by artificial loading, with a
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seen in controls, at the proximal site and secondary
spongiosa, respectively.

The analysis of loading-related strain levels, areas of
new bone formed, and changes in the sclerostin status of
osteocytes in cortical bone confirmed that sclerostin down-
regulation by loading was not uniform throughout the bone,
and revealed that this was less closely associated with the
magnitude of peak strain engendered than with the degree
of subsequent local new bone formation. In the proximal
cortical region, loading-related suppression of osteocyte
sclerostin expression was linked to the area of loading-
related newly formed bone. Loading-induced strain magni-
tude is frequently associated with subsequent bone forma-
tion, and at the proximal site, the strain distribution map we
present, which is similar to that reported by others [30], was
also related to the area of loading-related newly formed
bone. These data are consistent with the results reported
previously [6]. However, this association did not hold at the
distal site, where similar peak magnitudes of strain were
unaccompanied by subsequent new bone formation and
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Fig. 4 Disuse-related changes a
in osteocyte sclerostin expres-
sion and bone mass in trabecular

Control

bone. a Sclerostin immunoloc- Primary

alization in longitudinal sections ~ SPongiosa

in the primary and secondary

spongiosa of the left control,

right immobilized, and right Secondary

immobilized then loaded tibiae. spongiosa

Bar=50 pm. b The percentage

of sclerostin-positive osteocytes

in the primary and secondary

spongiosa of the left control,

right immobilized, and right

immobilized then loaded tibiae.

Bars represent the means=SE (n

=4). ¢ Trabecular BV/TV in the Primary

primary and secondary spon- spongiosa

giosa of the left control and right

immobilized tibiae. Bars repre-

sent the means+SE (n=6). *p<

0.05. C control, SN sciatic neu-

rectomy, L loading
Secondary
spongiosa
b

100 4

*
751 |

W

Sciatic neurectomy

Sciatic neurectomy + loading

Sclerostin-positive osteocytes (%)

C SN C SN+L

Primary

were not associated with change in the levels of osteocyte
sclerostin.

The finding that axial loading stimulates peak strain
magnitude-related increases in bone formation in some
regions, but not others, is compatible with previously
reported findings in the ulna [34]. One possible explanation
for such variability in response at different regions within a
single bone is that the osteogenic stimulus is more closely
related to components of the strain regimen such as strain
gradients than to peak surface strain magnitude [35]. As
shown in Fig. 1a, the longitudinal curvature of the tibia’s
proximal region deviates from the axis of loading while the
proximal region is better aligned to that axis. Thus, strain
gradients at the distal site would be lower than the proximal

C
* *
I 401 *
* _
— 2 |
g 30_ — N
= *
? 20 |—‘
3
=1
2
£ 104
(=
0
C SN C SN+L c SN Cc SN
Secondary Primary Secondary

site due to less bending. It must always also be born in
mind that the bulk strain estimates, derived from strain
gauges and predicted by FE analysis, do not necessarily
reflect the actual strains in the matrix around osteocyte
lacunae. These strains are heterogeneous and may be much
higher than the applied macroscopic strains [36, 37].
However, we have no reason to believe from the immuno-
cytochemistry that, at the level of the osteocyte, there was
any heterogeneity with a distribution which could account
for differences in the regional response.

There are a number of possible explanations for why
there is a lack of consistent association between surface
bone strain, sclerostin downregulation, and local new bone
formation. One is that osteocytes respond directly in their
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sclerostin regulation to aspects of the strain regimen with
different osteogenic potential (such as strain gradients and
possibly their derivative fluid flow [35]) that are not
reflected in the surface strain recordings. More likely in
our view is that osteocytes respond directly to their local
strain environment, including strain gradients, etc., but that
they regulate their sclerostin production after sufficient
processing of this initial strain-related stimulus to distin-
guish between osteogenic and non-osteogenic responses.

Differential regulation of sclerostin and osteogenesis in
the primary and secondary spongiosa has also previously
been reported following intermittent parathyroid hormone
(PTH) treatment. Similarly to the effect of loading,
intermittent PTH resulted in greater suppression of sclero-
stin [38] and increased bone gain [39] in the secondary than
in the primary spongiosa. This would support the hypoth-
esis that in trabecular as well as cortical bone, loading-
related changes in osteocyte sclerostin suppression are
associated with the osteogenic response to loading. If this
were the case, it suggests that osteocyte sclerostin suppres-
sion is a feature of the early (re)modeling control stimulus
resulting from interactions within bone cells between a
number of pathways whose activity can be altered by
mechanical strain. The downregulation of sclerostin would
then be indicative of an early osteogenic response to strain
rather than a consequence of strain itself. At present, the
specificity of sclerostin’s response to strain and association
with osteogenesis remain to be determined.

Sciatic neurectomy resulted in a non-site-specific
increase in osteocyte sclerostin expression in both
cortical and trabecular bone. This upregulation was not
observed following sham sciatic neurectomy. The uni-
form increase in sclerostin expression with sciatic
neurectomy-induced disuse contrasts with the regional
effects seen with loading, probably because the effect of
disuse induced by sciatic neurectomy is a uniform
reduction in mechanical strain [40]. Our data, in 19-
week-old female mice, are not perfectly consistent with
those of others using tail suspension, in 6-week-old male
mice, where unloading was associated with an increase in
the expression of the sost gene but not the sclerostin
protein [6]. Potential reasons for this discrepancy include
the possibility that tail suspension permits continued
muscle activity which, even in the absence of ground
reaction forces, may engender significant changes in bone
strain. Nevertheless, mice lacking the sost gene showed
resistance to bone loss induced by tail suspension in both
cortical and trabecular regions [8].

The relevance of the present short-term experiment in
mice to the human condition must take into account a
number of differences in the two situations including the
pattern of their normal bone modeling and remodeling.
However, the implication of this study for our understand-
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ing of the potential role of sclerostin in loading and disuse-
related control of bone (re)modeling is probably transfer-
able. Indeed, in agreement with our experimental data,
immobilization-induced bone loss in stroke patients is
associated with a state of “hypersclerostinemia” [41]. The
circulating sclerostin levels in humans negatively correlate
with the circulating PTH levels [42] and osteocytic Sost
suppression is likely to mediate the effects of intermittent
PTH [43, 44] which synergistically enhances loading-
related osteogenesis in mice [45]. Sclerostin-neutralizing
drugs [12, 13] therefore have great potential to provide an
effective anabolic treatment for the prevention of fragility
fractures in humans.

In conclusion, the present data from both cortical and
cancellous bone in adult female mice suggest a substantial
regulation of osteocyte sclerostin production by bone’s
mechanical environment. Exposure to loading is generally
associated with downregulation and disuse with upregula-
tion. However, osteocyte sclerostin status appears to be less
closely related to the magnitude of local loading-related
strain, as determined by surface-bonded strain gauges and
by FE analysis, than to the subsequent increase in new bone
formation. Further studies are required to elucidate the
mechanistic association between changes in osteocytic
sclerostin expression and local new bone formation. At
present, we are unable to determine whether osteocytes
respond directly in their sclerostin regulation to aspects of
the strain regimen with different osteogenic potential that
are not reflected in the surface strain recordings, or whether
they respond directly to local strains but regulate their
sclerostin production after sufficient processing of this
initial strain-related stimulus to distinguish between osteo-
genic and non-osteogenic responses.
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