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A B S T R A C T

Introduction: In spite of the undisputed relevance of sex as critical biologic variable of the immune landscape, still
limited is our understanding of the basic mechanisms implicated in sex-biased immune response thereby con-
ditioning the therapeutic outcome in cancer patients. This hindrance delays the actual attempts to decipher the
heterogeneity of cancer and its immune surveillance, further digressing the achievement of predictive biomarkers
in the current immunotherapy-driven scenario. Body: The present review concisely reports on genetic, chromo-
somal, hormonal, and immune features underlying sex-differences in the response to immune checkpoint in-
hibitors (ICIs). In addition to outline the need of robust data on ICI pharmaco-kinetics/dynamics, our survey
might provide new insights on sex determinants of ICI efficacy and suggests uncovered pathways that warrant
prospective investigations.
Conclusion: According to a sharable view, we propose to widely include sex among the co-variates when assessing
the clinical response to ICI in cancer patients.
1. Introduction

In the last decade, immune checkpoint inhibitors (ICIs) have
prompted a paradigm shift in the treatment of several solid and hema-
tologic malignancies, including non-small cell lung cancer (NSCLC)
(Ribas and Wolchok, 2018), malignant melanoma and genitourinary
cancers (Lin et al., 2022; Lalani et al., 2022). At present, ICIs are
approved for the first and more-line treatment in advanced NSCLC
(Pasello et al., 2020), with the notable exception of consolidation dur-
valumab, which is employed in unresectable locally-advanced NSCLC
after radical chemoradiation (CRT) (Gray et al., 2020). Nonetheless, the
profound and long-lasting benefit derived from ICIs in metastatic setting
(Gadgeel et al., 2020; Paz-Ares et al., 2020) is still achieved in a limited
fraction of patients, thus making imperative the identification of prog-
nostic and predictive biomarkers able to guide patient selection (Tray
et al., 2018).

The central role of tumor immune microenvironment (TIME) has
been repeatedly demonstrated (Altorki et al., 2019; Binnewies et al.,
2018; Mazzaschi et al., 2018), mainly involving the assessment of PD-L1
status, that is currently the only approved ICI-biomarker, tumor infil-
trating lymphocytes (TILs) density and phenotype, and activating (i.e.
interferon-γ) or inhibitory (i.e. CD38, transforming growth factor-β)
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signalling pathways. Moreover, as cancer immunoediting and immune
response also engage the peripheral circulation, the contribution of
circulating immune cells, cytokines, growth factors and chemokines has
been intensively investigated (Buder-Bakhaya and Hassel, 2018; Nixon
et al., 2019; G. Mazzaschi et al., 2020).

Genomic and RNA-based studies exploring predictors of ICIs
responsiveness have designated tumor mutational burden (TMB) and
neoantigen signature as potential biomarkers in NSCLC patients (Rizvi
et al., 2015; Fumet et al., 2020; Anagnostou et al., 2017). Other currently
explored relevant factors are embodied by human leukocyte antigens
(HLAs) (McGranahan et al., 2017) and distinct somatic mutations (i.e.,
serine/threonine kinase 11, STK11) (Skoulidis et al., 2018). Recently, a
18-gene pan-tumor signature (Tumor Inflammation Signature, TIS)
associated with high response to PD-1 inhibitors, was proposed (Danaher
et al., 2018).

Multiple clinical aspects, including age, performance status (ECOG
PS), number and sites of metastatic involvement, concomitant interfering
drugs (i.e. corticosteroids, proton pump inhibitors, antibiotics) or the
occurrence of immune-related adverse events (irAEs) have shown to
significantly affect the response to ICIs (Brueckl et al., 2020; L. Huang
et al., 2020; Buti et al., 2021).

How sex impacts on the actual immunotherapy scenario and on the
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urgent need of predictive biomarkers of ICI efficacy remains largely un-
covered. Thus, the aim of the present review is to provide a concise
survey on sex related genetic and immune features implicated in the
response to ICIs.

2. Current knowledge on sex and response to immune
checkpoint inhibitors

Sex differences in cancer biology are well documented and may be
responsible for a greater risk of cancer development and mortality in
man, reaching up to twice that of women in specific tumor subtypes
(Cook et al., 2009, 2011). It is a long-standing notion that sex, meaning
the biological differences between men and women, and gender,
implying behavioural differences derived from being male or female,
represent variables potentially affecting immune responses to both
foreign and self-antigens (Roved et al., 2017). However, whether sex
difference (M�arquez et al. 2020; Roved et al., 2017) is a relevant deter-
minant of clinical outcome in cancer patients treated with immuno-
therapy remains unclear.

ICIs are humanized or human monoclonal antibodies whose thera-
peutic task is essentially addressed to the reinvigoration/rejuvenation of
the immune mediated anti-tumor cytotoxic response (Huang et al.,
2017). This is achieved mainly by antibody-dependent cellular cytotox-
icity (ADCC) and complement-dependent cytotoxicity (CDC) or true re-
ceptor blockade resulting in cleavage of either the ligand (i.e. PD-L1) or
the receptor (i.e. PD-1) at cancer-immune synapse (Ribas and Wolchok,
2018). On one side, targeted drug-receptor affinity as different IgG class
of therapeutic antibodies (mostly IgG1 while IgG4 for anti PD-1) are
undoubtedly crucial to trigger the immune response and represent
important variables potentially conditioned by sex. On the other side, the
different immune background in male and female might critically trains
the quantitative and functional state of relevant effector and suppressor
cells both at tumor sites and in the circulation. The fine molecular
mechanisms by which sex-related genetic, hormonal, and environmental
cues act on each of these steps responsible for ICI efficacy are currently
not elucidated.

2.1. Sex differences in ICI pharmacokinetics and pharmacodynamics

Before addressing the question whether a distinct outcome occurs in
male and female cancer patients following ICIs, a necessary pre-requisite
is to provide a succinct description of sex-associated pharmacokinetics
(PK) and pharmacodynamics (PD) of this class of therapeutic agents.

PK and PD studies focused on ICI and data on relationships between
exposure and response are still inconsistent. Patient- (i.e. age, sex,
ethnicity, body mass index, liver and renal function, ECOG PS) and
tumor-associated (i.e. tumor burden, immunogenicity) factors are known
to affect drug clearance, however their effect on ICI PK has been esti-
mated to reach at most 30% (Desnoyer et al., 2020). Intriguingly, sex
does not uniformly impact on ICI clearance as male sex is associated with
faster clearance of the anti-CTLA4 tremelimumab and the anti-PD-1
nivolumab, while that of the anti-PD-L1 durvalumab decreases in fe-
male patients (Desnoyer et al., 2020). Observations on differential PKs of
other analogous (Centanni et al., 2019) or recently introduced (Melhem
et al., 2022) ICI agents according to sex are inconclusive. Overall, PD and
PK studies strongly suggest to incorporate sex among the clinical cova-
riates to assess ICI efficacy in cancer patients (Bajaj et al., 2019).

2.2. Sex differences in the response to ICI: clinical evidence

Based on large-scale meta-analyses and systematic reviews (Conforti
et al., 2018; Wallis et al., 2019; Grassadonia et al., 2018; Pala et al.,
2022), an intense and open debate on whether cancer immunotherapy
efficacy is different between male and female patients is still ongoing. In
a meta-analysis of randomized clinical trials including 11,351 ICI-treated
patients (67% men and 33% women, with a predominance of melanoma
2

[32%] and non-small cell lung cancer [31%]), Conforti et al. reported
that the magnitude of ICI response was sex-dependent, as male patients
achieved greater benefit than females (Conforti et al., 2018). Conversely,
a more recent meta-analysis of all available ICI-based clinical trials across
several cancer types (13,721 patients, 67.9%men and 32.1%women) did
not document any significant difference in overall survival (OS) when
comparing the effectiveness of these treatments between the sexes
(Wallis et al., 2019). Moreover, performing subgroup analyses, including
disease site, line of therapy, class of immunotherapy, and study meth-
odology, no meaningful sex-associated differences in clinical outcome
were observed (Wallis et al., 2019). An additional metanalysis of phase
III randomized clinical trials showed better results from immunotherapy
in man for all advanced cancers with the exception of melanoma
(Grassadonia et al., 2018). Accordingly, by a machine learning algorithm
on a multiscale analysis on more than 1000 patients with different tumor
types, male sex resulted a positive predictor among the 12 biomarkers
enclosing a score for the response to immunotherapy (Litchfield et al.,
2021). These contrasting findings are based on subgroup hazard ratios
(HR) of published clinical trials lacking the analysis of individual pa-
tients, and/or the differential distribution of age, smoking habits and
clinicopathological characteristics, such as PD-L1 expression and TMB,
thus further clouding the significance of the obtained results. In an
attempt to shed new light on sex-related difference in ICI efficacy ac-
cording to well-known biomarkers, a post hoc analysis of prospective
individual patient data from five clinical trials (OAK, POPLAR, IMvi-
gor210, KEYNOTE-001, and CheckMate-012), and a meta-analysis of
nine randomized controlled trials (RCTs) have been also conducted
stratifying patients according to PD-L1 status (Li et al., 2020). The au-
thors documented that survival benefits from ICI inmale and female were
greatly influenced by PD-L1 expression, especially in NSCLC, thus rec-
ommending to jointly consider sex and PD-L1 in the clinical
decision-making in the setting of ICI treated cancer. Concerning tumor
mutational status, it has been reported that several solid neoplasms in
women display a lower TMB (Xiao et al., 2016) which is associated to a
lower response rate to immunotherapy in melanoma (Van Allen et al.,
2015). Nonetheless, more recent receiver operating characteristic-based
analyses to define high vs low TMB on three datasets of NSCLC patients
showed a better performance in predicting a greater benefit from ICI in
female tumors with high TMB (Wang et al., 2019).

2.3. Sex differences in immune related adverse events

An additional important aspect with biological and clinical implica-
tions arisen from the advent of immunotherapy is represented by the
occurrence of irAEs. Not surprisingly, therapeutic inhibition of CTLA-4 or
PD-1/PD-L1 checkpoints, the natural machinery instrumented to survey
non-self antigens, may result in autoimmune manifestations (Shankar
et al., 2020). Although irAEs have been repeatedly reported to positively
impact on ICI response in NSCLC (Shankar et al., 2020; Hussaini et al.,
2021; Grangeon et al., 2019), the biological basis of this phenomenon
requires to be deeply investigated. Even more limited is the documen-
tation on whether female patients, carrying a natural propensity for
autoimmunity, are more (Kitagataya et al., 2020) or less (Triggianese
et al., 2020) prone to develop irAEs. A recent analysis on a large cohort (n
¼ 23,296) of cancer patients disclosed a 49% increased risk of AEs in
female receiving immunotherapy compared with males (Unger et al.,
2022), reinforcing the notion of sex-driven pharmaco-kinetics, -dynamics
and -genomics differences with relevant implication on clinical outcome.

3. Sexual dimorphism in immune response

Genetic, behavioural, environmental and hormonal factors are
implicated in sexual dimorphism of the immune system (Naqvi et al.,
2019). Estrogen and androgen responsive elements are present in pro-
moter regions of a consistent number of immune related genes (Hannah
et al., 2008), as sex hormones receptors are expressed by a variety of
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immune cells (Mantalaris et al., 2001; Arruvito et al., 2008; Dosiou et al.,
2008). The understanding of such sex related diversities may benefit
from the advanced knowledge achieved on the role of microbiome in
shaping the immune response. The microbiome has been implicated in
the development of inflammatory, autoimmune and neoplastic ( Huang
et al., 2018) diseases in humans (Yatsunenko et al., 2012; Haro et al.,
2016; de la Cuesta-Zuluaga et al., 2019) and mice (Sheng et al., 2021;
Markle et al., 2013). Due to the ability of microbes to process and/or
synthetize estrogen and androgen metabolites (Taneja, 2018), gut
microbiota regulates immune functions in a sex-specific manner. The
gender dimorphic microbiome is under intense biological and clinical
scrutiny, leading the scientific community to coin the term ‘micro-
genderome’ (Vemuri et al., 2019; Flak et al., 2013).

Evidence of a sexual dimorphism in the modulation of cholesterol
homeostasis, mainly exerted by proprotein convertase subtilisin kexin-
like 9 (PCSK9) (Ghosh et al., 2015), reinforces the notion of a
sex/gender-dependency of immune metabolic pathways, ultimately
conditioning tumor immune landscape (Ma et al., 2019) and response to
ICIs.

3.1. Genetic basis of sex differences in immunity

Sexual dimorphism of the human immune system is detectable as
early as within the first 6 months after birth, as genetic-transcriptional
analysis of the thymus have documented that sex hormones and XX
and XY genomic backgrounds condition autoimmune regulator (AIRE)
interactors (Moreira-Filho et al., 2018). AIRE is a transcription factor
expressed by thymic (Anderson et al., 2002) and extrathymic (Poliani
et al., 2010) cells, including stromal (Bergstr€om et al., 2019) and circu-
lating (Suzuki et al., 2008) elements, displaying features shared with
dendritic cells (DCs) and therefore critically implicated in central toler-
ance. Intriguingly, animal models (Zhu et al., 2013) and human studies
(Nguyen et al., 2020; Kalra et al., 2018) have pointed to a regulatory role
of AIRE in cancer immune surveillance. However, this contention cannot
be widely applied to a variety of neoplastic diseases since conflicting
results have been reported (Klamp et al., 2006). Keeping on the immu-
notherapy scenario, unveiling the distinctive clinical significance of AIRE
expression in cancer and/or immune cells in female and male patients,
represents an area of prospective studies with potential therapeutic
spill-over.

Importantly, sex-associated dichotomic immune response can be eli-
cited because immune relevant genes, as interleukin 2 RG (IL2RG), IL-
13RA2 and TLR7-8, coding for cytokine receptors, or androgen receptor
(AR) and forkhead box P3 (FOXP3) for transcription factors (Kawai and
Akira, 2006; Kleina et al., 2015; Lubahn et al., 1988; Su et al., 2009;
Souyris et al., 2019; Zhao et al., 2020), are X-linked. Of note, sex biased
expression patterns are generated by the escape from X chromosome
inactivation (XCI) in nearly 1/4 (23%) of X-linked genes (Tukiainen
et al., 2017). In addition to their largely documented role in female
proneness to develop autoimmune diseases (i.e. lupus erythematosus),
numerous XCI-escaped genes have also been implicated in
tumor-suppressing functions (Clocchiatti et al., 2016; Dunford et al.,
2017). As an example, the protection of females from bladder cancer has
been associated with the biallelic expression of KDMA6, a sex-biasing
tumor suppressor gene that escaped XCI in females (Dunford et al.,
2017; Kaneko and Xue, 2018; Ntziachristos et al., 2014). Although not
peer reviewed, a very recent study identified KDM6A as the most
differentially regulated gene escaping XCI and conditioning sex differ-
ences in number and function of natural killer (NK) cells. Independently
from sex hormones, KDM6A, through its encoded histone demethylase
UTX, was found to be responsible for the decrease frequency and
increased IFNγ expression characterizing the female NK phenotype
(Cheng et al., 2022). For completeness, additional immune-related
XCI-escaped genes include CD99, TLR8, TASL, DDX3X, USP27X,
CXCR3, LAMP2, XIAP, CD40LG, IRAK1, and IL9R (Carrel and Willard,
2005; Mousavi et al., 2020; Oghumu et al., 2019; Vermeesch et al.,
3

1997).
A seminal work addressing the impact of sex on the genomic land-

scape of multiple cancers disclosed sex-biasedmolecular patterns in more
than 50% of clinically targetable genes (Yuan et al., 2016). Specifically,
IL2, IL6, STAT5, JAK, STAT3, IFNα and IFNγ, TNF-α and complement,
involved in signalling pathways implicated in immune responses,
emerged as differentially expressed genes.

These chromosomal and genetic contexts driving a differential im-
mune response to cancer in the two sexes are listed in the visual abstract.
However, the translational significance of the indicated groups of
immune-related genes which are differentially regulated among the two
sexes is still unveiled and necessitates prospective studies.

3.2. Sex hormones and immune profile

The immunomodulatory effect of sex hormones is a long-standing
notion. By inhibiting pro-inflammatory (including TNFα, IL-1β and IL-
6) (Straub, 2007) and stimulating anti-inflammatory (including IL-4,
IL-10 and TGFβ) pathways, estrogens establish a sort of an unbalanced
immune response favouring T helper (Th) type 2 vs Th1 activity (Roved
et al., 2017) and partly explaining the predominance of Th1- and
Th2-dependent autoimmune diseases in male and female, respectively
(Whitacre, 2001). However, the effects of female hormones are
context-dependent as, mainly after menopause, estrogen stimulates NK
cell mediated responses (Giglio et al., 1994). Similarly, the decreased NK
cytotoxic activity observed during pregnancy (van Nieuwenhoven, et al.
2003) disappears after menopause (Giglio et al., 1994).

While estrogens are associated with enhanced immune reactivity,
testosterone has been widely ascribed as immunosuppressive (Foo et al.,
2017). This contention is supported by evidence that T cells express
androgens receptors (AR), which upon activation suppress IFNγ pro-
duction, negatively conditioning ICI activity (Guan et al., 2022).
Accordingly, clinical trials have documented an increased response rate
in patients with advanced prostate cancer treated with AR inhibitors plus
PD-1 blockade (Graff et al., 2016, 2020). As programmed exhaustion of
CD8þT cells within the TIME is critically regulated by T cell-intrinsic AR
signalling (Kwon et al., 2022), the mechanism underlying the positive
outcome from immunotherapy might reside in the synergistic effect of
AR and PD-1 blockade, respectively preventing CD8 T cells anergy and
unleashing their cytotoxic activity (Guan et al., 2022).

Sexual dimorphism in immune response resides also in the differen-
tial impact exerted by sex hormones on blood immune cell populations in
a quantitative and qualitative manner. In large cohorts of healthy adults,
females displayed higher number of CD4þ T cells and macrophages,
higher CD4/CD8 ratio and lower NKs and T regulatory cells (Tregs) than
males (Abdullah et al., 2012; Ahnstedt et al., 2018; Lee et al., 1996;
Scotland et al., 2011). Healthy females also carry more activated CD8 T
phenotypes (IFNγ, TNFα, GnZB) and increased B cells number (Abdullah
et al., 2012). Higher baseline levels of immunoglobulin M (IgM) (But-
terworth et al., 1967) and greater antibody response to vaccination
against seasonal and pandemic viruses (influenza, yellow fever, rubella,
measles, mumps, hepatitis A and B, herpes simplex 2, rabies, smallpox,
and dengue viruses) (Klein et al., 2010), including Sars-Cov2 (Bignucolo
et al., 2021), compared to males also characterize female immunity.

In conventional DCs, as opposed to testosterone, estrogens enhance
type 2 (IL-4, IL-10, and IL-13) cytokines and may also upregulate the
expression of major histocompatibility complex (MHC) class II receptors
and co-stimulatory molecules (Hepworth et al., 2010). While both
testosterone (Corrales et al., 2009) and estrogens (Relloso et al., 2012)
similarly suppress Th17 responses in conventional DCs, estrogens favour
the release of type 1 cytokines in plasmacytoid DCs (Laffont et al., 2014;
Seillet et al., 2012). Additionally, a higher production and receptor
expression of type I IFNs was seen in female plasmocytoid DCs (Mocikat
et al., 2003). Of note, single cell RNA sequencing documented upregu-
lation of type I IFN stimulated genes in circulating neutrophils from
healthy females as compared to male subjects (Gupta et al., 2020). Thus,
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the identification of a sex-specific IFN-gene signature involving multiple
immune-inflammatory phenotypes may offer important insights for
personalized therapeutic strategies including immunotherapy.

The notion that estrogens are potent inducers of FOXP3 resulting in
expansion of Treg compartment is well recognized (Polanczyk et al.,
2004; Polanczyk et al., 2005). Sexual dimorphism on Treg population has
been also experimentally documented in melanoma as improved anti-
tumor immunity conferred by a reduced Treg function was observed in
females (P.-Y. Lin et al., 2010).

Finally, aging in humans is associated with a decline in naïve T cells
and CD8þ T cells and a rise in CD3þCD45RA-CCR7þ effector memory,
CD4þFOXP3þ Treg and NK cells (M�arquez et al., 2020; Yan et al., 2010).
However, this effect of aging is attenuated in women which display a
relative increased immune reactivity (Takahashi and Iwasaki, 2021).
More recently, an age-associated increase in CD8þ T effector memory
(TEM) Granzyme Kþ (GnZK) and PD-1þ circulating lymphocytes has
been reported in humans (Mogilenko et al., 2021), although the impact of
sex on this cell population was not investigated.

3.3. Sex differences in PD-1/PD-L1 immune checkpoint

Limited reports are available on the differential expression of PD-1
and PD-L1 in lung cancer according to sex (Pan et al., 2017; Moutafi
et al., 2021; Ye et al., 2020). Interestingly, these studies concordantly
documented higher PD-L1 levels in tumors frommale patients potentially
leading to a higher sensitivity to ICIs. Conversely, a lower fraction of
PD-1þ CD8þ lymphocytes in female melanoma patients was associated
with a lower rate of response to combined ICIs (Loo et al., 2017).
Intriguingly, a multiomic molecular analysis conducted on a variety of
tumor types, identified a female-bias immune signature in lung squamous
carcinoma characterized by higher cytotoxic CD8 T cell activity and PD-1
expression (Ye et al., 2020).

However, in both aforementioned studies the potential confounding
role of smoking habit was not evaluated.

Experimental observations made in an animal model revealed that
female Tregs display an estrogen-insensitive lower expression of PD-L1
compared to male cells and this phenomenon appears to be coupled
with a better response to PD-1 blockade (Lin et al., 2010). Moreover, the
potency of Treg-mediated suppressive function has been linked to an
increased estrogen-sensitive intracellular expression of PD-1 (Polanczyk
et al., 2007; C. Wang et al., 2009) which is translocated to the cell surface
upon Treg activation (Raimondi et al., 2006).

Finally, an often disregarded aspect when exploring sex-associated
differences in immunity is the transient tolerogenic state that only
women intrinsically experience during pregnancy (Barnet et al., 2018).
However, this unique immune state engendered by both fetal (Rackaityte
and Halkias, 2020) and placental (Murata et al., 2021) cues may evolve
during life as chimerism (Bianchi et al., 1996; Jeanty et al., 2014),
resulting from long term persistence of fetal DNA in mothers, may
constitute an underlying mechanism of the increased incidence of auto-
immunity in women (Fugazzola et al., 2011). Most clinical and experi-
mental observations have suggested a rather protective action exerted by
fetal microchimerism on the development of cancer, however conflicting
results persist on such issue (Sedov et al., 2022; Kallenbach et al., 2011).
How immunogenic and tolerogenic pathways in women who have been
pregnant are differentially informed with the advent of cancer remains
unknown and represent a fascinating area of future investigations in the
era of immunotherapy.

4. Concluding remarks

Profound sex differences exist in immune response which are in part
constitutive or take place during life as a result of adaptive measures of
the organism (Murphy and Weaver, 2016). Genetic, hormonal and
environmental factors contribute throughout life to create a divergent
metabolic substrate and cytokines/chemokines networking, ultimately
4

conditioning sex specific immune profiles.
How this sexually determined immune dynamic is translated into

differential tumor microenvironmental features and ICI response remains
largely unknown and prospective data on sex differences in TIME
composition are warranted.

Sex intersects with multiple biological, genetic and environmental
factors implicated in the onset and evolution of cancer as well as its
immune surveillance. So far, studies aimed at predicting ICI efficacy by
the adoption of sex as a co-variate to be integrated with age, pregnancy or
easily accessible blood immune descriptors are lacking and should
represent the focus of shortcoming clinical and experimental
observations.
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