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Abstract

In bistable vision, subjective perception wavers between two interpretations of a constant

ambiguous stimulus. This dissociation between conscious perception and sensory stimula-

tion has motivated various empirical studies on the neural correlates of bistable perception,

but the neurocomputational mechanism behind endogenous perceptual transitions has

remained elusive. Here, we recurred to a generic Bayesian framework of predictive coding

and devised a model that casts endogenous perceptual transitions as a consequence of

prediction errors emerging from residual evidence for the suppressed percept. Data simula-

tions revealed close similarities between the model’s predictions and key temporal charac-

teristics of perceptual bistability, indicating that the model was able to reproduce bistable

perception. Fitting the predictive coding model to behavioural data from an fMRI-experiment

on bistable perception, we found a correlation across participants between the model

parameter encoding perceptual stabilization and the behaviourally measured frequency of

perceptual transitions, corroborating that the model successfully accounted for participants’

perception. Formal model comparison with established models of bistable perception based

on mutual inhibition and adaptation, noise or a combination of adaptation and noise was

used for the validation of the predictive coding model against the established models. Most

importantly, model-based analyses of the fMRI data revealed that prediction error time-

courses derived from the predictive coding model correlated with neural signal time-courses

in bilateral inferior frontal gyri and anterior insulae. Voxel-wise model selection indicated a

superiority of the predictive coding model over conventional analysis approaches in explain-

ing neural activity in these frontal areas, suggesting that frontal cortex encodes prediction

errors that mediate endogenous perceptual transitions in bistable perception. Taken

together, our current work provides a theoretical framework that allows for the analysis of

behavioural and neural data using a predictive coding perspective on bistable perception. In

this, our approach posits a crucial role of prediction error signalling for the resolution of per-

ceptual ambiguities.
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Author summary

In bistable vision, perception spontaneously alternates between two different interpreta-

tions of a constant ambiguous stimulus. Here, we show that such spontaneous perceptual

transitions can be parsimoniously described by a Bayesian predictive coding model. Using

simulated, behavioural and fMRI data, we provide evidence that prediction errors stem-

ming from the suppressed stimulus interpretation mediate perceptual transitions and cor-

relate with neural activity in inferior frontal gyrus and insula. Our findings empirically

corroborate theorizations on the relevance of prediction errors for spontaneous percep-

tual transitions and substantially contribute to a longstanding debate on the role of frontal

activity in bistable vision. Therefore, our current work fundamentally advances our mech-

anistic understanding of perceptual inference in the human brain.

Introduction

During bistable perception, observers experience fluctuations between two mutually exclusive

interpretations of a constant ambiguous input. Remarkably, percepts evoked by ambiguous sti-

muli usually closely resemble the experience of unambiguous objects and thus illustrate the

constructive nature of perception. However, the mechanisms driving transitions in bistable

perception remain poorly understood.

Previous neuroimaging work [4, 5, 6, 7, 8, 9, 10] has sought to distill the neural processes

underlying bistable perception by recurring to a ‘replay’ condition, in which physical stimulus

changes mimic the perceptual alternations induced by ambiguous stimuli. This approach

revealed a right-lateralized assembly of fronto-parietal areas whose activity is specifically

enhanced during endogenously evoked transitions (ambiguity) as compared to exogenously

evoked transitions (replay) [4, 5, 7, 9].

However, the functional role of fronto-parietal areas in bistable perception is a matter of

ongoing debate. According to one view, transitions in bistable vision are primarily a result of

adaptation and inhibition within visual cortex, while switch-related activations in fronto-pari-

etal areas reflect a mere ‘feedforward’ consequence of neural events at sensory processing levels

[6, 10]. Another view proposes that fronto-parietal areas may be involved in stabilizing and

destabilizing perception, thus causally contributing to perceptual switching via ‘feedback’

mechanisms [4, 5, 11, 7]. Here, we sought to resolve this debate by using model-based fMRI to

empirically test a theoretical model that has the potential to integrate these two seemingly con-

tradictory views of perceptual bistability.

From a theoretical perspective, endogenous transitions might be explained by framing per-

ception as an inferential process generating and testing hypotheses about the most likely causes

of sensory stimulation [12, 13, 14]. Such processes can be elegantly implemented by hierarchical

predictive coding [15, 16, 17]. Here, ‘predictions’ encoded at higher levels are compared against

‘sensory input’ represented at lower levels, while a mismatch between the two elicits a predic-

tion error, updating higher-level predictions [15]. Such belief-updating schemes can be trans-

lated onto Bayes’ rule, where prior distributions (‘predictions’) are combined with likelihood

distributions (’sensory input’) into posterior distributions in a sequential manner [16, 18].

Here, we tested whether this framework provides a mechanistic explanation for perceptual

transitions and related neural activity during bistable perception. We devised a computational

model that formalizes perceptual decisions (i.e., decisions that define the content of conscious

perception, as indicated by participants’ response) to be performed on the basis of posterior

probability distributions. This model is a modification of an approach introduced by [19], who

Predictive coding and bistable perception
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propose that perceptual time-courses during bistable perception result from samples drawn

subsequently from a posterior distribution. The authors implement a memory decay favoring

recent over older samples as well as stationary prior capturing the effect of context on bistable

perception. Our model, in turn, posits that the shape of the posterior distribution changes

dynamically over time in response to prediction errors emerging from the currently suppressed

interpretation of the ambiguous input. Importantly, this model has the potential to integrate

feedforward and feedback mechanisms in bistable perception: The prediction errors arising

from sensory processing levels may be propagated up to higher-level brain areas in a feedfor-

ward fashion. The registration of prediction errors in higher-level brain areas leads to an updat-

ing of predictions that may in turn drive perceptual switching through a feedback mechanism.

To test this hypothesis, we began with data simulations to establish that our model’s predic-

tions match the key characteristics of perceptual bistability. We proceeded by fitting our

model to behavioural data from a fMRI experiment on bistable perception [7].

In this experiment, participants viewed a Lissajous figure [42] rotating either clockwise (as

viewed from above, i.e. movement of the front surface to the left) or counter-clockwise (vice

versa) and indicated their current perception via button-presses. Participants were presented

with alternating blocks of ambiguous and disambiguated Lissajous figures: In the ambiguous

condition, we presented bistable Lissajous figures which elicited spontaneous (endogenous)

alternations in perception. In the disambiguated (’replay’) condition, we mimicked the endog-

enous perceptual time-course by introducing exogenous perceptual switches. Ambiguous and

disambiguated stimuli were constructed by presenting two Lissajous figures separately to the

two eyes: In the ambiguous condition, both eyes received identical stimulation. In the replay

condition, the two Lissajous figures were slightly phase-shifted against each other, biasing per-

ception in the direction of the phase shift.

Having inverted our predictive coding approach based on behavioural data from this exper-

iment, we investigated whether our model accurately explains individual perceptual time-

courses during ambiguous and replay stimulation.

In a supplementary analysis (see S2 Text), we furthermore compared our model to three

established models of bistable perception: Firstly, we tested an oscillator model [1], which is

based on mutual inhibition between to competing neural populations coding for the alterna-

tive perceptual outcomes during bistable perception. Here, the currently dominant population

suppresses activity in the alternative population. However, due to adaptation in the dominant

population, this relation reverses over time, leading to regular oscillations in perception. Sec-

ondly, we constructed a noise-driven attractor model of bistable perception [2]. In this frame-

work, internal and external sources of noise trigger transitions between two stable states in an

attractor network, representing the two perceptual interpretations associated with a bistable

stimulus. Thirdly, we tested an intermediate model [3], which contains both adaptive processes

and noise. We validated our approach against these models by the use of Bayesian Model

Comparison [20].

We then conducted a model-based fMRI-analysis [21] based on the predictive coding

model to test whether prediction errors account for transition-related neural activity during

bistability. Additionally, we compared the model-based fMRI analysis with conventional fMRI

analyses using a Posterior Probability Map (PPM) approach [22].

Methods

Theoretical background

Our Bayesian modelling approach draws on the view that perception is an inferential process

in which perceptual decisions are based on posterior distributions [13]. According to Bayes’

Predictive coding and bistable perception
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rule, the posterior combines information in the current sensory data (likelihood) with infor-

mation from previous visual experience (prior) in a probabilistically optimal manner. Cru-

cially, this posterior at a given moment becomes a prior for the current perceptual decision,

which entails a prediction error signal that influences on the prior at the next moment.

Hence, the posterior not only provides the basis for current perception, but also shapes future

perception.

In line with previous theorizations [12], we reasoned that the ambiguous likelihood pro-

vides equally strong sensory evidence for two different percepts. We further hypothesized that

the current percept establishes an implicit prior belief about similar percepts in the future,

thereby contributing to stability of visual perception. The application of Bayes’ rules combines

the likelihood for ambiguous stimuli with the stability prior into a posterior that represents

stronger evidence for the dominant percept, but still contains residual evidence for the sup-

pressed percept. While the stronger evidence for the dominant percept will again favor this

percept for the upcoming perceptual decision, the residual evidence for the suppressed percept

is equivalent to a prediction error that leads to an update of the stability prior.

Over time, the stability prior is weakened and the posterior shifts towards the suppressed

percept, paralleled by an escalating prediction error. When the residual evidence for the sup-

pressed percept equals the evidence for the dominant percept, the prediction error reaches a

maximum and a perceptual transition is most likely to occur. Once such a transition has

occurred, the process starts over again, minimizing the current prediction error.

Please note that our approach was influenced by the work of [19], who argue that bistable

perception is a product of Bayesian decision making in ambiguous sensory environments.

They study the effects of viewpoint context on perception of the Necker Cube and propose

that bistable perception arises from sampling a bimodal posterior distribution. Here, the sam-

ple with the highest ‚weight’ determines the content of conscious perception. Key elements of

their model are (1), a stationary prior, whose precision reflects interindividual differences in

the effects of viewpoint context on perception of the Necker Cube and (2), a memory decay

that discounts the weight associated with a sample drawn from the posterior distribution by its

age and influences on the length of individual phase durations.

In contrast to [19], our model does not assume a specific memory decay process, but con-

trols the length of phase durations by means of the dynamically updated stability prior. In anal-

ogy to the stationary viewpoint prior in [19], our model captures the influence of additional

sensory evidence on perceptual decisions using a ‚stereodisparity’ distribution, whose preci-

sion determines the effectiveness of disambiguation.

Please refer to to the mathematical appendix (see S1 Text) for a complete description, to Fig

1 for a step-by-step illustration of our approach and to Table 1 for a summary of model param-

eters and quantities. For computational expediency, we assume Gaussian probability distribu-

tions defined by mean and variance (or inverse precision).

Model simulation

To test whether our model is able to reproduce the temporal dynamics of bistable perception,

we used it to generate perceptual time-courses from some ambiguous visual input such as the

Lissajous figure. We assumed a sampling rate of 0.33 Hz, which was chosen to be close to the

average overlap frequency in the behavioural experiment (see below), and simulated for a total

of 6 � 105 seconds. To model the ambiguous visual input, the impact of the stereodisparity

weight was suppressed by setting μstereo = 0.5 and πstereo = 0. We further assumed fixed values

for the precision πinit, which was set to 3.5 to match the posterior parameter value from our

behavioural modelling (see Modelling analysis of behavioural data).

Predictive coding and bistable perception
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Fig 1. Modelling procedures. A. In the modelling approach illustrated here, we capture the temporal

dynamics of bistable perception by changes in a continuously updated stability prior, which is combined with a

bimodal likelihood representing the sensory input (see ‘feedback’ arrow). Under ambiguous viewing

conditions, the likelihood contains equivalent evidence for both perceptual interpretations of the bistable

stimulus. The mean of the prior ‘perceptual stability’ is defined by μstability, which corresponds to the preceding

Predictive coding and bistable perception
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Experimental procedures

To examine whether our prediction error model might account for bistable perception and

associated neural activity in human observers, we used data from an fMRI experiment apply-

ing the Lissajous figure. Results from conventional analyses but not from behavioural model-

ling or model-based fMRI (see below) have been reported previously [7].

Participants. Twenty right-handed participants (11 female, mean age: 28, range: 21 -34)

took part in this study, which was conducted at the Berlin Center for Advanced Neuroimaging

(BCAN), Charité Universitätsmedizin Berlin, Campus Mitte. All participants had normal or

corrected-to-normal vision, were naive to the purpose of the study, and provided informed

written consent. The study was approved by the ethics committee of Charité Universitätsmedi-

zin Berlin, Campus Mitte.

Stimulus. We presented stimuli generated with Psychophysics Toolbox 3 [23] running

under Matlab 2007b (Mathworks inc.) on a 60 Hz Sanyo LCD projector, on which participants

viewed alternating blocks of ambiguous and corresponding replay stimulation. In ambiguous

blocks, we displayed two identical moving Lissajous figures formed by the intersection of two

perpendicular sinusoids (x(t) = sin(3t) and y(t) = sin(6t + δ); with δ increasing from 0 to 2π),

perceptual decision y(t − 1) (here centered around ‘1’ for counter-clockwise rotation of the Lissajous figure).

The impact of the prior on the bimodal likelihood is determined by its precision (the inverse of variance)

πstability. If a new perceptual decision was adopted at the preceding overlapping configuration of the Lissajous

figure, this precision is set to πinit. Otherwise, πstability is repeatedly updated by a prediction error signal. This

signal results from residual evidence for the alternative explanation of the bistable stimulus and is given by the

difference between P(θ > 0.5) and the current perceptual decision y(t) (see ‘feedforward’ arrow). In this

example, the prediction error signal stems from remaining evidence for clockwise rotation (centered around

‘0’), as the current perceptual decision represents counter-clockwise rotation (y(t) = 1) of the stimulus.

Overtime, the stability prior is weakened, which is accompanied by an increasing probability for a novel

transition in perception. B. Here, we depict the temporal evolution of the stability prior (left panel) and the

corresponding posterior (right panel) at three successive overlapping configurations of the Lissajous figure

(dark to light blue). As the precision of the stabilizing prior is gradually reduced, the posterior relaxes to

equivalent probability for both perceptual interpretations of the stimulus. This is accompanied by escalating

prediction error signals and increased likelihood for a perceptual transition. C. Furthermore, our approach

accounts for additional sensory evidence, which is realized by a stereodisparity signal and used to

disambiguate the Lissajous figure in the ‘replay’ condition. To this end, we introduce a ‘stereodisparity’

distribution (characterized by mean μstereo and precision πstereo), which serves as a weight on the bimodal

likelihood. In the ambiguous condition (left panel), μstereo is centered around 0.5 and is thus uninformative with

regard to the two perceptual interpretations of the stimulus. In the replay condition (right panel), μstereo is

centered around ‘0’ or ‘1’ (depending on the direction of stereodisparity). The strength of the bias in the

direction of either percept introduced by the stereodisparity signal scales with the precision πstereo.

https://doi.org/10.1371/journal.pcbi.1005536.g001

Table 1. Summary of model parameters and quantities.

Name Explanation

Sensory Stimulation μstereo Mean of sensory stimulation

Responses y Binary perceptual decision

Model Parameters πinit Initial precision of stability prior

πstereo Initial precision of stability prior

ζ Inverse decision temperature of the reponse model

Model Quantities ypredicted Predicted perceptual response

μstability Mean of the stability prior

πstability Precision of the stability prior

μm Mean of the joint prior

πm Precision of the joint prior

P(θ > 0.5) Probability of perceiving counter-clockwise rotation

https://doi.org/10.1371/journal.pcbi.1005536.t001
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separately to the two eyes. In replay blocks, a disambiguated version of the Lissajous figure

mimicked the perceptual time-course participants had experienced during the preceding

ambiguous block. To this end, the two dichoptically presented Lissajous figures were phase-

shifted against each other by an offset of 0.04˚. This disparity cue was used to disambiguate the

stimulus, biasing participants perceived direction of rotation in the direction of the phase shift.

All stimuli subtended 2.05˚ visual angle.

We achieved dichoptic stimulation by placing a custom build cardboard divider between

the mirror attached to the head-coil and the screen at the end of the scanners bore [24]. Partic-

ipants wore prism glasses to facilitate fusion between to two eyes. All screens contained a fixa-

tion mark at the center and fusion frames surrounding the stimuli.

Task. Participants were instructed to indicate the perceived direction of rotation of the

Lissajous figure by pressing a left (index finger; for clockwise rotation of the stimulus, i.e.

movemement of the front surface to the left) or right (ring finger) button with their right

hand, responding to the first perceived direction after stimulation onset and to all additional

perceptual transitions. Furthermore, they reported unclear or mixed percepts by pressing a

middle button (middle finger) on a standard MRI button box.

In order to titrate individual percept durations to approximately 10 s, we adjusted the rota-

tional speed of the stimulus for every participant to one of three levels (’overlap’ frequency

0.24, 0.30, and 0.40 Hz) based on a psychophysical experiment prior to the fMRI session. In

the fMRI experiment, participants were presented with three experimental runs, each contain-

ing 8 pairs of ambiguity and replay separated by 10 s fixation. Block duration amounted to

42.8, 40.90, or 41 s, depending on the individually adjusted speed. After completion of the

fMRI experiment, participants answered a debriefing questionnaire (A: Did you have the
impression that some blocks were different from others? B: Did you perceive the transitions as
instantaneous or prolonged? C: Were you able to tell the direction of rotation of the Lissajous fig-
ure at all times during the experiment?).

fMRI acquisition and preprocessing

We recorded BOLD images by T2-weighted gradient-echo echo-planar imaging (FOV 192, 33

slices, TR 2000 ms, TE 30 ms, flip angle 78˚, voxel size 3 x 3 x 3 mm, interslice gap 10 percent)

on a 3T MRI scanner (Tim Trio, Siemens). The number of volumes amounted to 402 (0.15

Hz and 0.2 Hz) or 415 (0.12 Hz) volumes, respectively. We used a T1-weighted MPRAGE

sequence (FOV 256, 160 slices, TR 1900 ms, TE 2.52 ms, flip angle 9˚, voxel size 1 x 1 x 1 mm)

to acquire anatomical images.

Image preprocessing (standard realignment, coregistration, normalization to MNI stereo-

tactic space using unified segmentation, spatial smoothing with 8 mm full-width at half-maxi-

mum isotropic Gaussian kernel) was carried out with SPM8 (http://www.fil.ion.ucl.ac.uk/spm/

software/spm8).

Modelling analysis of behavioural data

To probe whether our predictive coding model might explain perceptual time-courses during

bistable perception in human observers, we fitted our model to the behavioural data collected

during the fMRI experiment. We optimized our model for the prediction of perceptual out-

comes, i.e. on the perception of clockwise or counter-clockwise rotation as indicated by the

individual participants. To this end, participants’ responses were aligned to the overlapping

stimulus configurations of the Lissajous figure (’overlaps’). This refers to timepoints during

presentation when fore- and background of the stimulus cannot be discerned (i.e. depth-sym-

metry) [25, 26]. Depending on the rotational speed of the stimulus and the associated ‘overlap’

Predictive coding and bistable perception
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frequency, sampling rates varied across participants between 0.24 Hz and 0.40 Hz (see above).

We first constructed models incorporating all combinations of the likelihood weight ‘stereo-

disparity’ and prior ‘perceptual stability’, yielding a total of 4 behavioural models (behavioural

model 1: no stereodisparity, no perceptual stability; behavioural model 2: no stereodisparity,

perceptual stability; behavioural model 3: stereodisparity, no perceptual stability; behavioural

model 4: stereodisparity, perceptual stability) to be compared. The respective precision of

these distributions was optimized for the prediction of perceptual outcomes based on posterior

distributions using a free energy minimization approach [27]. This method minimises the sur-

prise about the individual participants’ data, thereby maximising log-model evidence.

For model inversion, precisions were modelled as log-normal distributions. πinit and πstereo

were either estimated as free parameters (πinit: prior mean of log(3) and prior variance of 5;

πstereo: prior mean of log(5) and prior variance of 5) or fixed to zero (thereby effectively remov-

ing the distribution from the model). We kept z, which represents the inverse decision temper-

ature in the response model represented by Equation 11 (see Mathematical Appendix, S1

Text), fixed to 1, since we did not have a particular a-priori hypothesis regarding this parame-

ter. Please note that when choosing z as a free parameter (prior mean of log(1), prior variance

of 1), results remained almost identical. Parameters were optimised using quasi-Newton Broy-

den-Fletcher-Goldfarb-Shanno minimisation as implemented in the HGF4.0 toolbox (TAPAS

toolbox, http://www.translationalneuromodeling.org/hgf-toolbox-v3-0/).

After identifying the optimal model using Random Effects Bayesian model selection [20], as

implemented in SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/), we analyzed its

posterior parameters with regard to the respective precision of the prior distributions using

classical frequentist statistics. Since parameters were estimated in log-space, we report the geo-

metric mean (i.e. the arithmetic mean in log-space).

In a supplementary analysis (see S2 Text), we further compared the explanatory power of

our predictive coding model with established models of bistable perception. To this end, we

implemented models of bistable perception belonging to three different classes ([1] as an

example of so-called oscillator models based on mutual inhibition and self-adaptation between

two competing neuronal populations, [2] as a representative of noise-driven attractor models

and [3] as an intermediate model), which can be fitted to experimental data. We conducted a

Random Effects Bayesian Model Comparison [20] between the established models and our

predictive coding model in order to probe the validity of our approach.

Model-based fMRI data analysis

To examine the neural correlates of prediction error time-courses from our model, we con-

ducted model-based fMRI analyses [21] in SPM12. We adopted a general-linear-model-

(GLM-) approach, constructing a total of three models:

The design matrix of the first GLM (the ‘PE model’) represented prediction error trajecto-

ries timepoint by timepoint. To this end, the regressor ‘transitions’ and the regressor ‘overlaps’

were modelled as stick functions. Furthermore, we extracted the individual ‘Prediction Error’

time-course for every participant and run and used its absolute value as a parametric modula-

tor for the regressor ‘overlaps’.

In order to enable a comparison to the conventional approach of analysing fMRI data on

bistable perception, we constructed a second GLM that dissociated between transition-related

activity specific to bistable perception and the replay condition [4, 5, 6, 7, 9, 10]. In addition to

the regressor ‘overlaps’, the design matrix of this ‘Conventional model’ contained ambiguous

and replay transitions represented by stick functions.

Predictive coding and bistable perception
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To further investigate the specificity of the prediction error trajectories and their neural

correlates, we constructed a third GLM that took into account the presence of ambiguity

inherent to the bistable condition. The design matrix contained the regressors ‘transitions’ as

well the regressor ‘overlaps’ modelled as stick functions. Here, however, we used a box-car

function being 1 for ambiguous and 0 for ‘replay’ blocks as a parametric modulator of the

regressor ‘overlaps’. Hence, this ‘Block model’ only differs from the ‘PE model’ in the values of

the parametric modulator and serves to investigate whether correlations with the prediction

error (which we assumed to be higher in the bistable condition) merely correspond to ambigu-

ity per se.

All further analyses were conducted for all models in parallel: regressors were convolved

with the canonical hemodynamic response function as implemented in SPM12. We added six

rigid-body realignment parameters as nuisance covariates and applied high-pass filtering at 1/

128 Hz.

In a first step, we tested which of the three models accounted best for the measured BOLD

signal. Therefore, we conducted a voxel-wise model comparison of the ‘PE model’ with the

‘Conventional model’ and the ‘Block model’, as described in [22]. In brief, this technique uses

Bayesian statistics for the construction of ‘Posterior Probability Maps’ (PPMs) and ‘Exceed-

ance Probability Maps’ (EPMs), which enable the calculation of log-evidence maps for each

participant and model separately. On a second level, these log-evidence maps can be com-

bined, thereby enabling voxel-wise model inference at the group level. Using the ‘Bayesian 1st

level’ procedure for model estimation, we constructed log-evidence maps for every participant

and model separately and compared the ‘PE model’ to the other models on a group level using

exceedance probabilities computed with Random Effects analyses.

In a second step, we aimed to identify regions in which prediction error trajectories (‘PE

model’), ambiguity per se (‘Block model’) or ambiguous as compared to replay transitions

(‘Conventional model’) were correlated with the recorded BOLD signals. To this end, we esti-

mated single-participant statistical parametric maps, then created contrast images for the

parametric regressor against baseline (‘PE model’ and ‘Block model’) or ambiguous against

replay transitions (‘Conventional model’). These were entered into voxel-wise one-sample t-

tests at the group level. Voxels were considered statistically significant if they survived family-

wise-error (FWE) correction for all voxels in the brain at p< 0.05. Anatomic labeling of cluster

peaks was performed using the SPM Anatomy Toolbox Version 1.7b [28].

In order to further visualize our results, we extracted eigenvariate time-courses (without

adjustment for effects of interest) from spherical ROIs (radius: 3 mm) around peak voxels

from clusters for the contrast ‘Prediction Error vs baseline’ (thresholded at p< 0.05) corre-

sponding to left IFG (peak voxel: [-54 2 22]), right IFG (peak voxel: [51 8 10]), left insula (peak

voxel: [-30 20 10]) and right insula (peak voxel: [33 23 7]). These time-courses were extracted

for ambiguous stimulation only. The time-courses for all perceptual phases were aligned with

the respect to the end of the perceptual phase and averaged within and across observers.

Results

Model simulation

To test whether our predictive coding model was able to reproduce perceptual switching in

bistable perception, we used the model to generate perceptual time-courses during simulated

viewing of an ambiguous stimulus.

The distribution of perceptual phase durations followed a sharp rise and slow fall (Fig 2)

typical for bistable stimuli [29, 30]. Mean and median simulated phase durations were 10.40

and 10.00 seconds, closely matching the results from behavioural analysis (see Modelling
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analysis of behavioural data). As illustrated by exemplary time-courses of model parameters,

the prediction error PE (Fig 2A) increases over time while one percept is dominant and is

reduced once a new percept is adopted, reflecting the accumulation of evidence from the sup-

pressed percept. The variance (1/πstability) of the prior ‘perceptual stability’ (Fig 2C) increases

over a perceptual phase as a function of the prediction error. In line with the hypothesized role

of prediction errors in driving perceptual transitions, the prediction error PE and, hence, the

variance 1/πstability are maximal when the posterior P(θ> 0.5) relaxes to 0.5 (Fig 2B), thereby

increasing the probability of a new perceptual transition.

Modelling analysis of behavioural data

To investigate whether our model is able to explain the dynamics of perceptual bistability in

human observers, we fitted our model to behavioural data collected from 20 healthy partici-

pants during an fMRI experiment, in which participants viewed ambiguous and unambiguous

(replay) versions of a rotating Lissajous stimulus. As reported previously, perceptual transi-

tions occurred on average every 9.3 seconds in the ambiguity condition and neither block-by-

block ratings nor debriefing after the experiment revealed differences in perceived appearance

between the ambiguity and the replay condition [7].

We first performed a model comparison with other models that lacked the key conceptual

elements of our model. By eliminating either the likelihood weight ‘stereodisparity’ or the

Fig 2. Simulating perceptual decisions during ambiguous stimulation. Data were simulated using πinit of 3.5 at a sampling

rate of 0.33 Hz for a total of 6*105 seconds. The distribution of phase durations followed a sharp rise and slow fall resembling a

gamma-distribution. The insets A-C show simulated perceptual time-courses (grey dotted lines) next to updated model quantities

(black solid lines). A: Prediction errors increase during a dominance phase and are reduced by perceptual transitions. B: Bistable

perception can be conceived as resulting from subsequent sampling from a bimodal probability distribution [19], the weight of which

is expressed by P(θ > 0.5). This weight is close to 0 or 1 at the beginning of a dominance phase (low transition probability) and

gradually relaxes to 0.5 (high transition probability). C: The variance (inverse precision) of the prior distribution ‘perceptual stability’

increases as a consequence of prediction errors and is set to 1/πinit after a transition in perception.

https://doi.org/10.1371/journal.pcbi.1005536.g002

Predictive coding and bistable perception

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005536 May 15, 2017 10 / 21

https://doi.org/10.1371/journal.pcbi.1005536.g002
https://doi.org/10.1371/journal.pcbi.1005536


prior ‘perceptual stability’ or both from the model, we constructed three additional models

which we compared to our model using Random Effects Bayesian Model Selection. Our model

(i.e. behavioural model 4) was identified as a clear winning model with a protected exceedance

probability of 99.96%, demonstrating that the incorporation of both the likelihood weight

‘stereodisparity’ and the prior ‘perceptual stability’ best explained participants’ perception.

From this model, we extracted the parameters for πinit and πstereo and averaged across runs

and participants (Fig 3A). We predicted average prediction errors to be lower in replay as com-

pared to the ambiguous condition, since the presented stereodisparity reduces the ambiguity

left in the experimental display, and hence, the residual evidence for suppressed percept. Con-

sistently, mean prediction errors were significantly higher in the ambiguous condition than in

the replay condition (0.36 +/- 0.03 vs. 0.26 +/- 0.02, mean +/- s.e.m., p< 10−6, t19 = 7.06, two-

sample t-test, Fig 3B), providing support for a correct implementation of our predictive coding

model.

Given that πinit describes the strength of the initial stabilization after a switch in perception,

we expected this parameter to be related to the frequency of perceptual transitions. In line with

this, model parameter estimates πinit were negatively correlated with perceptual transition fre-

quencies across participants (ρ = −0.88, p< 10−7, Pearson correlation, Fig 3C), providing a

Fig 3. Posterior model parameters. A: The geometric mean (i.e. the arithmetic mean in log-space) of posterior πinit and πstereo,

averaged across runs and participants, and standard error of the mean. B: Mean prediction errors averaged across runs and

participants for ambiguous and replay blocks and standard error of the mean. Prediction errors were significantly decreased during

replay stimulation (two-sample t-test, p < 10−6, t19 = 7.69). C: Average transition probabilities correlated significantly with average πinit

for individual participants (ρ = −0.88, p < 10−7, Pearson correlation), providing a sanity check for model fit. D: Transition probabilities

from run 3 were predictive of posterior πinit averaged over run 1 and 2. The significant Pearson correlation between the two independent

measures (ρ = −0.76, p < 10−4) illustrates the predictive power of the model.

https://doi.org/10.1371/journal.pcbi.1005536.g003
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sanity check for model fit. Notably, this correlation was also significant when we correlated

model parameter estimates for πinit averaged over run 1 and 2 with perceptual transition fre-

quencies from run 3 (ρ = −0.76, p = 10−4, Fig 3D), corroborating that our model successfully

accounted for observers’ perception evoked by an ambiguous stimulus.

We furthermore validated our approach by comparing our predictive coding model to

established models of bistable perception from three different classes: oscillator models [1],

attractor models [2] and intermediate models [3] (see Supplementary Methods in S2 Text).

Data simulations indicated that all established models, similar to our predictive coding model,

were able to produce spontaneous transitions in perception and a typical gamma-like distribu-

tion of perceptual phase durations (see Supplementary Results and Fig. A-C in S2 Text). Fitting

of the behavioural data further showed that both the oscillator and the intermediate, similar to

our predictive coding model, adequately accounted for the observers’ perceptual decisions

during bistable perception (see Supplementary Results and Fig. D-I in S2 Text). In order to

validate our approach, we conducted a Bayesian Model Comparison, which showed that our

predictive coding model compared to these established models was best in explaining the

behavioural data collected during this experiment (see Fig. J in S2 Text).

Please note that we did not carry out these analysis to demonstrate a superiority of our

approach over these earlier models, which were initially conceived mainly for binocular rivalry

and not for the prediction of behavioural responses during presentation of the Lissajous figure

(a specific type of structure-from-motion stimulus). On the contrary, we aimed at probing the

validity of our approach and tried to ascertain that the predictive coding approach was at least

equivalent to existing models of bistable perception.

Model-based fMRI analysis

One central aim of our study was to gain mechanistic insight into the neural processes under-

lying transition-related activity during bistable perception. We therefore performed both a

model-based fMRI analysis suitable to identify the neural correlates of modelled prediction

errors (‘PE model’), and, for the purpose of comparison, a conventional analysis (‘Conven-

tional model’) dissociating between ambiguous and replay transitions as well as a ‘Block

model’ accounting for effects of ambiguity per se.

To test the validity of these models, we first searched for voxels that were more active during

visual stimulation as compared to baseline (‘overlaps vs. baseline’). For the ‘PE model’, this

analysis revealed significant clusters (p< 0.05, FWE-corrected across the whole brain) bilater-

ally in middle occipital cortex (right: [39 -9 1], T = 10.21; left: [-30 -94 1], T = 13.30), in V5/

hMT+ (right: [45 -70 1], T = 11.61; left: [-45 -73 4], T = 14.09), as well as in superior parietal

cortex (right: [27 -49 58], T = 10.26; left: [-36 -46 -61], T = 8.62). The same analyses for the

‘Conventional model’ and the ‘Block model’ yielded virtually identical results (see Tables 2–4),

confirming the comparability between all three models.

We then investigated which voxels were more active during perceptual transitions as com-

pared to baseline (‘transitions vs. baseline’, Fig 4A): For the ‘PE model’, we found significant

activations of motor-related areas in left precentral gyrus ([-36 -16 67], T = 12.23) extending to

left postcentral gyrus ([-63 -19 25], T = 8.62) as well as significant clusters in regions previously

associated with transition-related activity during bistable perception: right inferior frontal

gyrus ([54 17 13], T = 7.96), right inferior parietal lobulus (54 -37 52, T = 9.32) and right mid-

dle frontal gyrus ([39 44 31], T = 7.57). Additional clusters were located in bilateral posterior-

medial frontal gyrus (right: [6 2 67], T = 9.50; left: [-6 2 55], T = 12.63). Again, repeating this

analysis for the ‘Block model’ and the ‘Conventional model’ yielded qualitatively very similar
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results as in the ‘PE model’ (see Tables 5–7), thereby providing further evidence for the validity

and comparability of all three models.

To formally test whether the modelled prediction error explains the BOLD signal better

than the conventional comparison of ambiguous with replay perceptual switches (‘Conven-

tional model’), or the mere ambiguity of the visual display (the ‘Block model’), we performed a

PPM analysis [22] to compute voxel-wise exceedance probability maps for the ‘PE model’

against the ‘Conventional model’ and the ‘Block model’ (Fig 4C). We restricted this analysis to

areas of the fronto-parietal cortex, which be delineated by intersecting the statistical-paramet-

ric maps for ‘transitions vs. baseline’ thresholded at p< 0.05 FWE for all three models consid-

ered. Remarkably, when applying a conservative threshold of an exceedance probability of

γ = 99% and a cluster size of n> 10 voxels, we found clusters in right insula ([39 26 -2]) and

right inferior frontal gyrus ([51 14 1]) to show strong evidence for the ‘PE model’ as compared

Table 4. ‘Block model’: Overlaps vs baseline.

Cluster T MNI Region

1 T = 11.60 42 -70 -2 R Middle Temporal Gyrus

T = 10.96 30 -91 -5 R Inferior Occipital Gyrus

T = 10.26 39 -79 1 R Middle Occipital Gyrus

2 T = 10.19 27 -52 61 R Superior Parietal Lobule

T = 10.10 30 -46 55 R Postcentral Gyrus

T = 8.89 21 -58 58 R Superior Parietal Lobule

3 T = 11.78 -27 -52 55 L Inferior Parietal Lobule

T = 8.36 -36 -46 61 L Superior Parietal Lobule

https://doi.org/10.1371/journal.pcbi.1005536.t004

Table 2. ‘PE model’: Overlaps vs baseline.

Cluster T MNI Region

1 T = 11.61 45 -70 1 R Middle Temporal Gyrus

T = 10.94 30 -91 -5 R Inferior Occipital Gyrus

T = 10.21 39 -79 1 R Middle Occipital Gyrus

2 T = 10.26 27 -49 58 R Superior Parietal Lobule

T = 0.22 30 -46 55 R Postcentral Gyrus

T = 8.93 21 -58 58 R Superior Parietal Lobule

3 T = 11.96 -27 -52 55 L Inferior Parietal Lobule

T = 8.62 -36 -46 61 L Superior Parietal Lobule

https://doi.org/10.1371/journal.pcbi.1005536.t002

Table 3. ‘Conventional model’: Overlaps vs baseline.

Cluster T MNI Region

1 T = 11.64 42 -70 -2 R Middle Temporal Gyrus

T = 10.92 30 -91 -5 R Inferior Occipital Gyrus

T = 10.22 39 -79 1 R Middle Occipital Gyrus

2 T = 10.17 27 -52 61 R Superior Parietal Lobule

T = 10.09 30 -49 58 R Superior Parietal Lobule

T = 8.90 21 -58 58 R Superior Parietal Lobule

3 T = 11.82 -27 -52 55 L Inferior Parietal Lobule

T = 8.35 -36 -46 61 L Superior Parietal Lobule

https://doi.org/10.1371/journal.pcbi.1005536.t003
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to the ‘Block model’ and the ‘Conventional model’. Additional clusters were located in right

posterior medial frontal gyrus ([6 5 49]) as well as left precentral gyrus ([-36 -16 52]).

Conversely, for the exceedance probability map of the ‘Conventional model’ compared

against ‘Block model’ and ‘PE model’, no voxels survived the conservative threshold used in

the main experiment. For the exceedance probability map of the ‘Block model’ compared

against the ‘Conventional model’ and ‘PE model’, we found clusters in bilateral inferior parie-

tal lobule at an exceedance probability of 99% and a cluster size > 10.

Fig 4. Model-based fMRI results from standard GLM (A, B) and PPM (C) analyses. GLMs are displayed using FWE

correction at p < 0.05. For PPM results, we show voxels above an exceedance probability of 99% with a cluster size n > 10.

A: 2-level contrast for ‘Transition vs. baseline’ showing activations left pre- and postcentral gyrus, right inferior frontal gyrus,

right inferior parietal lobulus and right middle frontal gyrus with qualitatively equivalent results for all models. B: ‘PE vs.

baseline’ (‘PE model’) yielded activations in bilateral insulae and inferior frontal gyri. We found no whole-brain correctable

voxels for ‘Ambiguity vs. baseline’ (‘Block model’) nor for ‘Ambiguous vs. replay transitions’ (‘Conventional model’). C:

Group exceedance probability maps with right insula, right inferior frontal gyrus, right posterior-medial frontal gyrus as well

as left precentral gyrus showed strongest evidence for the ‘PE model’ as compared to the control models.

https://doi.org/10.1371/journal.pcbi.1005536.g004
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For our central analysis aimed at identifying the neural correlates of modelled prediction

errors, we searched for voxels in which BOLD activity was related to the parametric modulator

of the ‘PE model’ that encoded prediction error trajectories from our Bayesian model of bis-

table perception (Fig 4B). We found significant clusters (p< 0.05, FWE-corrected across the

whole brain) in bilateral insulae (right: [33 23 7], T = 7.24; left: [-30 20 10], T = 7.88) and

Table 5. ‘PE model’: Transitions vs baseline.

Cluster T MNI Region

1 T = 12.23 -36 -16 67 L Precentral Gyrus

T = 8.74 -51 -28 43 L Inferior Parietal Lobule

T = 8.28 -57 -28 34 L SupraMarginal Gyrus

2 T = 11.19 42 2 46 R Precentral Gyrus

T = 9.73 42 8 40 R Middle Frontal Gyrus

T = 7.71 15 5 13 R Caudate Nucleus

T = 7.96 54 17 13 R IFG (p. Opercularis)

3 T = 12.63 -6 2 55 L Posterior-Medial Frontal

T = 9.50 6 2 67 R Posterior-Medial Frontal

4 T = 9.42 60 -40 43 R SupraMarginal Gyrus

5 T = 6.70 42 26 -5 R Insula

6 T = 7.03 -18 -97 -8 L Inferior Occipital Gyrus

7 T = 6.50 -27 -88 -2 L Middle Occipital Gyrus

https://doi.org/10.1371/journal.pcbi.1005536.t005

Table 7. ‘Block model’: Transitions vs baseline.

Cluster T MNI Region

1 T = 14.71 -6 -1 55 L Posterior-Medial Frontal

T = 12.58 -42 -22 58 L Postcentral Gyrus

T = 12.57 -36 -16 67 L Precentral Gyrus

T = 10.51 -42 -7 4 L Insula Lobe

T = 9.65 42 8 37 R Middle Frontal Gyrus

2 T = 10.17 60 -40 43 R SupraMarginal Gyrus

T = 9.57 51 -40 55 R Inferior Parietal Lobule

3 T = 6.89 33 -61 43 R Angular Gyrus

4 T = 6.71 -18 -97 -8 L Inferior Occipital Gyrus

https://doi.org/10.1371/journal.pcbi.1005536.t007

Table 6. ‘Conventional model’: Transitions vs baseline.

Cluster T MNI Region

1 T = 14.73 -6 -1 55 L Posterior-Medial Frontal

T = 12.88 -36 -16 67 L Precentral Gyrus

T = 10.33 -42 -7 4 L Insula Lobe

2 T = 10.11 60 -40 43 R SupraMarginal Gyrus

T = 9.57 51 -40 55 R Inferior Parietal Lobule

3 T = 7.97 42 44 28 R Middle Frontal Gyrus

4 T = 7.30 39 -46 40 R Inferior Parietal Lobule

5 T = 6.80 -21 -94 -8 L Inferior Occipital Gyrus

6 T = 6.82 33 -58 43 R Angular Gyrus

https://doi.org/10.1371/journal.pcbi.1005536.t006
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bilateral inferior frontal gyri (right: [51 8 10], T = 6.89; left: [- 54 2 22], T = 6.67). These regions

are located in close anatomical proximity to frontal regions previously suggested to mediate

perceptual transitions in bistable perception [4, 5, 7].

In order to further visualize the correlation between modelled prediction error and BOLD

activity, we extracted eigenvariate time-courses from right insula, left insula, right IFG as well

as left IFG and averaged across perceptual phase durations and observers. As expected, these

time-courses showed a gradual increase towards a transition in perception (Fig 5), nicely mir-

roring the build-up of prediction error during a perceptual phase.

Discussion

In this work, we present a Bayesian predictive coding model for bistable perception, which

rests on the basic assumption that prediction errors are elicited by the unexplained alternative

interpretation of an ambiguous stimulus and represent the driving force behind perceptual

transitions during bistable perception. We found that this model is able to reproduce key tem-

poral characteristics of human bistable perception and that it explains observers’ behaviour

during a bistable perception experiment. Our central finding shows that modelled prediction

errors correlate with BOLD activity in bilateral insulae and bilateral inferior frontal gyrus.

Remarkably, our PPM analysis revealed that modelled prediction errors best accounted for

Fig 5. Average eigenvariate time-courses. For visualization, we extracted eigenvariate time-courses from

right insula, left insula, right IFG and left IFG (A–D), aligned all phase durations to the timepoint of the

upcoming perceptual transition and averaged within and across observers. In analogy to modelled prediction

error trajectories, mean eigenvariate time-courses (± standard error of the mean) showed a gradual increase

towards a transition in perception.

https://doi.org/10.1371/journal.pcbi.1005536.g005
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BOLD activity as compared to mere occurrence of endogenous perceptual transitions or ambi-

guity of the visual display in these frontal regions. Hence, our current results suggest that

prediction errors might provide the mechanistic basis for perceptual switching in bistable per-

ception and offer a novel interpretation of frontal activity in bilateral insulae as well as the

right inferior frontal gyrus during bistable perception.

The functional significance of enhanced frontal brain activity for transitions during bist-

ability as compared to an unambiguous control condition is a matter of ongoing debate: Some

authors proposed that non-sensory higher-level brain regions are actively implicated in resolv-

ing the perceptual conflict during bistable perception, thus mediating perceptual transitions

[4, 31, 5, 11, 7]. Others have argued that perceptual conflicts are resolved primarily in sensory

brain areas and that activity in frontal and parietal regions reflects the registration and/or

report of perceptual transitions, rather than their cause [6, 8, 10]. For a detailed discussion of

this debate, see “Brascamp, Sterzer, Blake and Knapen, Multistable perception and the role of

frontoparietal cortex in perceptual inference, Annual Review of Psychology, in press.”

Here, we provide further evidence for an active implication of frontal regions in bistable

perception by functionally relating these regions to a prediction error signal. Hence, our work

is in line with hybrid models that suggest bistable perception to arise from an interplay

between lower-level sensory and higher-level non-sensory areas [32, 12, 11]. In this context, it

might be speculated that prediction errors are computed in frontal regions based on feedfor-

ward signals from visual and parietal cortex; and that these prediction errors, in turn, modulate

activity in visual cortex via feedback signals.

In addition to the prediction error, the stability prior represents an essential element of our

predictive coding model of bistable perception, since its initial precision determines the fre-

quency of perceptual transitions. The notion of such a stability prior is supported by experi-

mental work on serial dependence in visual perception: In an orientation-judgement task, [33]

showed that perceived orientation was biased by recently observed stimuli and reasoned that

the visual system might use past experiences as predictors of present perceptual decisions,

thereby incorporating representations of the continuity of the visual environment. Corrobo-

rating these results in a fMRI experiment, [34] found that orientation signals in early visual

cortex were biased towards previous perceptual decisions. At this point, however, we can only

speculate about the neural correlates of the stability prior from our model: In recent work on

the role of parietal cortex in bistable perception, [35] and [9] have proposed a functional segre-

gation of the superior parietal lobulus (SPL), which they deduced from differential effects of

grey matter volume on perceptual dominance durations and analyses of effective connectivity

on the basis of fMRI. By interpreting their results in a Bayesian framework, the authors argued

that posterior SPL might represent a prediction error, while the anterior SPL would entertain a

perceptual prediction.

A key advantage of our predictive coding model of bistable perception is that it allows us to

treat ambiguous and replay stimulation within the same framework. By formalizing the disam-

biguating factor as a weight on a bimodal likelihood distribution, such models can be used to

investigate perceptual transitions under varying degrees of ambiguity, thus dissolving the arti-

ficial dichotomy between the two conditions. Hence, such models provide a new perspective

on how the brain might resolve perceptual conflicts despite the ambiguity inherent in every

sensory signal and offer a generic tool for quantifying the contribution of different contextual

factors on perceptual outcomes.

The major strength of predictive coding models for bistable perception, however, lies in

their ability to parsimoniously link different levels in the description of perceptual dynamics in

ambiguous visual environments: On a computational level, prediction errors constitute the

driving force behind perceptual transitions and are substantially reduced by additional sensory
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information (such as stereodisparity) during replay. On a neural level, casting frontal activity

during rivalry in terms of prediction error signals nicely relates to increased transition-related

activity [4, 5, 9] and connectivity [7]. On a theoretical level, viewing perceptual transitions as

means of reducing prediction errors places bistable perception in the context of Bayesian theo-

ries of the brain [16, 36, 27, 37], and in particular the free-energy principle [13]. According to

the latter, agents strive for a reduction of their model’s free energy, which translates onto a

minimization of squared prediction errors in predictive coding schemes. When sensory infor-

mation is constantly ambiguous, one possibility to reduce free energy is to update beliefs about

the world, which ultimately corresponds to the adoption of a new percept.

However, given that the Lissajous differs in some aspects from other types of bistable sti-

muli, one has to consider important limitations regarding the generalization of our findings:

While being physically ambiguous for all angles of rotation, transitions almost exclusively

occur at overlapping stimulus configurations, which is similar to the behaviour of some types

of random dot kinematograms [26] or intermittent presentation of bistable stimuli [38] and

accompanied by a reduced incidence of mixed percepts or incomplete transitions. Since these

phenomena are present in many other forms of bistable perception and significantly affect

frontoparietal activity during perceptual transitions [6], our current imaging results can only

be interpreted in relation to the specific stimulus used here.

A similar limitation applies to the behavioural modelling presented in this manuscript: Pre-

vious work on computational modelling of bistable perception has focused on a variety of

mechanisms at the heart of spontaneous perceptual transitions: Oscillator models have focused

on mutual inhibition between two competing neuronal populations combined with slow adap-

tation of the currently dominant population [1]. [39] have studied the differential effects of

short and long interruptions in intermittent bistable perception for binocular rivalry and

structure-from-motion and presented a model based on adaptive processes, cross-inhibition

and neural baseline levels. Importantly, this model also accounts for the possibility of volun-

tary control via attentional processes interacting with early processing stages.

Alternative approaches view noise as the underlying cause of perceptual transitions [2].

Importantly, models belonging to this class have also taken account of the aforementioned

mixed percepts and incomplete transitions during binocular rivalry [40].

Further models have related transitions in perception to a combination of adaptation and

noise [3]. In this vein, [41] have argued for a neurodynamic mechanism at the bifurcation

between adaptation- and noise-driven processes to be the basis for perceptual transitions dur-

ing binocular rivalry.

The majority of the models mentioned above has been developed for continuous presenta-

tion of binocular rivalry or ambiguous structure-from-motion, while [39] have also studied

paradigms with intermittent presentation. As noted above, such stimuli differ significantly

from the Lissajous figure used in our current study, which shares aspects with intermittent

stimulation due to the existence of overlapping configurations facilitating transitions in per-

ception. Hence, future theoretical and empirical work is needed to probe our modelling

approach on paradigms such as binocular rivalry and ambiguous structure-from-motion for

both continuous and intermittent presentation and to extend the predictive coding model in

order to account for top-down attentional control as well as interactions at earlier processing

stages.

Taken together, our current work provides theoretical and empirical evidence across differ-

ent levels for a driving role of prediction errors in bistable perception, thereby shedding new

light on an ongoing debate about the neural mechanisms underlying bistable perception and,

more generally, opening up a novel computational perspective on the mechanisms governing

perceptual inference.
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