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Abstract: Elevated expression of the inducible heat shock protein 70 (Hsp70) is known to 

correlate with poor prognosis in many cancers. Hsp70 confers survival advantage as well 

as resistance to chemotherapeutic agents, and promotes tumor cell invasion. At the same 

time, tumor-derived extracellular Hsp70 has been recognized as a ―chaperokine‖, 

activating antitumor immunity. In this review we discuss localization dependent functions 

of Hsp70 in the context of invasive cancer. Understanding the molecular principles of 

metastasis formation steps, as well as interactions of the tumor cells with the 

microenvironment and the immune system is essential for fighting metastatic cancer. 

Although Hsp70 has been implicated in different steps of the metastatic process, the exact 

mechanisms of its action remain to be explored. Known and potential functions of Hsp70 

in controlling or modulating of invasion and metastasis are discussed. 
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AIF: apoptosis-inducing factor; Apaf-1: apoptotic protease activating factor-1; APCs: antigen-presenting 

cells; Ask-1: apoptosis signal-regulated kinase 1; ASM: acid sphingomyelinase; BMDCs: bone 

marrow-derived cells; BMP: bis(monoacylglycero)-phosphate; CHIP: carboxyl-terminus of Hsp70 

interacting protein; DCs: dendritic cells; ECM: extracellular matrix; EGFR: epidermal growth factor 

receptor; EMT: epithelial-mesenchymal transition; ERK: extracellular signal-regulated kinase;  
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organizing protein; HSF: heat shock factor; Hsp70: heat shock protein 70; HspBP1: Hsp70 binding 

protein 1; JNK: c-Jun N-terminal kinase; LAMP-1: lysosomal-associated membrane protein-1 

MAPK: mitogen-activated protein kinase; MDSC: myeloid-derived suppressor cells; MMPs: matrix 

metalloproteases; NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells; NK: natural 

killer; NO: nitric oxide; PMA: phorbol 12-myristate 13-acetate; pMHC: peptide-loaded major 

histocompatibility complex; ROS: reactive oxygen species; TCR: T cell receptor; TGF-beta: 

transforming growth factor-beta; tTG: tissue transglutaminase; TLR: Toll-like receptor; TNF: tumor 

necrosis factor; Wasf3: Wiskott-Aldrich syndrome protein family member 3. 

1. Introduction 

The stress-inducible heat shock protein 70 (Hsp70) also known as HSPA1A, Hsp70-1, Hsp72 or 

HspA1 [1], is produced at low or undetectable levels in unstressed, healthy cells. Upon a variety of stresses 

its expression is rapidly induced through mitogen-activated protein kinase/extracellular signal-regulated 

kinase (MAPK/ERK) and stress-activated protein kinase (SAPK) signaling cascades activating heat 

shock factors (HSFs) [2–4]. Hsp70 restores the balance of cell proteome by normalizing the 

concentration of unfolded and denatured proteins. Being a molecular chaperone, Hsp70 is an important 

part of cellular networks, including transcriptional, signaling, membrane and organelle networks [5]. 

The tumor microenvironment, where cells are subjected to free radicals, acidosis, hypoxia and 

nutrient deprivation, as well as high levels of mutant proteins, causes stressful conditions challenging 

cancer cells [6]. Accordingly, constitutive high levels of Hsp70 are frequently observed in various 

cancer cells [7,8], where Hsp70 enhances cell growth, suppresses senescence, and confers resistance to 

stress-induced apoptosis. Origin of elevated Hsp70 levels in cancer cells is thought to result from the 

need for antistress proteins. It has been hypothesized that elevated Hsp70 level in cancer cells is a 

consequence of altered HSF1 transcriptional activity [9–11], although Hsp70 may be also expressed 

regardless of HSF1 [12]. Interestingly, inhibition of Hsp70 in tumor cells is often lethal [13]  

and silencing of Hsp70 kills several types of cancer cells in culture as well as in tumor xenografts in 

mice [13–15]. Other rodent cancer models pointed to the tumorigenic potential of Hsp70 [16–19]. 

Although a large body of evidence supports the importance of Hsp70 in oncogenesis, the exact 

mechanisms remain elusive. 

Expression level of Hsp70 is a diagnostic measure in several cancers, as Hsp70 overexpression can 

be correlated with increased cancer cell proliferation [20], clinical stage [21,22] or increased grade and 

shorter overall survival [23]. Extensive research in the last decades potentiated Hsp70 as a marker 

molecule in cancer treatment. Hsp70 is a good tumor marker to identify patients with early-stage 

prostate cancer [24] and hepatocellular carcinoma [25]. High expression levels of Hsp70 correlate  

with poor prognosis in acute myeloid leukemia, in cancers of the breast, endometrium [8,26–28] and 

rectum [29]. Furthermore, Hsp70 expression might be of use to assess the progression of esophageal 

squamous cell carcinoma [30,31]. However, elevated Hsp70 level is not a general marker of poor 

prognosis, as it has no prognostic relevance in gastric cancer [29,32], or even indicates good prognosis 

in renal and esophageal cancer [7,33]. Interestingly, Hsp70 levels correlate with malignancy in 

osteosarcoma and renal cell tumors, whereas associate with improved prognosis [7,34]. Accordingly, 

association of Hsp70 expression and clinical outcome largely depends on the cancer type and stress 
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conditions. Cancer cell specific surface localization or release of Hsp70 exhibits additional activities of 

this stress protein [35–39]. Hsp70 exerts a dual role in cancer, promoting survival and dissemination of 

tumor cells, and at the same time contributing to antitumor immunity. 

Metastasis is a result of a series of highly orchestrated processes, including epithelial-mesenchymal 

transition (EMT), alteration of cell adhesion and motility, inducing neoangiogenesis, invasion into 

tissue, intravasation, and surviving in the blood or lymphatic vessels. Besides the extensively studied 

Hsp90, Hsp70 family members have been implicated in metastasis formation as well [40–42]. Elevated 

Hsp70 expression has been found to correlate with lymph node metastases and decreased survival in 

breast cancer models [43]. It has been hypothesized that membrane Hsp70, like membrane Hsp90 [44], 

might support the spread of distant metastasis. The fact that Hsp70 expression can influence metastasis 

development and drug resistance further highlights the need for understanding its role in cancer 

progress [45–47]. This review focuses on our current understanding of the pleiotropic properties of 

Hsp70 in metastatic cancer cells. 

2. Hsp70 Supports Metastatic Cancer Cell Growth through Chaperone and Antiapoptotic Functions 

Elevated Hsp70 expression, frequently associated with transformed phenotype, may provide a 

selection advantage to cancer cells, whereas depletion of Hsp70 promotes G2/M cell cycle arrest [47] 

and tumor regression [19]. It has been assumed that elevated Hsp70 expression relates to cell growth in 

epithelial carcinoma cell lines [48,49]. Hsp70 as a molecular chaperone has long been in the focus of 

cancer research that revealed a number of client proteins interacting with Hsp70 during cell growth 

(reviewed in [50]). Among several hypotheses on the role of Hsp70 in human malignancies it has been 

suggested that high levels of inducible Hsp70 in tumor cells may be required for stabilizing mutant 

oncogene products during tumor growth [51,52]. Detailed molecular mechanisms of chaperone activity 

of Hsp70 enhancing tumor cell growth have been reviewed elsewhere [53]. 

Because of shear stress through vasculature transit and lacking of survival signals from adhesive 

sites, metastatic steps are particularly stressful for disseminating cells, making metastasis an 

ineffective process [54,55]. Therefore, survival pathways must be enhanced in order for selection of 

aggressive tumor cells. Metastatic cells likely benefit from Hsp70 chaperone functions supporting 

cellular growth. Nevertheless, the beneficial effect of Hsp70 on cell growth widely reported for 

primary cancer cells remains largely unexplored for metastatic cells. In fact, it is mainly coupled to 

other aspects of metastasis, such as cytoskeleton-dependent signaling. Indeed, proliferation of human 

colonic carcinoma cells correlated with co-expression of Hsp70 and CD44 [56], a surface molecule 

implicated in tumor cell survival during micrometastasis formation [57]. 

Besides chaperoning cancer cell growth, Hsp70 has been shown to inhibit cancer cell death  

induced by different stimuli such as oxidative stress, inflammatory cytokines, anticancer drugs or 

irradiation [58–65]. Consistently with its known substrate promiscuity, Hsp70 interacts with multiple 

partners in the signaling cascades of apoptosis and senescence. Hsp70 has been shown to directly bind 

to and inhibit apoptosis signal-regulated kinase 1 (Ask1), p38 MAPK and c-Jun N terminal kinase 

(JNK), thereby blocking stress-induced cell death [66–69]. Hsp70 modulates ERK signaling upon heat 

stress and hyperosmolarity-induced apoptosis [70–72]. In tumor cells, there has been shown a 

suppressive role of Hsp70 in senescence through controlling p53 and ERK activity [45,73]. Inducible 
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Hsp70 plays a negative regulatory role in the mitochondrial apoptotic pathway at several steps.  

Hsp70 directly binds to apoptosis protease-activating factor-1 (Apaf-1), thereby preventing the 

recruitment of procaspase-9 to the apoptosome [74]. Hsp70 interferes also with caspase-independent 

apoptotic pathways, interacting with apoptosis-inducing factor (AIF), in turn inhibiting AIF-induced 

chromatin condensation [75]. Additionally, Hsp70 has been shown to accumulate in the lysosomes of 

many tumor cell types, preventing lysosomal membrane permeabilization-induced cell death [65,76]. 

Detailed mechanisms of the involvement of Hsp70 in apoptotic pathways are reviewed  

elsewhere [9,53,77]. 

Avoiding apoptosis is crucial for tumor cells during the metastatic process. Alteration in cell 

adhesion to extracellular matrix (ECM) proteins is one of the earliest steps in cancer metastasis [78]. 

Involvement of signaling molecules such as focal adhesion kinase (FAK), Met and Akt have been 

shown to play a role in anoikis and amorphosis, apoptotic processes that normally occur to cells  

losing contact with ECM [79]. Activity of these molecules has been reported to be influenced by 

Hsp70 [80–82], raising a possible regulatory role of Hsp70 in these processes typically inhibited in 

metastatic cancer cells. It has also been suggested that Hsp70 could directly protect members of 

cytoskeletal-based cell survival pathways [14]. Indeed, interaction between FAK and Hsp70  

prevents FAK degradation by activated caspase-3 and may represent a novel mechanism for 

cytoprotection [82]. It has been recently shown that matrix metalloproteases (MMPs), in addition to 

being active during invasion, are involved in regulating apoptosis [83,84]. MMPs may interfere with 

cell death by cleaving death receptors, as well [85]. Since Hsp70 expression is known to affect MMP 

secretion and activity in cancer [86,87], Hsp70 levels may indirectly determine the fate of a metastatic 

cancer cell. Further studies using appropriate models would be still necessary to dissect the role of 

Hsp70 in conferring a survival advantage on cancer cells at different steps of metastasis. 

3. Hsp70 Supports Metastasis through Promoting Invasion Steps 

Upon tumor progression and antitumor treatments cancer cells are exposed to various forms of 

stress such as proteasome inhibition, hypoxia or heat stress, which have been reported to induce 

metastatic steps including EMT, cell migration and invasion [88,89]. Hsp70 overexpression correlates 

with a more aggressive phenotype in several cancer types. Elevated expression of Hsp70 has been 

found to correlate with lymph node metastasis in breast cancer cells as mentioned above [43] and with 

vascular invasion in gastric cancers [90]. In cervical and bladder cancer cells shRNA knockdown of 

Hsp70 has been shown to suppress invasion and migration [91]. In accordance, Rohde et al. suggested 

a role for Hsp70 in cancer cell adhesion, as depletion of Hsp70 resulted in cell detachment [47]. 

During invasion tumor cells need to penetrate surrounding tissue. This process requires enhanced 

cell motility and reduced adhesion, acquired by EMT. Notably, the carboxyl-terminus of Hsp70 

Interacting Protein (CHIP) downregulates Met, one of the key receptors triggering EMT [92] via a 

switch from Hsp70 chaperone activity to proteosomal targeting [81]. Essential role of Hsp70 in 

transforming growth factor-beta (TGF-beta) induced EMT has been revealed, where Hsp70 blocks 

TGF-beta signaling by impeding Smad2 phosphorylation [93]. As EMT is thought to be a prerequisite 

for the invasive behavior of cancer cells, further studies may help targeting Hsp70 to  

prevent metastasis. Although Hsp70 is known to influence the activity of molecules involved in cell 
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motility [41,82,94], little is known about the role of Hsp70 in cancer cell migration. Knockdown of 

Hop caused a decrease in the level of RhoC GTPase, and significantly inhibited pseudopodia 

formation in cancer cell lines [95]. Activity of Hsp70/Hsc70 has been found essential for cell motility 

revealed by experiments inhibiting their ATPase activity in EGF stimulated cells [96]. In the same 

publication tissue transglutaminase was identified to translocate to the leading edge of the cell 

depending on active Hsp70. Remarkably, at the same site further interaction partners of Hsp70 are present 

that are involved in cell motility. Hsp70 is known to stabilize FAK [82] as well as Wiskott-Aldrich 

syndrome protein family member 3 (Wasf3) [91], a molecule involved in lamellopodia formation and 

metastasis [97–99]. A potential linker represents the Hsp70 regulator BAG3. The SH3 binding motifs 

of BAG3 could target Hsp70 protein complexes to signaling complexes at the leading edge of the cell. 

Indeed, reduced motility of BAG3-deficient mouse endothelial fibroblasts and BAG3 depleted cancer 

cell lines was observed [100]. In addition, BAG3 provides a potential link to the modulation of the 

extracellular matrix, another key step in invasion. Immunoprecipition indicated BAG3 as an 

interaction partner of MMP-2 [101]. 

Besides the rather indirect link of Hsp70 to MMPs via BAG3, MMP-2 is directly activated by 

Hsp90 [102] in an extracellular chaperonin complex with Hsp70/Hsp90 organizing protein (Hop) and 

Hsp70 [103]. Knockdown of Hop reduced the expression of MMP-2 and other proteins implicated in 

invasion and metastasis [103]. Whether MMP levels correlate with negative outcome and tumor 

aggressiveness is still unclear [104]. Remarkably, in glioblastoma xenografts CD44, a receptor 

involved in EMT and migration [105] is activated by MMP-9 [106], which in turn, is released in the 

presence of extracellular Hsp70 [87]. Furthermore, the presence of extracellular Hsp70 can trigger an 

inflammatory microenvironment and angiogenesis, which are hallmarks of cancer development as 

discussed later in this review. Therefore, Hsp70 has multiple activities which potentially contribute to 

invasion and metastasis (Figure 1). 

4. Impact of Hsp70 Trafficking on Metastasis 

Increased level of Hsp70 in patients’ blood samples and in the extracellular milieu appears to be a 

general feature of cancers [107]. Tumor-derived extracellular Hsp70 can be attributed to necrotic cell 

death, where the large amount of mainly intracellular chaperone signals as danger for the immune 

system. In addition, active release mechanisms have been reported as source of extracellular Hsp70, 

depending on cell type and conditions. The exact mechanism of tumor-specific surface targeting and 

release of Hsp70, as well as mechanistic details of its intracellular trafficking still remain to be explored. 

Hsp70, a leaderless chaperone has been proposed to cross the membrane through its ability to bind 

to phosphatidylserine [108] and formation of pores shown in artificial lipid membranes [109]. The 

authors suggested a mechanism of surface expression and release independent of vesicular trafficking. 

Association of Hsp70 with lipid rafts has also been reported [110], which was consistent with the idea 

of some involvement of membrane domains in active release of Hsp70 [110–112]. The endolysosomal 

system has been implicated in Hsp70 trafficking in various cell types [37,65,110,112–114]. Exosomal 

transport of Hsp70 has been shown for tumor cells in vitro and in vivo, which could be facilitated by 

drugs or heat shock [115–117]. In addition, in human peripheral blood mononuclear cells, ―exonemes‖ 

have been identified to secrete Hsp70 [113]. As an alternative mechanism, Hsp70 has been shown to 
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be actively released via secretory lysosomes in a soluble form [114,118]. Interestingly, excess of 

Hsp70 in a melanoma model was shown to facilitate lysosomal routing, surface expression and release 

of Hsp70 [118]. Noteworthy, internalized surface Hsp70 has been demonstrated to be released in both 

membrane-bound and soluble forms [37,118]. Removal of internalized surface Hsp70 that trafficked 

through the endosomal/lysosomal sytem has been suggested as potentially highly immunogenic. 

Figure 1. Potential metastasis promoting activities of Hsp70. Elevated expression of Hsp70 

in tumor cells has beneficial effect on metastatic cell growth through cytoskeleton-dependent 

signaling. Hsp70 interacts with multiple partners in the mitochondrial and lysosomal 

signaling cascades of apoptosis, providing selection advantage for aggressive tumor cells 

by antiapoptotic activities. Hsp70 enhances motility and invasion through interactions with 

proteins involved in EMT, lamellipodia formation and ECM degradation. Tumor-derived 

Hsp70 promotes inflammatory conditions in the tumor microenvironment, thereby 

enhancing invasion and angiogenesis, in turn metastasis. 

 

In fact, a subfraction of Hsp70 has been found to accumulate in lysosomes of many cancer cell 

types. Hsp70 has been also demonstrated to bind to the limiting membrane of lysosomes at the lumenal 

side, through pH-dependent high-affinity binding to bis(monoacylglycero)phosphate (BMP) [119]. 

Hsp70 has been suggested to be targeted to lysosomes by autophagy [120,121] or by endocytosis from 

the plasma membrane [122], unexplored proposed mechanisms of Hsp70 membrane crossing. 

Interestingly, Hsp70 appears to inhibit a unique pathway of cell death in tumor cells, which involves 

lysosomal membrane permeabilization and activation of caspase-3 [65,123]. Hsp70 localized to 

membranes of the endosomal/lysosomal compartment counteracts lysosomal membrane permeablization 

and release of cathepsins, in turn preventing apoptosis [65,80]. 

In addition to protecting cells from apoptosis through lysosomal membrane stabilization [65], 

Hsp70 sustains the activity of acid sphingomyelinase (ASM). Hsp70 and ASM have been proposed to 

influence dynamics of the vesicular system, including endosomes, multivesicular bodies, 

autophagosomes and lysosomes. Moreover, it has been hypothesized that Hsp70 may regulate 

trafficking of these organelles [119]. Proper trafficking of lysosomes may be crucial for tumor growth 
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and metastasis formation, as enhanced release of lysosomal content into the extracellular space can 

facilitate matrix degradation, in turn invasion [124]. Indeed, trafficking of lysosomes appears to be 

altered in cancer cells. As compared to healthy cells, cancer cells have more lysosomes near the cell 

surface, which more frequently fuse with the plasma membrane and secrete their content such as 

cathepsins capable of promoting invasion and angiogenesis [125,126]. In support of the idea that 

Hsp70 may influence lysosomal trafficking, we observed Hsp70 to accumulate in the lysosomes of 

Hsp70 overexpressing melanoma cells, which correlated with an increased rate of lysosomal 

trafficking measured as lysosomal-associated membrane protein-1 (LAMP-1) surface exposure [127]. 

Moreover, we also visualized Hsp70 being released from lysosomes that fuse with the plasma 

membrane upon different stress triggers (Figure 2). 

Figure 2. Lysosomes secreting Hsp70 from melanoma cells. Stable clones of mouse B16 

cells were generated and induced to express Hsp70-E3. Hsp70-E3 exposed at the cell 

surface was labelled with the complement peptide K4 conjugated to AlexaFluor488 [128]. 

Prior to imaging, cells were transiently transfected with LAMP-1-mKate to label the late 

endosomal/lysosomal membrane. Release of Hsp70 via lysosomes fusing with the cellular 

membrane was visualized by total internal reflection fluorescence (TIRF) microscopy upon 

addition of 1.4 µM ionomycin (scale bar = 10 µm). Note that release of the Hsp70-E3-K4 

adduct could also be triggered by heat stress [118,127] Hsp70 and LAMP-1 are displayed 

in green and red, respectively. Arrowheads indicate sites of vesicular fusion. Note shedding 

the soluble lysosomal content (Hsp70) followed by spreading of the vesicular membrane 

marker (LAMP-1) in the plasma membrane. See also movie as supplementary information. 

 

This potentiates that Hsp70 may indirectly or directly influence secretion of lysosomal enzymes 

digesting the extracellular matrix, hence facilitating tumor cell invasion. Nevertheless, such potential 

role, and in particular mechanism of Hsp70 action in regulation of lysosome trafficking remains to be 

explored. This task would require appropriate tools enabling to monitor intracellular trafficking during 

invasion. Spatiotemporal visualization of cancer cells during invasion at the molecular level sets 

technically challenging requirements. Cells need to be monitored in real time, in multiple focal planes 

with high temporal and spatial resolution in tissue or extracellular matrix material. Future technical 

developments, therefore, may help to get a deeper insight into localization dependent function of 

Hsp70 in a complex and dynamic environment. 

Hsp70 has been implicated in endosomal trafficking of cancer cells. Elevated expression of Hsp70 

gave rise to trafficking of CD44v6 to the plasma membrane [129] or clathrin dependent endocytosis 

measured by transferrin uptake in human hepatoblastoma cells [122]. Enhanced endocytosis of 
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nutrients may also serve as a pro-cancer activity of Hsp70 expression [129]. Hsp70 is capable of 

supporting or counteracting cancer progression, dependent on the fate of an individual tumor cell. 

Notably, exposure of the immune stimulatory Hsp70 on the tumor cell surface has been considered as an 

―unfortunate consequence‖ of lysosomal release mechanisms, which may explain why tumor cells with 

surface Hsp70 positivity and Hsp70 release are not selected during carcinogenesis and metastasis [80]. 

Therefore, although avoiding elevated extracellular Hsp70 may be a favorable approach in anticancer 

therapies, surface Hsp70 positivity of survival cancer cells stressed by therapy may account for a 

therapeutic advantage if an enhanced immune response against the resistant populations is achieved. 

The importance of surface Hsp70 expression and signaling as well as coordinated vesicle trafficking in 

invasion and metastasis have been only recently recognized [107]. Further studies on the influence of 

Hsp70 on vesicular trafficking may contribute to control cancer cell invasion. 

5. Extracellular Functions of Hsp70 

Cancer-specific surface expression and release of Hsp70 further increase the already broad spectra 

of Hsp70 activities. Depending on the release mechanism, extracellular Hsp70 exists in a free soluble 

form, complexed to antigenic peptides, or in exosomes [37,110,113,130]. It seems likely that different 

forms of extracellular Hsp70 mediate distinct functions, mainly through interactions with different 

types of target cells and subsequent signaling. The observed signaling capacity of extracellular Hsp70 

can be ascribed to its interaction with a number of transmembrane immune receptors differentially 

expressed on cells in the tumor microenvironment, including immune cells, tumor cells, endothelial 

and epithelial cells (Figure 3). 

Extracellular Hsp70 complexed to tumor peptides has been shown to interact with scavenger 

receptors on antigen-presenting cells, like CD91, SREC-1, and LOX-1 [131–134]. This is followed by 

peptide-Hsp70 complex uptake via receptor-mediated endocytosis, leading to antigen cross-presentation 

on MHC I molecules [135–138] and an adaptive tumor-specific immune response mediated by CD8
+
 

cytotoxic T cells [136,138–140]. Hsp70 of tumor-derived exosomes has been reported to activate 

natural killer (NK) cells [37]. In accordance, treatment with full-length Hsp70 or the 14-mer peptide 

TKD, being identified as the fragment of Hsp70 exposed on the tumor cell surface [141], triggers 

expression of activating receptors, such as CD94, and initiates proliferation, cytolytic and migratory 

capacity of resting NK cells [37,142–144]. Similar effects upon Hsp70 exposure have been described 

for CD4
+
 T helper cells, as well [145]. Noteworthy, enhanced immune functions of exosomes appear 

to be associated with Hsp70 expressed in the exosomal membrane [146]. 

Peptide-free extracellular Hsp70 has been reported to act on the innate immune system, 

predominantly via activation of Toll-like receptor (TLR) 2/4 signaling [39,147,148]. It has been shown 

that exposure to extracellular Hsp70 results in the release of proinflammatory cytokines and nitric 

oxide (NO) from macrophages [39,130,149–151], as well as upregulation of costimulatory molecules, 

chemoattraction and activation of dendritic cells (DCs) [149,152–154]. In this way, extracellular 

Hsp70 acts as a danger signal and provides an inflammatory tumor microenvironment. However, since 

Hsp70 can bind LPS, which also triggers TLR4 signaling, these data have to be interpreted carefully 

regarding possible effects mediated by LPS contamination rather than Hsp70 itself, as reviewed 

elsewhere [155–159]. 
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Figure 3. Versatile functions of extracellular Hsp70. Extracellular Hsp70 is able to interact 

with receptors expressed on cells of the tumor microenvironment. Hsp70 complexed to 

tumor-derived peptide binds to scavenger receptors on antigen presenting cells (APC), and 

is internalized and cross-presented to CD8
+
 T cells, thereby an adaptive tumor-specific 

immune response is initiated. Stimulation of NK cells by Hsp70 leads to increased 

cytotoxic activity against Hsp70-positive tumor cells. Hsp70 has an immunosuppressive 

role via recruitment and activation of regulatory T cells (Treg) and myeloid-derived 

suppressor cells (MDSC), leading to the downregulation of T cell responses. Hsp70 acts as 

a danger signal via binding to Toll-like receptors (TLRs) on mononuclear cells, leading to 

secretion of pro-inflammatory cytokines and nitric oxide (NO), in turn providing an 

inflammatory environment that contributes to metastasis formation. Hsp70 promotes tumor 

invasion and angiogenesis through activation of MMP-2 and production of ROS  

by neutrophils, respectively. Binding of Hsp70 to epithelial cells results in secretion of  

pro-inflammatory cytokines, activating an amplification loop. 

 

Cancer-related inflammation plays a pivotal role in cancer development. Infiltrating immune cells 

might exert antitumor activity at early stages, but support tumor growth and metastasis at a chronic 

stage (reviewed in [160]), suggesting a role for extracellular Hsp70 in tumor progression. Additionally, 

extracellular Hsp70 could contribute to tumor progression via promoting an immunosuppressive tumor 

microenvironment, as well. It has been shown that free or exosome-bound Hsp70 can recruit and 
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activate Foxp3
+
 regulatory T cells [161] or myeloid-derived suppressor cells, respectively [162]. This 

immunosuppressive tumor microenvironment eventually results in production of anti-inflammatory 

cytokines and dampened T cell responses through suppression of T cell proliferation and induction of 

tolerogenic DCs [161,163–165]. Recent data in mice and human models showed that tumor-derived 

exosomes exposing Hsp70 on the surface impair anti-tumor immunity [162]. 

Besides acting on immune cells, extracellular Hsp70 can trigger signaling in tumor cells in an 

autocrine or paracrine fashion via binding to TLR2/4, thereby playing a role in invasion and 

angiogenesis. It has been shown that extracellular Hsp70 released from heat-stressed A431  

squamous carcinoma cells triggers autocrine epidermal growth factor receptor (EGFR) and MAPK 

signaling via TLR2/4 [166]. EGFR signaling is involved in MMP activation [167] and secretion of 

interleukin (IL)-8 [168], and has often been associated with tumor invasion and metastasis [169]. In 

another study binding of extracellular Hsp70 to TLR2/4 on H22 hepatocarcinoma cells triggered 

nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways, resulting in 

proliferation and resistance to apoptosis [170]. Tumor progression mediated by extracellular Hsp70 

was further enhanced via a positive feedback loop stimulating a delayed activation of the JNK 

signaling cascade, leading to release of high mobility group protein B 1 (HMGB1) and upregulation of 

MMP-9 [171], both molecules playing a major role in tumor growth and invasion [172]. Similarly, 

extracellular Hsp70 stimulated NF-kB/AP-1 signaling increased phorbol 12-myristate 13-acetate 

(PMA) induced activation of MMP-9 transcription in human mononuclear cells and led to enhanced 

invasiveness in vitro [87]. More recent data show that extracellular Hsp70 secreted from breast cancer 

cells could form an extracellular complex with chaperones, including Hsp90a [86]. This co-chaperone 

complex increased binding of Hsp90a to MMP-2, and subsequent activation of MMP-2 in vitro [86]. 

Inhibiting Hsp70 in conditioned media reduced MMP-2 activation and decreased breast cancer cell 

migration and invasion in vitro, highlighting a receptor-independent role for Hsp70 in tumor cell 

invasion [86]. 

Hsp70 could increase tumor cell invasiveness through its ability to trigger an inflammatory tumor 

microenvironment. Besides activating antigen-presenting cells (APCs), free extracellular Hsp70 

released from ovarian cancer cells has been shown to activate neutrophils and subsequent reactive 

oxygen species (ROS) production via TLR2/4 signaling [173]. ROS promote angiogenesis and 

metastasis via stimulation of vascular endothelial growth factor production [174] and activation of 

MMPs [175]. This neutrophil-mediated angiogenesis could be further enhanced via interplay of 

extracellular Hsp70 with epithelial cells. In human bronchial epithelial cells extracellular Hsp70 has 

been shown to induce IL-8 and tumor necrosis factor (TNF) production, leading to the attraction and 

activation of neutrophils [176]. Hsp70 has been reported to bind to various epithelial and endothelial 

cell lines [132]. Specifically, extracellular human and mycobacterial Hsp70 has been shown to bind to 

the TNF receptor family member CD40 [177,178], and the binding of human Hsp70 to CD40 led to its 

internalization and p38 signaling in CD40-expressing HEK293T cells [177]. Interestingly, epithelial 

and endothelial cells have also been reported to express CD40 on their cell surface, which was 

upregulated at inflammatory conditions [179]. Futagami et al. showed that treatment of HUVEC cells 

with extracellular Hsp70 blocks CD40L-mediated inhibition of apoptosis, as well as CD40L-induced 

tubular formation in vitro, suggesting a critical role in tumor progression and invasion [180]. 

Interestingly, Hsp70 does not only act on endothelial cells, but was also shown to be released from rat 
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arterial endothelial cells in an exosome-associated form, and release was further enhanced upon 

oxidative stress [181]. Therefore, Hsp70 released from both tumor cells and endothelial cells might 

provide an autocrine and paracrine regulation mechanism for promoting tumor cell invasion via 

stimulating release of inflammatory mediators from bystander immune cells and secretion of MMPs 

and IL-8 from tumor cells. Interestingly, re-invasion into the new host tissue has recently been shown 

to be supported by bone marrow derived cells (BMDCs) reprogrammed by TRYP2, VLA4, Hsp70, 

Met and Rab27a positive exosomes released from primary cancer. The exosomes elevated Met 

expression and provasculogenic phenotype of the BMDCs and translocation to the lung and lymph 

nodes, where these cells could aid angiogenesis, invasion and metastasis [182].  

6. Targeting Hsp70 in Metastatic Cancer 

Versatile functions of Hsp70 are reflected in diverse approaches which have evolved for Hsp70-based 

anticancer therapy, including inhibition of activity, modifying of expression levels and antitumor 

vaccines, extensively reviewed elsewhere [183–185]. As knock-down of Hsp70 in cervical, bladder, 

breast and endometrial cancer cell lines has been proven to reduce invasiveness in vitro [40,91,186,187], 

Hsp70-specific inhibitors could be promising in prevention of invasiveness and metastasis, as well. 

However, there are only a few approaches specifically targeting cells with metastatic potential through 

Hsp70, even though this holds true for most molecular targets in recent anticancer therapy [188]. 

A novel Hsp70-based vaccine has been developed to selectively eliminate highly metastatic cancer 

stem cells. Hsp70 complexed to tumor antigens was isolated from fusions of DC and radioresistant 

mammary tumor cells (Hsp70.PC-F). Treatment of mice with the Hsp70.PC-F vaccine stimulated a 

tumor-specific CTL response against primary and disseminated tumor and rendered the tumor more 

sensitive to radiotherapy [189]. This approach has a high potential in working synergistically with 

radiotherapy to efficiently fight primary and metastasizing tumors. Another possibility to target 

metastasis directly is adoptive NK cell therapy in patients with Hsp70 membrane positive tumors. It 

has been shown that Hsp70 membrane positive tumors are targets for NK cells in vivo [36,190–194]. 

Moreover, NK cells stimulated ex vivo with TKD/IL-2 have been successfully used in a Phase I 

clinical trial in patients with colorectal and lung carcinoma [195,196]. Importantly, metastatic tumors 

have been found to express high levels of surface Hsp70 [192,197]. These characteristics are beneficial 

in immunotherapy using TKD/IL-2 stimulated NK cells in combination with conventional treatments 

and may hold promise for eliminating metastasis in patients with Hsp70 membrane positive tumors. 

Extracellular Hsp70 can act in an autocrine and paracrine fashion on tumor, immune and 

endothelial/epithelial cells to promote tumor cell invasion and metastasis by enhancing inflammation, 

angiogenesis, tumor growth, and recruitment of immunosuppressive immune cell. Therefore, targeting 

extracellular Hsp70 through neutralizing antibodies or small molecules interfering with Hsp70 binding 

to receptors may be useful to prevent invasiveness of tumors. However, the benefits of extracellular 

Hsp70 from the patient’s point of view should be also considered in these cases. Modulating 

localization or activity of extracellular Hsp70 in therapeutic approaches may also help to limit cancer 

metastasis. A better understanding of the role of Hsp70 in tumor progression may support development 

of specific invasion preventing approaches. 
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7. Concluding Remarks 

Elevated expression, endosomal/lysosomal localization as well as surface exposure and release 

represent cancer specific features of Hsp70. A yet unresolved regulation of Hsp70 activity enables 

diverse functions of this molecular chaperone, affected by its localization and interacting partners. 

Common and unusual activities of Hsp70 may also be dependent on post-translational modifications 

and the actual cellular environment. Hsp70 surrounded by the tumor microenvironment has been 

reported to influence metastatic activity positively and negatively. Therefore, targeting of Hsp70 

necessitates careful considerations in cancer therapy. While Hsp70-based vaccines and NK cell 

therapies would make use of antitumor properties of extracellular Hsp70, targeting intracellular Hsp70 

by inhibitors in conventional anticancer treatments generally attacks pro-tumor and antitumor activities 

of Hsp70. Increasing immunogenicity of cancer cells that are resistant to conventional therapies could 

be another strategy for fighting metastatic cancer. Controlled trafficking to the tumor cell surface or 

release of Hsp70 may be used to stimulate the patient’s immunity against the aggressive cancer cell 

population. For this, further investigations on Hsp70 trafficking and release, as well as on the cross-talk 

between tumor cells, immune cells, endothelial and epithelial cells mediated by extracellular Hsp70 in 

metastasis will be required. Understanding and controlling the complex function of Hsp70 in 

metastasizing cells will certainly require developing in vitro approaches and animal models of  

human cancers. Novel in vitro 3D models of invasion, enabling spatiotemporal multiparameter testing, 

may help further revealing the molecular mechanism of metastasis formation. Recently developed 

―Organs-on-Chips‖, described also as 3D organs grown in microfluidic chips hold promise for real 

time monitoring of cellular processes during metastasis. 

Supplementary Information 

Movie 1. Lysosomes secreting Hsp70 from mouse B16 melanoma cells. Release of Hsp70 via 

lysosomes fusing with the cellular membrane was visualized by TIRF microscopy. Hsp70 and LAMP-1 

are displayed in green and red, respectively. The movie is playing 5 fps. Note shedding the soluble 

lysosomal content (Hsp70) followed by spreading of the vesicular membrane marker (LAMP-1) in the 

plasma membrane. 
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