
www.transonc.com

Volume 13 Number 1 January 2020 pp. 11–16 11

Address al
Sciences,
Gulshan-e
yahoo.com
Received 2

© 2019 T
This is a
creativecom
1936-5233
https://doi
Cell Population DataeDriven
Acute Promyelocytic Leukemia
Flagging Through Artificial
Neural Network Predictive
Modeling
l correspondence to: Rana Zeeshan Haider, Post-graduate Institute of Life
National Institute of Blood Disease (NIBD), ST 2/A, Block 17,
-Iqbal, KDA Scheme 24, Karachi, Pakistan. E-mail: zeeshan3335@

9 July 2019; Accepted 24 September 2019

he Authors. Published by Elsevier Inc. on behalf of Neoplasia Press, Inc.
n open access article under the CC BY-NC-ND license (http://
mons.org/licenses/by-nc-nd/4.0/).
/19
.org/10.1016/j.tranon.2019.09.009
Rana Zeeshan Haider*,‡, Ikram Uddin Ujjan† and
Tahir S. Shamsi*

*Post-graduate Institute of Life Sciences, National Institute
of Blood Disease (NIBD), Karachi, Pakistan; †Department of
Basic Medical Sciences, Liaqat University of Health and
Medical Sciences (LUMHS), Jamshoro, Pakistan;
‡International Center for Chemical and Biological Sciences
(ICCBS), University of Karachi, Karachi, Pakistan
Abstract

A targeted and timely offered treatment can be a benefitting tool for patients with acute promyelocytic leukemia

(APML). Current round of study made use of potential morphological and immature fractionerelated parameters

(cell population data) generated during complete blood cell count (CBC), through artificial neural network (ANN)

predictive modeling for early flagging of APML cases. We collected classical CBC items along with cell population

data (CPD) from hematology analyzer at diagnosis of 1067 study subjects with hematological neoplasms. For

morphological assessment, peripheral blood films were examined. Statistical and machine learning tools

including principal component analysis (PCA) helped in the evaluation of predictive capacity of routine and CPD

items. Then selected CBC itemedriven ANN predictive modeling was developed to smartly use the hidden trend

by increasing the auguring accuracy of these parameters in differentiation of APML cases. We found a

characteristic triad based on lower (53.73) platelet count (PLT) with decreased/normal (4.72) immature fraction of

platelet (IPF) with addition of significantly higher value (65.5) of DNA/RNA contenterelated neutrophil (NE-SFL)

parameter in patients with APML against other hematological neoplasm's groups. On PCA, APML showed

exceptionally significant variance for PLT, IPF, and NE-SFL. Through training of ANN predictive modeling, our

selected CBC items successfully classify the APML group from non-APML groups at highly significant (0.894)

AUC value with lower (2.3 percent) false prediction rate. Practical results of using our ANN model were found

acceptable with value of 95.7% and 97.7% for training and testing data sets, respectively. We proposed that PLT,

IPF, and NE-SFL could potentially be used for early flagging of APML cases in the hematology-oncology unit. CBC

itemedriven ANN modeling is a novel approach that substantially strengthen the predictive potential of CBC

items, allowing the clinicians to be confident by the typical trend raised by these studied parameters.
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Introduction
Acute promyelocytic leukemia (APML) in comparison with other
types of hematological neoplasms, particularly acute myeloid
leukemia (AMLs) has highly bizarre clinical, morphological, and
biological characteristics and requires a targeted therapy [1]. Start of
the treatment without any delay for definitive diagnosis or other
concerns is an effective approach in APML [2]. This is particularly
because of life-threatening coagulopathy initiated by the abnormal
promyelocytes (AP) [3]. The development of innovative technologies
and analytical principles in flow cytometry has allowed the

http://crossmark.crossref.org/dialog/?doi=10.1016/j.tranon.2019.09.009&domain=pdf
https://doi.org/10.1016/j.tranon.2019.09.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tranon.2019.09.009&domain=pdf
http://www.transonc.com
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:zeeshan3335@yahoo.com
mailto:zeeshan3335@yahoo.com


Table 1. Mean (Along Standard Deviation) Values for Classical and Extended CBC Items Generated by Modern (Sysmex XN-1000) Hematology Analyzer Are Presented for Our Study Groups

For quick visual identification of "hot" and "cold" spots in reference to normal control color-shading (blue for low and red for high count) approach is used.Hb, hemoglobin; RBC, red blood cell; PCV,
pack cell volume; MCV, mean cell volume; MCH, mean cell hemoglobin; MCHC, mean cell hemoglobin concentration; WBC, white blood cell; PLT, platelet; NEUT#, absolute neutrophil count;
LYMPH#, absolute lymphocyte count; MONO, absolute monocyte count; EO#, absolute eosinophil count; BASO#, absolute basophil count; NEUT%, neutrophil percent; LYMPH%, lymphocyte
percent; MONO%, monocyte percent; EO%, eosinophil percent; BASO%, basophil percent; IG#, absolute immature granulocyte count; IG%, immature granulocyte percent; RDW, red cell distribution
width; NRBC#, absolute nucleated red blood cell count; NRBC%, nucleated red blood cell percent; IPF, immature platelet fraction; MM, multiple myeloma.
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Table 2. Values of CBC-Based White Cell Scattering (Morphological) Items Among Study Groups

NE-SSC, neutrophils cell complexity; NE-SFL, neutrophils fluorescence intensity; NE-FSC, neutrophils cell size; LY-X, lymphocytes cell complexity; LY-Y, lymphocytes fluorescence intensity; LY-Z,
lymphocytes cell size; MO-X, monocytes cells complexity; MO-Y, monocytes fluorescence intensity; MO-Z, monocytes cell size; NE-WX, neutrophils complexity and the width of dispersion;
NE-WY, neutrophils fluorescence intensity and the width of dispersion; NE-WZ, neutrophils cell size and the width of dispersion; LY-WX, lymphocytes complexity and width of dispersion; LY-WY,
lymphocytes fluorescence intensity and the width of dispersion; LY-WZ, lymphocytes cell size and the width of dispersion; MO-WX, monocytes complexity and the width of dispersion; MO-WY,
monocytes fluorescence intensity and the width of dispersion; MO-WZ, monocytes cell size and the width of dispersion; MM, multiple myeloma.
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commercialization of new-generation hematological analyzers. These
are capable to generate data about the morphological characteristics
and immature fractions of blood cells termed as "cell population data"
(CPD) along with classical complete blood cells (CBC) count
parameters. CPD items have a high degree of analytical efficiency for
identifying many cellular abnormalities and can be used for the
screening of several hematological and nonhematological disorders
[4e8].
The aim of this study was to evaluate the clinical utility of WBC

morphology (CPD) parameters in early premicroscopic differentia-
tion of APML. Apart from the microscopic classification systems and
its limitations, we worked to propose a novel prediction model based
on artificial neural network (ANN); multilayer perceptron (MLP)
that would utilize routinely generated scattering items along with
CBC testing. We hypothesized that an ANN-based model built on
CPD items would enhance predictive ability of these morphological
parameters and this kind of modeling can be incorporated in real-time
clinical practice.
Materials and Methods
We clinically evaluated CPD items generated by one of flow
cytometryebased hematology analyzer (Sysmex XN-1000, Kobe,
Japan) in peripheral blood for early premicroscopic exclusion of
APML from other common hematological neoplasms. From January
2014 to July 2017, a total of 1067 patients with 44 APML
(PML-RARA), 181 AML (excluded APML), 89 chronic myeloid
leukemia (CML), 51 myelodysplastic syndrome (MDS), 71
myeloproliferative disorders (MPN) except CML, 10 MDS/MPN,
136 acute lymphocytic leukemia (ALL), 9 Hodgkin's lymphoma
(HL), 95 non-Hodgkin's lymphoma (NHL), 32 multiple myeloma,
and 349 normal control were prospectively enrolled at the National
Institute of Blood Disease and Bone Marrow Transplantation (NIBD
& BMT) Karachi, Pakistan. Flow cytometryebased modern
hematology analyzer (Sysmex XN-1000) was used for CBC testing
of 1067 blood samples. Demographic features, classical CBC items,
and CPD parameters were compared between the study groups. To
explore the subtle pattern and to generate better predictive model on



Figure 1. Visualization of latent pattern of selected (PLT, IPF,
and NE-SFL) CBC parameters for study groups through principal
component analysis (PCA). By unsupervised machine learning
tools (PCA) three-dimensional data reduced into two dimen-
sions so that we can plot and understand our data in a better
way. Together, both components (PC1 and PC2) covered 90.2%
of the information (variance). In plot, groups are labeled with
their names.
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significantly deviated CBC items (PLT, immature platelet fraction
(IPF), and NE-SFL), we used unsupervised machine learning tool
(principal component analysis [PCA]) and MLP analysis, one of the
common types of ANN. It performed prediction and classification
along with generation of predicted-by-observed chart, ROC curve,
cumulative gains, and lift charts for MLP. The Institutional Review
Board of NIBD and BMT approved this study (permit number:
NIBD/RD-167/14-2014).

Results
From routine and extended CBC parameters (Table 1), values of
platelet count and IPF showed characteristic trend for APML group
against other study groups. Although individually lower values for
platelet count or IPF is noted in various study groups as in APML but
none of these group showed decrease/near normal value of IPF in
demand of such degree of thrombocytopenia. While among white cell
morphological items, patients with APML showed significantly
higher value for NE-SFL (side fluorescent light intensity) compared
with its corresponding hematological neoplasms (Table 2).

We conducted PCA to visualize a typical trend of IPF in lower
platelet count along with higher values of NE-SFL for APML against
its peer study groups. As shown in Figure 1, APML showed
significant variance in comparison with other hematological
neoplasms and found on upper extreme left end of PCA pilot.
Triad of IPF, plate count, and NE-SFL successfully differentiate
APML from other study groups (Figure 1).

The summary of MLP model (Figure 2) to challenge the typical
trend of NE-SFL, platelet count, and IPF for prediction of patients
Figure 2. The model summary, classification table, predicted-by-
multilayer perceptron for APML vs. non-APML.
with APML showed various positive signs as "cross entropy error"
with smallest error (20.73) for testing data set. In addition to that, it
observed chart, ROC curve, cumulative gains and lift chart for
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also showed notably lower percentage of incorrect predictions as a
whole and particularly for testing (2.3%) as compared with training
data set (4.3%). Practical results of using the MLP network were
acceptable with 95.7% and 97.7% for training and testing data sets,
respectively, as shown in classification table (Figure 2). A visual look
of ROC curve and 0.894 AUC value further endorsed the predictive
ability of the network.
The predicted-by-observed chart (Figure 2) for the combined

training and testing samples displayed predicted pseudoprobabilities
as clustered boxplots. All boxplots were found symmetrical about the
horizontal line at 0.5 mark. The cumulative gains chart showed
notable trend that if we score a data set with the network and sort all
the cases by predicted pseudoprobability of APML, we can expect top
10% to contain approximately 65% of all the cases considering the
APML category (Figure 2). The lift chart provides (Figure 2) us a
different look on cumulative gains chart; the lift at 10% for the
category APML is 65%/10% ¼ 6.5. We must know that both
cumulative and lift charts are based on combined testing and training
samples.
Discussion
Clinically, APML represents a hematologic emergency that enforces a
rapid exclusion for a quick start of its treatment, even before
molecular and cytogenetic diagnosis (PML-RARA rearrangement).
CPD items generated by hematology analyzers have a strong potential
for being introduced as automated morphological items for detection
of changes in WBC white cell's morphology. Various studies were
conducted to evaluate clinical utility of CPD items for early exclusion
of hematological disorders. A study by Yang et al. evaluated white cell
scattering items for differentiation of acute leukemia lineage by using
Coulter DxH800 analyzer. In this study, the authors derive
21-itemebased model and reported very high (100%) specificity
and sensitivity for differentiation of APML cases, whereas for ALL,
comparatively less-significant specificity and sensitivity was achieved
[4]. In another study by Virk et al., the clinical utility of the white cell
scattering items, scattergrams, and flags for screening of AML cases
with significant specificity was published [9].
In this study, we found an interesting "triad", that is a fraction of

immature platelets (IPF) remained decreased or normal in response to
thrombocytopenia (lower platelet count) and NE-SFL came with
significantly higher values in patients with APML. Higher values of
NE-SFL may be justified by an increased infiltration of immature
hyperactive (AP) having higher RNA/DNA content than other
immature and mature cells that falsely counted in neutrophil area.
Increased destruction along with suppression of platelet production
may partly explain the low platelet count and decreased IPF value
(near normal) in regard to severity of thrombocytopenia. Hence, we
propose the use of platelet count, NE-SFL, and IPF as criteria for
early flagging of APML, which will enforce the rapid and targeted
peripheral film examination for APs and subsequent diagnostic
workup. Here, it is also clear that this criterion cannot be used as
diagnostic parameters because it is confirmed by PML-RARA.
Through this study, we have also demonstrated the clinical utility

of applying machine learning tools in predictive modeling on data
generated with CBC test, which in our hands could be used as
morphological parameters for premicroscopic exclusion and guide the
further diagnostic workup of APML. On peripheral blood film's
microscopic images, by using image processing tools (image
segmentation, feature extraction, cell identification, and other) and
ANN-based modeling, various studies were conducted. These studies
include the classification of acute lymphocytic leukemic (ALL) cells
from healthy cells [10e15], acute myeloid leukemic (AML) cells
from healthy cells [16,17], and WBCs grouping into various classes of
AML, ALL, and their French-American-British (FAB) subtypes
[18e26]. To our knowledge, this is the first study for CPD-driven
flagging of APML through an ANN predictive modeling. We suggest
that an ANN-based modeling would be able to smartly recognize the
typical patterns in selected CBC items for differentiation of APML
cases more accurately. Eventually, if successful, CBC (routine,
extended, and CPD) items through ANNs could be incorporated into
hematology laboratory decision support/information system for
flagging of APML. As a future work, this approach could be studied
in an extended way by using WBC, red blood cell (RBC), and platelet
morphological and immature fraction parameters for short and
targeted diagnostic workups especially in common (regional) blood
disorders.

Conclusion
A characteristic triad of lower platelet counts with decreased fraction of
immature platelet (IPF) along higher value for DNA/RNA con-
tenterelated neutrophil (NE-SFL) parameter is illustrated for flagging
of APML. edriven-driveneThe platelet, IPF, and NE-SFL values
driven ANNmodeling is a novel approach that substantially strengthen
the flagging potential of these parameters in augur of APML cases. This
approach could potentially reduce the frequency of extra and irrational
diagnostic tests, which is time-consuming and extra burden on patients.
Hence, the proposed selected CBC itemedriven predictive modeling
can be used as an assistant diagnostic tool in decision support system of
hematology laboratory and clinic for screening of APML.

Author contribution
R.Z.H. conducted the experiments, collected and analyzed the data
under supervision of I.U. and T.S.S.; I.U., T.S.S., and R.Z.H. wrote
the paper. All authors read and approved the final manuscript.

Conflicts of interest
Authors have no conflict of interest.

Ethics approval
The Institutional Review Board of NIBD, Karachi, Pakistan (Permit
number: NIBD/RD-167/14-2014).

Acknowledgements
The authors are grateful to laboratory members of clinical
hematology laboratory, NIBD for assistance in patient's diagnosis.

References

[1] Lee H-J, Park H-J, Kim H-W and Park S-G (2013). Comparison of
laboratory characteristics between acute promyelocytic leukemia and other
subtypes of acute myeloid leukemia with disseminated intravascular
coagulation. Blood Res 48(4), 250e253.

[2] Sanz MA, Grimwade D, Tallman MS, Lowenberg B, Fenaux P and
Estey EH, et al (2008). Guidelines on the management of acute
promyelocytic leukemia: recommendations from an expert panel on behalf
of the European LeukemiaNet. Blood 2008.

[3] Abedin S and Altman JK (2016). Acute promyelocytic leukemia: preventing
early complications and late toxicities. ASH Educ Program B 2016(1), 10e15.

[4] Yang JH, Kim Y, Lim J, Kim M, Oh E-J and Lee H-K, et al (2014).
Determination of acute leukemia lineage with new morphologic parameters
available in the complete blood cell count. Ann Clin Lab Sci 44(1), 19e26.

http://refhub.elsevier.com/S1936-5233(19)30397-3/sref1
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref1
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref1
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref1
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref1
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref2
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref2
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref2
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref2
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref3
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref3
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref3
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref4
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref4
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref4
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref4


16 Pre-Microscopic Differentiation of Acute Promyelocytic Leukemia Haider et al. Translational Oncology Vol. 13, No. 1, 2020
[5] Haschke-Becher E, Vockenhuber M, Niedetzky P, Totzke U and Gabriel C
(2008). A new high-throughput screening method for the detection of
chronic lymphatic leukemia and myelodysplastic syndrome. Clin Chem Lab
Med 46(1), 85e88.

[6] Silva M, Fourcade C, Fartoukh C, Lenormand B, Buchonnet G and
Callat M, et al (2006). Lymphocyte volume and conductivity indices of the
haematology analyser Coulter® GEN. STM in lymphoproliferative disorders
and viral diseases. Int J Lit Humanit 28(1), 1e8.

[7] Miguel A, Orero M, Simon R, Collado R, Perez PL and Pacios A, et al
(2007). Automated neutrophil morphology and its utility in the assessment of
neutrophil dysplasia. Lab Hematol: Off Publ Int Soc Lab Hematol 13(3),
98e102.

[8] Park SH, Kim H-H, Kim I-S, Yi J, Chang CL and Lee EY (2016). Cell
population data NE-SFL and MO-WX from sysmex XN-3000 can provide
additional information for exclusion of acute promyelocytic leukemia from
other acute myeloid leukemias: a preliminary study. Annal Lab Med 36(6),
607e610.

[9] Virk H, Varma N, Naseem S, Bihana I and Sukhachev D (2019). Utility of
cell population data (VCS parameters) as a rapid screening tool for Acute
Myeloid Leukemia (AML) in resource-constrained laboratories. J Clin Lab
Anal 33(2):e22679.

[10] Mohapatra S, Patra D and Satpathy S (2014). An ensemble classifier system
for early diagnosis of acute lymphoblastic leukemia in blood microscopic
images. Neural Comput Appl 24(7e8), 1887e1904.

[11] Amin MM, Kermani S, Talebi A and Oghli MG (2015). Recognition of acute
lymphoblastic leukemia cells inmicroscopic images using k-means clustering and
support vector machine classifier. J Med Signals Sensors 5(1), 49.

[12] Li Y, Zhu R, Mi L, Cao Y and Yao D (2016). Segmentation of white blood
cell from acute lymphoblastic leukemia images using dual-threshold method.
Comput Math Meth Med 2016.

[13] Rawat J, Singh A, Bhadauria H, Virmani J and Devgun JS (2017).
Computer assisted classification framework for prediction of acute
lymphoblastic and acute myeloblastic leukemia. Biocybernetics Biomed Eng
37(4), 637e654.

[14] Bigorra L, Merino A, Alf�erez S and Rodellar J (2017). Feature analysis and
Automatic identification of leukemic lineage blast cells and reactive
lymphoid cells from peripheral blood cell images. J Clin Lab Anal 31(2):
e22024.
[15] Rehman A, Abbas N, Saba T, SIu Rahman, Mehmood Z and Kolivand H
(2018). Classification of acute lymphoblastic leukemia using deep learning.
Microsc Res Tech 81(11), 1310e1317.

[16] Agaian S, Madhukar M and Chronopoulos AT (2014). Automated screening
system for acute myelogenous leukemia detection in blood microscopic
images. IEEE Syst J 8(3), 995e1004.

[17] Kazemi F, Najafabadi TA and Araabi BN (2016). Automatic recognition of
acute myelogenous leukemia in blood microscopic images using k-means
clustering and support vector machine. J Med Signals Sensors 6(3), 183.

[18] Gonzalez JA, Olmos I, Altamirano L, Morales BA, Reta C and Galindo MC,
et al (2011). Leukemia identification from bone marrow cells images using a
machine vision and data mining strategy. Intell Data Anal 15(3), 443e462.

[19] Putzu L, Caocci G and Di Ruberto C (2014). Leucocyte classification for
leukaemia detection using image processing techniques. Artif Intell Med
62(3), 179e191.

[20] Madhloom HT, Kareem SA and Ariffin H (2015). Computer-aided acute
leukemia blast cells segmentation in peripheral blood images. J Vibroeng
17(8), 4517e4532.

[21] Neoh SC, Srisukkham W, Zhang L, Todryk S, Greystoke B and Lim CP,
et al (2015). An intelligent decision support system for leukaemia diagnosis
using microscopic blood images. Sci Rep 5, 14938.

[22] Priya DK, Krithiga S, Pavithra P and Kumar JR (2015). Detection of
leukemia in blood microscopic images using fuzzy logic. Int J Eng Res Sci
Technol 240, 197e205.

[23] Rawat J, Singh A, Bhadauria H and Virmani J (2015). Computer aided
diagnostic system for detection of leukemia using microscopic images.
Procedia Comp Sci 70, 748e756.

[24] Reta C, Altamirano L, Gonzalez JA, Diaz-Hernandez R, Peregrina H and
Olmos I, et al (2015). Correction: segmentation and classification of bone
marrow cells images using contextual information for medical diagnosis of
acute leukemias. PLoS One 10(7):e0134066.

[25] Hu SB, Wong DJ, Correa A, Li N and Deng JC (2016). Prediction of clinical
deterioration in hospitalized adult patients with hematologic malignancies
using a neural network model. PLoS One 11(8):e0161401.

[26] Singh G, Bathla G and Kaur S (2016). Design of new architecture to detect
leukemia cancer from medical images. Int J Appl Eng Res 11(10), 7087e7094.

http://refhub.elsevier.com/S1936-5233(19)30397-3/sref5
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref5
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref5
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref5
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref5
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref6
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref6
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref6
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref6
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref6
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref7
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref7
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref7
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref7
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref7
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref8
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref8
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref8
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref8
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref8
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref8
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref9
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref9
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref9
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref9
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref10
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref10
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref10
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref10
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref10
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref11
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref11
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref11
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref12
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref12
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref12
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref13
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref13
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref13
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref13
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref13
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref14
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref14
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref14
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref14
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref14
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref15
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref15
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref15
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref15
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref16
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref16
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref16
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref16
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref17
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref17
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref17
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref18
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref18
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref18
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref18
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref19
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref19
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref19
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref19
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref20
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref20
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref20
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref20
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref21
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref21
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref21
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref22
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref22
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref22
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref22
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref23
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref23
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref23
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref23
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref24
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref24
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref24
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref24
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref25
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref25
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref25
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref26
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref26
http://refhub.elsevier.com/S1936-5233(19)30397-3/sref26

	Cell Population Data&ndash;Driven Acute Promyelocytic Leukemia Flagging Through Artificial Neural Network Predictive Modeling
	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusion
	Author contribution
	Conflicts of interest
	Ethics approval
	Acknowledgements
	References


