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Abstract

Porcine reproductive and respiratory syndrome virus (PRRSv) infection causes a devastat-

ing economic impact to the swine industry. Active surveillance is routinely conducted in

many swine herds to demonstrate freedom from PRRSv infection. The design of efficient

active surveillance sampling schemes is challenging because optimum surveillance strate-

gies may differ depending on infection status, herd structure, management, or resources for

conducting sampling. Here, we present an open web-based application, named ‘Optisam-

pleTM’, designed to optimize herd sampling strategies to substantiate freedom of infection

considering also costs of testing. In addition to herd size, expected prevalence, test sensitiv-

ity, and desired level of confidence, the model takes into account the presumed risk of path-

ogen introduction between samples, the structure of the herd, and the process to select the

samples over time. We illustrate the functionality and capacity of ‘OptisampleTM’ through its

application to active surveillance of PRRSv in hypothetical swine herds under disparate epi-

demiological situations. Diverse sampling schemes were simulated and compared for each

herd to identify effective strategies at low costs. The model results show that to demonstrate

freedom from disease, it is important to consider both the epidemiological situation of the

herd and the sample selected. The approach illustrated here for PRRSv may be easily

extended to other animal disease surveillance systems using the web-based application

available at http://stemma.ahc.umn.edu/optisample.

Introduction

Since its first recognition in 1987, porcine reproductive and respiratory syndrome virus

(PRRSv) infection has been described in many countries worldwide. The disease has a high
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economic impact on the swine industry of infected countries, including North America, by

causing an increase in mortality, decrease in growth performance in growing pigs, abortions,

stillbirths and premature farrowing in breeding herds. Moreover, PRRSv infection is also asso-

ciated with respiratory disease, pyrexia, and anorexia at all ages [1]. Some studies have

described diverse strategies for the PRRSv control and elimination at herd and regional levels.

PRRSv elimination programs are based on strict internal biosecurity in conjuction with herd

closure until the virus is thought to have been eliminated [2–4].

The confidence level in having eliminated the virus from the herd is often based on a

combination of absence of clinical signs and negative lab results from consecutive samplings

conducted in the population [5, 6]. After having eliminated the virus from the herd, active sur-

veillance is routinely carried out in many swine herds to demonstrate ongoing freedom from

PRRSv infection [7, 8]. Identification of cost-effective sampling strategies is crucial to imple-

ment effective and sustainable surveillance systems. However, specifying a suitable sampling

strategy is not always straightforward as surveillance schemes are governed by a number of

parameters, such as the minimal detectable prevalence, the herd size, and the accuracy of the

diagnostic tests. Furthermore, the optimum strategy may differ between farms depending on

their infectious status, their structure and management, the epidemiological situation, and

the resources available. As a result, to enhance active surveillance, practical methods to iden-

tify efficient sampling strategies taking into account the situation of the herd and costs are

required.

The aim of the work is to illustrate the use of ‘OptisampleTM’, a flexible and accessible

modeling tool for stakeholders and veterinarians that computes and compares the probability

of being free of infection (PFree) and costs of different sampling strategies considering the epi-

demiological situation of each herd and the sampling selection process. ‘OptisampleTM’ is an

expanded version of the models proposed by Cannon (2002) [9] and Martin (2007, 2008) [10–

11] to substantiate freedom from disease at the herd level. ‘OptisampleTM’ may be easily appli-

cable to other diseases and populations to inform decisions related with surveillance, and ulti-

mately prevention and control of animal diseases.

Materials and methods

Inputs and outputs of ‘OptisampleTM’

The model formulation and parameterization intends to estimate the probability of freedom

from disease by taking into account the sampling strategy as well as characteristics of herd

demography and disease epidemiology. Key parameters are estimated based on observational

data regarding disease occurrence in the past. Demographic and epidemiologic features are

specified via the herd size (N), the start of the observation period (hd), the end of the observa-

tion period (cd), the number of outbreaks occurred during the period of observation (nou), the

expected duration of pathogen persistence in the herd (pp), the time span between two out-

breaks occurred (fou) and the correlation between successive sampled groups for the pathogen

prevalence (ICCbt). The sampling strategy was included via the expected prevalence to detect

(P�), the frequency of testing (ft), the number of tested samples (nt), and the sensitivity (setest),
and the cost (Pricetest) of a laboratory tests.

Noteworthy, the test specificity here is assumed to be perfect (i.e. 100%) because, in the

event of positive result, it is expected that an exhaustive epidemiological investigation would

take place at herd and sufficient samples would be collected and tested to rule out false positive

results.

If all tests are negative, ‘OptisampleTM’ provides as outputs the PFree and the overall cost of

testing (Costt). Based on the representativeness of the sample of the herd and the pathogen
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distribution within the herd, the model estimates the PFree for each herd simulating two sce-

narios (named S and D). In scenario S is assumed that the pathogen is homogeneously dis-

tributed and a representative random sample is always selected from the herd over time. In

contrast, in scenario D, it is assumed that the pathogen distribution is heterogeneous among

different sub-units of the herd and the sampled sub-units vary over time. This second scenario

would be explained by demographic structure, biosecurity measures, management of the farm

and logistics of sample collection. An example of this situation would be in sow herds, where,

to determine the herd status of PRRSv, the producers often conduct samplings only in piglets

that are to be weaned. In these cases each sampling is conducted in different sub-units of

animals each time. The PFree is estimated after each sampling t for both scenarios S and D
(PFreeS,t PFreeD,t) and over a time frame of 12 days, 12 weeks or 12 months. The probability of

freedom over this time frame is approximated by computing the area under the curve, which

is referred to as AUCS or AUCD according to the corresponding simulated scenario.

Parameters used in ‘OptisampleTM’ are shown in Table 1.

Modelling process

The time frame assessed by the model (i.e. 12 days, 12 weeks or 12 months) depends on the fre-

quency of consecutive testings (ft) set by the user (daily, weekly or monthly). The model

Table 1. Summary of the inputs set by the user and outputs of ‘OptisampleTM’.

Parameter Notation Data type Range

Inputs

Demographic and epidemiologic traits of the herd

Herd size N Integer 0 -1

Start of the observation period hd Date (yyyy-mm-dd) No limits

End of the observation period cd Date (yyyy-mm-dd) Automatically determined

Number of outbreaks that occurred during the period of observation nou Integer 0 -1

Expected duration of pathogen persistence in a herd in the event of an outbreak (in days) pp Unif (min, max) 1–365

Time spam between two outbreaks occurred (in years) fou Integers: min, max 1–15

Correlation between successive sampled groups for the pathogen prevalence ICCbt Unif (min, max) 0–1

Sampling strategy

Frequency of testing ft Factor (3 levels) Daily, weekly,

monthly

Minimum prevalence to detect P* Fixed proportion 0–1

Sample size of consecutive samplings nt Sequence of 12 integers 0–300

Diagnostic test sensitivity setest Pert (min, mode, max) 0–1

Price for unit lab test Pricetest Numeric value 0 –1

Outputs

Pr. free of infection after sampling t for scenario S PFreeS,t min–md–max 0–1

Pr. free of infection after sampling t for scenario D PFreeD,t min–md–max 0–1

Pr. free of infection over all period for scenario S AUCS min–md–max 0–1

Pr. free of infection over all period for scenario D AUCD min–md–max 0–1

Cost of testing Costtest Numeric value 0–9999999

scenario S: assuming homogeneous pathogen distribution and collecting random samples from all herd over time

scenario D: taking into account heterogeneous pathogen distribution and collecting samples from different animal sub-units over time

https://doi.org/10.1371/journal.pone.0176863.t001
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automatically scales all the inputs in days, weeks or months according to ft to compute all the

outputs.

The modeling process comprises different steps.

1. To estimate the probability that the herd is infected before conducting any sampling

(PIt = 0) the the model makes use of four inputs. These inputs are (1) start of the observation

period (hd), (2) end of the observation period (cd), (3) number of outbreaks that occurred dur-

ing the period of observation (nou), and (4) expected duration of pathogen persistence at the

herd in the event of outbreak (pp). Here the value of pp is defined using a continuous uniform

distribution [12] with minimun and maximum expected duration values. To describe the

uncertainty and variability of PIt = 0 the model computed its value using a Beta distribution

with parameters α and β [13] automatically derived from hd, cd, nou and pp following the

expression:

PIt¼0 ¼ Betað/¼ nou � pp þ 1; b ¼ ðcd � hdÞ � ðnou � ppÞ þ 1Þ ð1Þ

where nou
� pp correspond to the period of time in which the pathogen may persist in the herd;

and (cd − hd)−(nou � pp) correspond to the total period of time with available information dur-

ing which there is no pathogen persistence.

2. At time t = 1 a first sampling is conducted on a number of animals (n1) using a given

diagnostic test. The probability of detecting at least one infected animal if the herd is infected

(Set = 1) is estimated considering n1, a minimum proportion of infected animals within the

herd that we would expect if the disease was present (P�), the size of the herd (N), and the sen-

sitivity of the diagnostic test (setest). The value of P� is included as a fixed value that ranges

between 0 and 1 and is set by the user based on the market-requirements or accreditation pur-

poses. The setest is expressed as a Pert distribution [14] with possible values ranging between 0

and 1.

setest ¼ Pertðmin;most likely;max;€e ¼ 4Þ ð2Þ

The values of the setest may be determined based on the information provided by the veteri-

nary diagnostic laboratory that processes the samples or based on available scientific refer-

ences. Here, the user could set the 2.5th and 97.5th quantiles as proxy measurements for the

boundary parameters if the values of setest are expressed as 95% confidence interval.

The Set = 1 is calculated using a hypergeometric approximation based on the approach pro-

posed by Cameron and Baldock (1998) [15,16]. The Set = 1 is expressed as:

Set¼1 ¼ 1 � 1 � setest �
n1

N

� �N�P�

ð3Þ

3. If all the samples of t = 1tested negative, the model estimates the PFreet = 1 by simulating

the scenarios S (PFreeS,t = 1) and D (PFreeD,t = 1). To assess the influence of selecting different

sub-units over time, ‘OptisampleTM’includes a parameter that represents the correlation be-

tween successive sampled groups for the pathogen prevalence (ICCbt). In scenario S, where the

pathogen is homogeneously distributed throughout the herd, and the sampling is conducted

over time in a unique and representative group of animals of the whole herd, the value of ICCbt

is equal to 1. Thus, the PFreeS,t estimated from a specific sampling can be directly extrapolated

to the rest of the herd. Here, the PFreeS, t = 1 is computed using a Bayesian inference approach
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that considers the PIt = 0 and the Set = 1 [17] as follows:

PFreeS;t¼1 ¼
1 � PIt¼0

1 � Set¼1 � PIt¼0

ð4Þ

In the scenario D the spread of infection within the herd differs among animal groups. The

sub-units usually are interrelated, but are not exactly the same in terms of pathogen distribu-

tion. In this scenario, the estimates can only be partially extrapolated to the successive groups

according to the value of ICCbt defined as a continuous uniform distribution [12] that can take

values between 0 and 1 considering the structure and management of the herd. In these cases

the PFree D,t = 1 in successive groups or sub-units of the same herd depends on ICCbt and is

computed as:

PFreeD;t¼1 ¼
1 � PIt¼0

1 � Set¼1 � PIt¼0

� ICCbt ð5Þ

4. Once PFreeS,t = 1 and PFreeD,t = 1 are estimated, the model calculates the probability of

having overlooked the disease in each respective scenario S and D (named PIS,t = 1 and PID,t =

1) as:

PIS;t¼1 ¼ 1 � PFreeS;t¼1

and

PID;t¼1 ¼ 1 � PFreeD;t¼1

ð6Þ

5. However, there also exists the possibility of pathogen incursion between consecutive

samplings (PIbt). This value is highly variable, uncertain and mainly depends on trade move-

ments, biosecurity measures, proximity to other infected farms and environmental viability. In

this first version of the model, to facilitate the programming, computing and a better under-

standing of the influence of PIbt on the results, the parameter is assumed as constant over time.

The value of PIbt is automatically derived from historical data using the minimum and maxi-

mum time span between outbreaks occurred in the herd (named fo(min) and fo(max)) and the

minimum and maximum periods of time in which the pathogen may persist in the herd

(named pp(min) and pp(max)). Here, in the event of no data, the user can set the minimum and

the maximum values considered by the model. Here, the application computed the value of

PIbt as a Pert distribution [14] following the formula:

PIbt ¼ Pert min ¼
ppðminÞ

foðmaxÞ
;most likely ¼ mean

ppðminÞ

foðmaxÞ
;
ppðmaxÞ

foðminÞ

 !

;max ¼
ppðmaxÞ

foðminÞ
; l ¼

 !

ð7Þ

6. From the PIbt and the respective values of PIS,t = 1 and PID,t = 1, the model computes for

each scenario the overall probability that the herd is infected before the second sampling (PrI-
totS,t = 1 and PItotD,t = 1) [17] as follows:

PItotS;t¼1 ¼ PIbt þ PIS;t¼1 � PIbt � PIS;t¼1

and

PItotD;t¼1 ¼ PIbt þ PID;t¼1 � PIbt � PID;t¼1

ð8Þ

7. For each consecutive sampling t, the model develops an analogous process to the previous

calculations (steps 2–6) to compute the values of Set, PFreeS,t, PFreeD,t, PIS,t, PID,t, PItotS,t and

PItotD,t where t varies from 2 to 12.
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8. The previous steps estimate the PFreeS,t and PFreeD,t after each sampling t. The area

under the curve (AUC) is computed over all sampling events to estimate the overall probability

of being free of infection. Here, the AUC is an integrated metric of the confidence of disease

freedom for all the periods. Its computation used the sum of consecutive values of the respec-

tive PFreet obtained from all consecutive samplings in each scenario based on the trapezoidal

rule [18] as follows:

AUC ¼ Dt
PFreet¼1

2
þ PFreet¼2 þ PFreet¼3 þ � � � þ

PFreet¼12

2

� �

ð9Þ

Where Δt represents the elapsed time between consecutive samplings.

The AUC value ranges between 0 and 1 and indicates the probability that the herd was free

from the infection throughout the assessed period, being 1 if PFree = 100%, and 0 if

PFree = 0%. Depending on the scenario S or D, AUC is denoted as AUCS (for homogeneous

pathogen distribution and random sampling over time) or AUCD (for heterogeneous pathogen

distribution and sampled sub-units varying over time). The AUC is represented as minimum,

median and maximum values taking into account the ranges for the inputs previously set into

the model.

10. Finally the model computes the cost of testing (Costtest). The model sums all the samples

tested over time and multiplies this value by a given cost of each individual test (Pricetest) pro-

vided by the user.

Costtest ¼ Pricetest
Pt¼12

t¼1
nt ð10Þ

Visualization procedure

‘OptisampleTM’ is freely accessible at http://stemma.ahc.umn.edu/optisample. The layout of

this web application has been displayed in three parts. The first part includes a basic explana-

tion of the operation modeling. The second part consists of a panel of inputs in which the user

sets the values of each parameter. Finally, the third part shows the outcomes represented in

two plots indicating PFreeS,t, AUCS, PFreeD,t, AUCD and Costtest. The second and the third part

of the layout of OptisampleTM’ are shown in Fig 1.

Development environment

‘OptiSampleTM’ was developed using the statistical R software [19] and Rstudio [20] as inte-

grated environment of R. The package ‘shiny’was used to build the interactive web application

[21]. The package’mc2d’ was used to compute the pert distributions of the setest and the PIbt
[14] and the package ‘RSurveillance’ was used to calculate the Set using the hypergeometric

approximation assuming a known population size [16].

Simulation of scenarios

To illustrate the functionality of ‘OptisampleTM’, we estimated and compared the PFree of

PRRSv using different schemes in three hypothetical swine herds located in regions with dispa-

rate epidemiological situations and infection status. The status of these herds was determined

considering the PRRSv shedding and exposure according to the standardized terminology

defined by the American Association of Swine Veterinarians [22]. In all scenarios we aimed at

detecting a hypothetical design prevalence of 5%, a common threshold used to eliminate

PRRSv from the herds by herd closure [23]. These three herds had some features in common
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such as herd size, expected duration of the pathogen persistence in the herd in the event of an

outbreak and values of correlation between successive sampled groups for the pathogen preva-

lence. The herd size was 3,000 animals. The minimum and maximum values of pathogen per-

sistence for PRRSv based on the previous studies were set between 147 and 231 days [24]. The

correlation between successive sampled groups for the pathogen prevalence to simulate the

scenario D ranged between 0.5 and 0.7.

Herd A was a multiplier herd with very low incidence of PRRSv (i.e. one outbreak every 5

or 6 years). This herd had a negative infection status (IV). The disease status in this herd had

Fig 1. Layout of ‘OptisampleTM for the input values and outcomes.

https://doi.org/10.1371/journal.pone.0176863.g001
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been followed for the last 5 years and no outbreaks had occurred during this period. No pigs

had been introduced recently, the level of biosecurity was high, and the number of pig move-

ments into other farms was relatively small. The objective here would be to demonstrate that

herd A was free from PRRSv with a 95% confidence level testing individual sera with a com-

mercial PRRSv antibody ELISA kit with a sensitivity of 98% (97%–99%) [25–26]. We assumed

a price of USD 5 per serological test.

Herd B was a commercial herd with negative infection status (IV) with a high incidence of

PRRSv (i.e. one outbreak every 2 to 3 years). The farm had introduced new pigs. The disease

status of the herd of origin was unknown, and due to the lack of information the model set

the PIt = 0 automatically to 0.5. The aim here would be to demostrate that herd B was free of

PRRSv infection with a 95% confidence level using the same commercial PRRSv antibody

ELISA kit used for herd A.

Herd C was a commercial herd with medium incidence (i.e. one outbreak every 3 to 4

years). This herd was classified as positive stable undergoing elimination according to the RT-

qPCR positive at weaning (II-B). Here the objective would be to assure that the infection had

been eliminated. Sera samples were tested using a PRRSv RT-qPCR with a sensitivity of 98%

(97%–99%) as described elsewhere [27]. In this case there was evidence that the herd had been

recently infected, and thus for the PrIt = 0 the user could set hd to the initial date of the out-

break (here, as example, we set the date of two months ago) and a value of 1 as number of out-

breaks occurred since this date. We assumed a hypothetical cost of USD 10 per molecular test.

Three sampling schemes conducted over the course of a year were assessed for each of the

herds. In sampling scheme I 30 samples were collected per month in each herd. In sampling

scheme II 50 samples were collected per month in each herd. In sampling scheme III the strat-

egy varied in each herd (i.e. IIIa, IIIb and IIIc) to achieve a ~ 95% probability of being free of

infection at lower cost in the scenario S (i.e. homogeneous distribution of the infection in the

herd) (Table 2).

Results

The probability of being free from PRRSv infection for the herds A, B and C after conducting

consecutive sampling over one year with the costs of testing are shown in Table 2 and plotted

in Figs 2–4.

The comparison of outcomes of AUCs sampling 30 animals by month illustrated that the

confidence of being free from PRRSv over the entire period decreased when increasing the

probability of being infected initially or between successive samplings, with median values of

0.97 for herd A, 0.89 for herd B, and 0.82 for herd C.

AUCD results for herds A, B and C indicated a marked decrease of confidence if the patho-

gen was assumed to be heterogeneously distributed between sub-units in the herd. In these

scenarios, to substantiate freedom from PRRSv, it would be necessary a substantial increase in

the pressure of sampling, almost doubling the number of samples over time (see scheme II for

herds A and B).

The results of herd C showed that, to demonstrate freedom from infection when the risk of

being initially infected was high, it was necessary to substantially increase the sample size dur-

ing the first samplings. For herd C, due to the cost of the molecular test, the final budget was

higher than for herds A and B.

Plots depicted in Fig 2, Fig 3 and Fig 4 allowed comparing the monthly results computed

over time for the different scenarios. These outputs showed how influential the initial pro-

bability of infection was to demonstrating freedom from infection over time. The impact was

more evident in herd C. Furthermore, the patterns of the figures demonstrated the ability of
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substantiating disease freedom over time based on cumulative information obtained from pre-

vious sampling and how the probability of infection between consecutive sampling might

impact these estimates. Here, the lines connecting the monthly estimates showed an increase

in those months in which samplings were conducted and a decrease in those months in which

there was no sampling (see scheme IIIa).

Table 2. Inputs and outputs for the proposed scenarios.

Inputs

Notation Herd A Herd B Herd C

N 3000 3000 3000

hd Date 5 years ago Current date (0 months) Date 2 months ago

cd Current date Current date Current date

nou 0 Unknown (n.d.) 1

pp Unif (147, 231) Unif (147, 231) Unif (147, 231)

min: 147, max: 231 min: 147, max: 231 min: 147, max: 231

fou min: 5, max: 6 min 2, max: 3 min:3, max:4

ICCbt Unif (.5, .7) Unif (.5, .7) Unif (.5, .7)

ft monthly monthly monthly

P * .05 .05 .05

setest Pert(.97, .98, .99) Pert(.97, .98, .99) Pert(.97, .98, .99)

Pricetest 5 5 10

Sampling

Scheme I II IIIa I II IIIb I II IIIc

30 samples

monthly

50 samples

monthly

50 samples

bimonthly

30 samples

monthly

50 samples

monthly

60 at t = 1 and

40 monthly

30 samples

monthly

50 samples

monthly

90 at t = 1 and

35 monthly

Tota nt 360 600 300 360 600 500 360 600 475

Outputs

AUCS .96-.97-.98 .98-.99-.99 .91-.93-.95 .85-.89-.94 .95-.97-.98 .92-.96.-97 .78-.82-.84 .92-.93-.94 .93-.95-.96

AUCD .76-.78-.8 .92-.93-.93 .61-.63-.66 .59-.68–74 .87-.9-.92 .77-.83-.86 .52-.58-.61 .85-.86-.87 .76-.79-.81

Costtest 1800 3000 1500 1800 3000 2500 3600 6000 5750

https://doi.org/10.1371/journal.pone.0176863.t002

Fig 2. Monthly probabilities of freedom (blue and green) and range bands (grey) for herd A (a multiplier herd with a low initial probability of

PRRSv infection and low risk between consecutive samplings).

https://doi.org/10.1371/journal.pone.0176863.g002
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Discussion

Prevention, control, and eradication of infectious animal diseases at herd level require access

to up-to-date information on the infection status of the herd. Most of this information is often

obtained from periodic samplings usually conducted following predetermined schemes. For

example, for PRRSv, a relatively common practice in sow herds intending to demonstrate free-

dom from infection is to test serum samples from 30 weaned pigs. When no RT-qPCR positive

results are obtained in four consecutive samplings, it is estimated with a 95% confidence that

the PRRSv prevalence in the herd is below 10% and the herd is considered free from PRRSv

infection. The outputs of our model demonstrate how this strategy is affected by the epidemio-

logical situation of the herd; hence, a general strategy to demonstrate disease freedom may not

serve equally well in different epidemiological situations. The modelling approach presented

here allows to introduce inputs taking into account their variability and uncertainty, and to

assess the influence of different determinants on the probability of freedom from infection.

The model illustrates the importance of checking the health status of animals at the arrival

to maximize the likelihood that introduced animals are not infected. If the probability of being

free at the start is low or there is no historical data available to determine PIt = 0 (here by default

PIt = 0 = 0.5), the model shows that, to demonstrate freedom from PRRSv, we need to test a

Fig 4. Monthly probabilities of freedom (blue and green) and range bands (grey) for herd C (a commercial positive stable pig herd undergoing

elimination with a medium probability of infection between consecutive samplings).

https://doi.org/10.1371/journal.pone.0176863.g004

Fig 3. Monthly probabilities of freedom (blue and green) and range bands (grey) for herd B (a commercial herd with unknown probability of

infection initially and a high probability of infection between consecutive samplings).

https://doi.org/10.1371/journal.pone.0176863.g003
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higher number of samples during the initial samplings, compared to other scenarios (herds C

and B versus herd A). Moreover, depending on the initial infection status of the herd, the risks

of disease introduction, the impact of the disease and the immediate aims to achieve, the sam-

pling and testing protocol might be different. For example in herd A, which did not introduce

pigs or had a small number of movements among herds, the risks of initial infection or be-

tween consecutive samples were low. In this herd the very early diagnosis was not as important

as it was in herd B. On the other hand, if new animals had been introduced into the herd at

t = 0 or between consecutive samplings, the probability of being infected initially or between

consecutive samplings varied, influencing the distribution of the pathogen in herd. In contrast,

in herd B, there were many animal movements, and we might be interested in detecting lower

levels of prevalence than in herd A, and thus, the early detection of viraemic animals may be

more critical. In this case, the use of a RT-qPCR test to detect viraemic animals at earlier stages,

a selection of a lower P� and the increase of the sampling frequency could be more appropriate.

In this sense, ‘OptisampleTM’ might help to assess the probability of being free over time ad-

justing the hypothetical prevalence, test sensitivity and sampling frequency. Indeed, when the

values of P� or setest are lower, larger sample sizes are required to demonstrate that the herd is

free from disease.

The probability of being free over time also depends on the risk of incursion between conse-

cutive samplings, as demonstrated by the model outputs. Such risk varies according to biose-

curity measures in place, the frequency of direct or indirect contacts with other infected herds,

and the viability of PRRSv in the environment. When the risk of disease introduction between

consecutive samplings is low, the previous negative outputs also provide cumulative informa-

tion to substantiate that the herd is free from infection. As a result, the lag between samplings

may be extended while maintaining a high confidence in disease freedom (see scheme IIIa for

herd A). In contrast, when the probability of incursion between samplings is high, the proba-

bility of being free over time becomes low and the frequency of samples should not decrease

(see schemes IIIa and IIIb).

‘OptisampleTM’ also illustrates the importance of sample selection. To the best knowledge

of the authors, previously available software [28, 29] to calculate sample size in order to detect

infection assume that, in the event of infection, this will be homogeneously distributed across

the herd. However, from our model outputs, it seems evident that, if the groups sampled are

heterogeneous and different sub-units of animals are sampled over time, the confidence of dis-

ease freedom decreases dramatically. The value of ICCbt may be challenging to estimate, given

that this parameter depends on management and structure of each farm. Thus, to get plausible

values for each case, we would require a specific model to assess the pathogen spread within

each herd. Still, we believe the inclusion of this parameter demonstrates the importance of

assessing the process of sample selection to substantiate freedom from disease.

As a limitation of the model, it is important to remark that in this initial version of Opti-

sampleTM, to facilitate programming, computation, and a better understanding of the process,

the herd size and the risk of incursion between consecutive samplings are set as constant values

throughout the entire study period. However, in those herds in which the herd size or the risk

of pathogen incursion varies over the period of study, such assumption may lead to biased

results, and thus the interpretation of outcomes may be misleading. A potential extension in

future versions to improve the accuracy of outputs would be to estimate the risk of incursion

between samplings according to season or other associated factors using available continuous

information of each herd.

In summary, the work here illustrated a novel approach to enhance the design of active sur-

veillance for PRRSv at herd level. Additionally, the approach here, including its principles and

methods, may be easily extended to other surveillance contexts for a variety of species and
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animal diseases. This freely available application contributes to assessing the importance of the

main factors affecting the probability of disease freedom at herd level, ultimately supporting

management decisions to prevent and mitigate the impact of animal diseases on susceptible

populations.
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