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Abstract

The human population displays wide variety in demographic history, ancestry, content of DNA derived from hominins or

ancient populations, adaptation, traits, copy number variation, drug response, and more. These polymorphisms are of broad

interest to population geneticists, forensics investigators, and medical professionals. Historically, much of that knowledge was

gained from population survey projects. Although many commercial arrays exist for genome-wide single-nucleotide polymor-

phism genotyping, their design specifications are limited and they do not allow a full exploration of biodiversity. We thereby

aimed to design the Diversity of REcent and Ancient huMan (DREAM)—an all-inclusive microarray that would allow both

identification of known associations and exploration of standing questions in genetic anthropology, forensics, and personal-

ized medicine. DREAM includes probes to interrogate ancestry informative markers obtained from over 450 human popula-

tions, over 200 ancient genomes, and 10 archaic hominins. DREAM can identify 94% and 61% of all known Y and mitochon-

drial haplogroups, respectively, and was vetted to avoid interrogation of clinically relevant markers. To demonstrate its

capabilities, we compared its FST distributions with those of the 1000 Genomes Project and commercial arrays. Although all

arrays yielded similarly shaped (inverse J) FST distributions, DREAM’s autosomal and X-chromosomal distributions had the

highest mean FST, attesting to its ability to discern subpopulations. DREAM performances are further illustrated in biogeo-

graphical, identical by descent, and copy number variation analyses. In summary, with approximately 800,000 markers span-

ning nearly 2,000 genes, DREAM is a useful tool for genetic anthropology, forensic, and personalized medicine studies.
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Background

The field of population genetics experienced astonishing

changes over the past 50 years, generating a new understand-

ing of variability at the molecular level that has allowed for the

exploration of new biological paradigms. Over the past

decade, this turmoil was driven by the wide availability of

single-nucleotide polymorphism (SNP) microarray and next

generation sequencing (NGS) data, which raised major ques-

tions concerning human early origins, interbreeding with

archaic hominins, and the processes that shaped inter- and

intrapopulation variability.

Such questions are also the core components of forensic

DNA phenotyping. Common forensic and mass disaster scenar-

ios alongside accumulated criticism of eyewitness testimonies

VC The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse,

distribution, and reproduction in any medium, provided the original work is properly cited.

Genome Biol. Evol. 9(12):pp. 3225–3237. doi:10.1093/gbe/evx237 Advance Access publication November 20, 2017 3225

GBE

Deleted Text: -
http://creativecommons.org/licenses/by/4.0/


necessitated the development of more accurate and reliable

DNA-based forensics tools based on short tandem repeats

(STRs) extracted from minute DNA amounts (Kayser 2015).

The a growing demand for accurate profile reconstructions

from DNA evidence, beyond STR, dubbed “DNA intelligence,”

led to the development of the Forensics Chip and “calculators”

for skin andeye colors (Kayser2015), yet an updated microarray

that incorporates recently foundforensicmarkersdoesnotexist.

Interest in human ancestry is not limited to genetic anthro-

pologists, genealogists, and forensic experts. The relatedness

of adaptations to diseases is instrumental to identify targets

for drug treatment (Sheridan 2015). The appreciation that

demographic histories, geographical origins, and migration

patterns shaped the genetic risk to disorders and treatment

response (Yusuf and Wittes 2016) underlies personalized

medicine. This allows purporters of personalized medicine

vouch for a more comprehensive molecular information on

patients through genomics and other “omics” data.

Since NGS technologies remain prohibitively expensive, mi-

croarray SNP technology became the “workhorse” for geneti-

cists, although they are limited in a number of ways. First,

genotyping data are susceptible to ascertainment bias due to

the choice of SNPs (Albrechtsen et al. 2010). Although there

has been an increase in the numbers of genotyped indigenous

populations, estimated at 5,000–6,000 groups (Fardon 2012),

commercial microarrays still rely on the four HapMap popula-

tions (illumina 2010). More recent arrays use some or all the 26

1000 Genomes Project (GP) populations (Thermo Fisher

Scientific), but representing the complete human biodiversity

continues to be a challenge. This has several negative effects in

limiting the phylogeographic resolution of the findings and

maintaining health disparities (Popejoy and Fullerton 2016).

Second,microarraycontent is typically reflectiveofdataknown

or considered at the time of the design of the array. Finally,

most microarrays werenotdesigned toallow inferenceof copy

number variations (CNVs), which are useful in studying various

phenotypes and depicting population structure.

Motivated by progress in the studies of modern and an-

cient genetic diversity, adaptation mechanics, forensic pheno-

types, and drug response, we aimed to design an affordable

and all-inclusive microarray. Our goals were to: 1) design The

Diversity of REcent and Ancient huMan (DREAM)—a state of

the art SNP microarray dedicated to genetic anthropology and

genealogy, forensics, and personalized medicine; 2) validate

its accuracy; 3) evaluate its abilities to discern populations

compared with alternative arrays; and 4) assess its perform-

ances on worldwide populations.

Materials and Methods

Genetic Data Retrieval

Ancestry informative markers (AIMs) were obtained from the

same 15 studies as listed in Elhaik et al. (2013). Anonymous

genotype data of 606 unrelated individuals from 57 popula-

tions genotyped on the GenoChip microarray as part of the

Genographic Project and their sampling sites were obtained

from Elhaik et al. (2014).

Ancient DNA genomic data were obtained from 11 pub-

lications depicting 207 ancient genomes (Keller et al. 2012;

Raghavan et al. 2014; Fu et al. 2014; Gamba et al. 2014;

Lazaridis et al. 2014; Olalde et al. 2014; Seguin-Orlando

et al. 2014; Skoglund et al. 2014; Allentoft et al. 2015;

Haak et al. 2015; Llorente et al. 2015; Schiffels et al. 2016).

In the case of sequence data, sequence reads were aligned to

the human reference assembly (UCSC hg19—http://genome.

ucsc.edu/; cited 2017 Jul 16) using the Burrows Wheeler

Aligner (BWA version 0.7.15) (Li and Durbin 2009), allowing

two mismatches in the 30-base seed. Alignments were then

imported to binary (bam) format, sorted, and indexed using

SAMtools (version 1.3.1) (Li et al. 2009). Picard (version 2.1.1)

(http://broadinstitute.github.io/picard/; cited 2017 Jul 16) was

then used for MarkDuplicates to remove reads with identical

outer mapping coordinates (which are likely PCR artifacts).

The Genome Analysis Toolkit RealignerTargetCreator module

(GATK version 3.6) (McKenna et al. 2010; DePristo et al.

2011) was used to generate SNP and small InDel calls for

the data within the targeted regions only. GATK

InDelRealigner/BaseRecalibrator was then used for local read

realignment around known InDels and for base quality score

recalibration of predicted variant sites based on dbSNP 138

and 1000 Genomes known sites, resulting in corrections for

base reported quality. The recalibration was followed by SNP/

InDel calling with the GATK HaplotypeCaller. Variants were

filtered for a minimum confidence score of 30 and minimum

mapping quality of 40. At the genotype level, all genotypes

that had a genotype depth <4 or a genotype quality score

<10 were removed from the data set by setting them to

missing in the VCF. GATK DepthofCoverage was then used

to re-examine coverage following the realignment. VCFtools

(version 0.1.14) (Danecek et al. 2011) were used to convert

the VCF file to PLINK format (Purcell et al. 2007). We used

Haak et al.’s (2015) chronology. We obtained the low- and

high-coverage sequences data for Neanderthal (Green et al.

2010) and Denisovan genomes (Meyer et al. 2012; Sawyer

et al. 2015).

SNP and Haplogroup Validation

To cross-validate DREAM’s genotypes, we genotyped 139

individuals from 17 worldwide 1000 GP populations includ-

ing: Americans of Mexican ancestry (Los Angeles), Bengali

(Bangladesh), British (England and Scotland), Caribbean

Africans (Barbados), Colombians (Medellin, Colombia), Esan

(Nigeria), Finnish (Finland), Gambian (Western Division, The

Gambia), Han Chinese (Beijing, China), Iberian (Spain),

Indian Telugu (UK), Italians (Tuscany, Italy), Kinh (Ho Chi

Minh City, Vietnam), Mende (Sierra Leone), Peruvians (Lima,
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Peru), Punjabi (Lahore, Pakistan), and Yoruba (Ibadan,

Nigeria). Genotypes were produced following the Axiom

Best Practices Genotyping Analysis Workflow (Thermo Fisher

Scientific 2017), which executes sample and marker QC. The

concordance between DREAM and 1000 GP (phase 1) geno-

types was calculated as the proportion of the genotypes (AA,

AB, and BB) that were identical between the two data sets.

The marker call rate was calculated as the proportion of gen-

otypes that were not set to No Calls out of the total genotype

calls attempted.

Maternal and Paternal haplogroup calling was done using

an internal haplogroup calling algorithm developed by the

Genographic Project, as in Elhaik et al. (2013).

Comparing Summary Statistics between Genotyping
Arrays

DREAM’s autosomal and X-chromosomal SNPs ability to dif-

ferentiate populations was compared against alternative plat-

forms. For each platform, we calculated the alternative allele

frequency (AF) and FST based on 1000 GP phase 3 data

(Durbin et al. 2010) provided by the Ensembl Variant Effect

Predictor (McLaren et al. 2016). Calculations were based on

unrelated Europeans (CEU), Africans (YRI), and Han Chinese

(CHB). Aside DREAM, the compared platforms include the

complete 1000 GP data set (87,829,960 SNPs), a reduced

subset of 1000 GP without rare SNPs (MAF< 0.01)

(14,426,697 SNPs), and four microarrays: HumanOmni5 (illu-

mina 2015) (4,156,080 SNPs), HumanOmni2.5 (illumina

2013) (2,226,048 SNPs), Infinium Multi-Ethnic Global (illu-

mina 2016) (1,486,126 SNPs), and Human Origins (Lu et al.

2011) (627,981 SNPs).

Due to the large number of FST values in each data set, their

length distributions are very noisy. We thus adopted a simple

smoothing approach in which FST values are sorted and divided

into 1,000 equally sized subsets. The distribution of the mean

FST value is then calculated using a histogram with 40 equally

sized bins ranging from 0 to 1. To test whether two such FST

distributions obtained by different arrays are different, we ap-

plied the Kolmogorov–Smirnov goodness-of-fit test and the

false discovery rate (FDR) correction for multiple tests

(Benjamini and Hochberg 1995). Because the differences be-

tween the distributions were highly significant due to the large

sample sizes,wealsocalculatedtheeffect size,firstbyusingthe

nonoverlapping percentage of the two distributions, and then

by using Hedges’ g estimator of Cohen’s d (Hedges 1981). If

the area overlap is>98% and Cohen’s d is<0.05, we consid-

ered the magnitude of the difference between the two distri-

butions to be too small to be biologically meaningful.

Next, we compared the identical by descent (IBD) coverage

obtained by each microarray. IBD varies by individual, popu-

lation, proportion of rare alleles, and number of SNPs. For

that, we assembled an autosomal data set by randomly

selecting 30 individuals from three 1000 GP populations

(phase 3) that have the same proportion of rare alleles

(MAF< 0.5%) (Genomes Project et al. 2015). Analyses

were carried out using only the autosomal SNPs of each mi-

croarray. For each individual, we retained the average IBD

with all individual of the same population. We then calculated

the mean and standard deviation per population and divided

them by the number of SNPs of the microarray.

Finally, we compared the linkage disequilibrium (LD) pat-

terns between the microarrays. For that, we used the 1000

GP (phase 3) data set. We randomly selected 30 individuals

from four populations: Yoruba (Ibadan, Nigeria), Finnish

(Finland), Japanese (Tokyo, Japan), and Puerto Ricans (Puerto

Rico). We then analyzed the SNPs sequenced in those popula-

tions that were included in each of the five genotyping arrays:

DREAM (688,320) HumanOmni5 (3,845,760 SNPs),

HumanOmni2.5 (2,155,999 SNPs), Infinium Multi-Ethnic

Global (1,319,453 SNPs), and Human Origins (564,019

SNPs). Lastly, we calculated the LD statistic (r2) using the

PLINK (Purcell et al. 2007) command: –ld-window-r2 0 –r2 –

ld-window 2, which calculated r2 for each variant pair with two

variants between them at most (ld-window¼ 2) without filter-

ing low r2 values (window-r2¼ 0).

Identical by Descent Analysis with Archaic Hominins

We assembled an autosomal data set by randomly selecting

30 individuals from 15 1000 GP populations (phase 3). Using

BCFtools (Li 2011), we merged this data set with genotypes of

the Denisovan, Neanderthal, and the chimpanzee reference

genome panTro4 (Feb. 2011) obtained from the UCSC ge-

nome browser. We filtered low-quality positions (marked as

LowQual), InDels, and uncalled genotypes with VCFtools (ver-

sion 0.1.14) (Danecek et al. 2011). We also removed positions

that did not differ from the reference allele for all samples

using “–non-ref-ac-any 1.” The final data set contained

36,375,129 SNPs. A subset of this data set contained

669,954 autosomal DREAM SNPs.

We applied Refined IBD implemented in Beagle version 4.1

(21Jan17.6 cc) with the reference human genome (Browning

and Browning 2013) to both data sets. To improve the small

segments detection ability, we used ibdtrim¼ 0 and

ibdcm¼ 0.001.

Biogeographical Origins of Worldwide Individuals

Biogeographical predictions were obtained with the geo-

graphical population structure (GPS) following Elhaik et al.

(2014). GPS accepts the DNA of an unmixed individual and

estimates its admixture components in respect to nine admix-

ture components corresponding to putative ancestral popu-

lations. It then matches the admixture proportions of the

individual to those of reference populations known to have

resided in a certain geographical region for a substantial pe-

riod of time. GPS then converts the genetic distances between

DREAM GBE
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that individual and the nearest M¼ 10 reference populations

into geographic distances. The reference populations can be

thought of as “pulling” the individual toward their location in

a strength proportional to the similarity of their admixture

components until a “consensus” is reached (Das et al. 2017).

DREAM’s biogeographical ability was assessed using the

Genographic data set. The 23,782 autosomal SNPs overlapped

between the GenoChip and DREAM were used to infer nine

admixture components (supplementary fig. S1,

Supplementary Material online), which were provided as input

for GPS. Individuals were grouped into their populations.

Subpopulations were computationally determined by employ-

ing MATLAB’s k-means clustering and multiple pairwise F tests

on populations with Np>4, where Np is the number of individ-

uals within a population. For k¼ 2 to k¼Np/2, we used

k-means to identify k clusters and then the ANOVA F test to

testwhetherclusterpairsare significantlydifferent (P< 0.05). If

the hypothesis is verified for all the pairs at iteration i, then

another iteration follows until at least one pair violates the hy-

pothesis and ki-1 is the optimal number of clusters. Populations

and subpopulations displaying only one individual were dis-

carded from the data set. The final data set consisted of 587

individualsgrouped into123subpopulations from33countries

(supplementary tables S8 and S9, Supplementary Material on-

line). These subpopulations were considered reference popu-

lations. The admixture components of the reference

populations were determined by their average.

We localized the 584 individuals using the full reference

population data set, the leave-one-out individual, and leave-

one-out subpopulation approaches. Two measures were used

to assess the biolocalization accuracy: first, a binary index in-

dicated whether an individual is predicted within 200 km from

the border of their true country. Second, the distance be-

tween the predicted and true location was calculated with

the Haversine formula.

Genetic Similarity between the Worldwide Individuals

To calculate the genetic similarity between individuals, we first

created a minimum connectivity k-nearest neighbors (k-NN)

graph G based on the 9 admixture components (supplemen-

tary fig.S1, Supplementary Material online). We then clustered

G by applying the novel graph-theoretic node-based resilience

clustering framework NBR-Clust (Matta et al. 2016). The vari-

ous node-based resilience measures, such as vertex attack tol-

erance, integrity, tenacity, and toughness, compute a relatively

sparsecritical attack setofnodes,whose removal causes severe

disruption to the network connectivity, outputting the result of

an optimization function representing the difficulty of disrupt-

ing thenetworkasa specificmeasureof thenetwork resilience.

NBR-Clust takes any node-based resilience measure r as a pa-

rameter andperformsnoise-robust clusteringon G primarily by

outputting the connected components resulting from the re-

moval of the critical attack set computed by r(G) as the basic

clusters. Ifnoiseoroverlapexists,outliernodesarecomputedas

a subset of the critical attack nodes, which form the cluster

boundaries inG.Weused integrityas thenode-based resilience

measure to cluster G due to its noted robustness when the

number of ground truth clusters is not known a priori. Our

integrity-based graph clustering results in eight clusters, each

corresponding to a different color in the figure. The graphs are

visualized using the Gephi 0.9.1 graph visualization program

(Bastian et al. 2009).

The different sizes of the nodes (and node labels) were cre-

atedusingthebetweennesscentralitiespropertyBC(v):BC(v)of

a node v is the sum over all pairs of other nodes x, y, of the ratio

of the number of x–y shortest paths that go through node v to

the total number of x–y shortest paths. As BC(v) measures the

extent to which v lies between other nodes (as well as between

multiple clusters), larger nodes are intermediate to more pairs

of graph nodes than smaller nodes in the visualization. Thus,

the highest betweenness, larger nodes tend to lie on the

boundaries between clusters in the NBR-Clust framework, rep-

resenting outliers in terms of cluster overlap or noise. As such,

we hypothesize that the largest, that is, highest betweenness

centrality, nodes represent individuals with higher levels of ad-

mixture with respect to the clusters to which they are adjacent.

CNV Analysis

To infer CNVs, we applied the Axiom CNV Summary Tool

(Thermo Fisher Scientific 2015) to the 139 1000 GP individuals

genotyped in DREAM. The tool uses signal intensity and gen-

otypes to calculate log2 ratios and B allele frequencies (BAFs)

from normalized probeset signal data. Since the CNVs in-

ferred for the 1000 GP individuals cannot be directly vali-

dated, we aimed to replicate the population structure

patterns reported by Sudmant et al. (2015).

A CNV was considered valid if a change in the signal in-

tensity was identified in at least 40% of the markers that

covered it. To reduce biases in PCA, we selected 11 random

individuals from Africa, America, Europe, and East Asia. Since

many of the CNVs were not included in DREAM due to their

ability to discern populations, we narrowed our analyses to

CNVs covered by at least 15 markers that were unique to one

regional population and to individuals that harbored at least

15 CNVs. We carried out a PCA analysis on the remaining 132

deletions and 97 duplications. The PlotGenome script (Elhaik

and Graur 2013) was used to draw the chromosomal view.

Results and Discussion

Designing the DREAM SNP Microarray

The DREAM microarray (Axiom_DDCGPS01) was designed as

an Applied Biosystems Axiom custom array. The Axiom gen-

otyping platform utilizes a two-color ligation-based assay us-

ing 30-mer Oligonucleotide probes synthesized in situ onto a

microarray substrate. There are �1.38 million features (or

Elhaik et al. GBE
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cells) with each SNP feature containing a unique 30mer oli-

gonucleotide sequence complementary to the sequence

flanking the polymorphic site on either the forward or the

reverse strand. Depending on the 30 (SNP-site) base (A or T,

vs. C or G), solution probes bearing attachment sites for one

of two dyes are hybridized to the target complex, followed by

ligation for specificity. DREAM was designed with 809,781

oligonucleotide sequences complementary to the forward or

reverse strands (probesets) that interrogate 799,120 markers

(SNPs or InDels). The following sections detail how markers

were selected to enable ancestry, genealogy, forensics, and

personalized medicine applications.

Ancestry Informative Markers

AIMs are invaluable tools in population genetics and genetic

anthropology as they allow the identification of populations

that vary in substructure, quantification of the degree of ad-

mixture, and detection of subtle population subdivisions using

a limited number of markers (Enoch et al. 2006). We collected

50,504 AIMs (49,555 autosomal and 949 X-chromosomal):

one-third (15,591) were culled from the literature that

encompassed over 450 populations (fig. 1). The remaining

AIMs were selected randomly and uniformly from the

GenoChip’s autosomal, and X chromosomal AIMs that

were obtained from over 300 populations (Elhaik et al. 2013).

Ancient DNA Markers

Ancient DNA from sequence or genotype data allows direct

observations of past admixture and migration events and is

often the only evidence that allows the examination of

historical hypotheses. As such, ancient DNA studies have pro-

vided insights into human evolution and migration (Morozova

et al. 2016). We curated genetic data from over 200 ancient

genomes (supplementary table S1, Supplementary Material

online). Due to the data sparsity, we strived to select markers

shared across as many genomes as possible to minimize the

overall number of SNPs while retaining sufficient data (ap-

proximated at 1,000 SNPs) from each genome. For that, a

greedy algorithm applied to all the genomes iteratively se-

lected the SNPs with the maximal number of alleles available

for most of the genomes. Each SNP at a time was marked for

inclusion, omitted from the data set, and the process of SNP

selection repeated until each genome was sufficiently covered

by at least 1,000 SNPs. SNPs from genomes consisting of only

a few hundred SNPs were manually added to provide effective

coverage.

To facilitate studies on the extent of gene flow from

Neanderthal and Denisovan populations to modern humans,

we included SNPs from multiple low-coverage genomes while

restricting the selection to markers validated by the 1000 GP.

As such, we randomly selected 1,000 and 3,000 SNPs for

Denisovans 4 and 8, respectively, and 5,000 SNPs from six

Neanderthals (Feld1, Mezmaiskaya, Sid1253, Vi33_25, and

Vi33_26). Overall, we selected 78,724 markers (73,107 auto-

somal and 5,617 X-chromosomal), 12,550 of which were

culled from archaic hominin genomes.

Adaptation Markers

Adaptive responses to selective pressures in particular

geographic regions have become increasingly important in

FIG. 1.—Worldwide distribution of population from which AIMs were obtained. AIMs from over 450 world populations were harvested from the

literature (green) or calculated based on genotyped data from public collections (red).

DREAM GBE
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understandinghumanhistory (Joblinget al. 2013;Racimoetal.

2017). Populations experiencing selective pressures were in-

strumental in identifying the genetic variants that confer these

adaptive qualities. For example, the modulation fatty-acids and

growth hormone in Greenland Inuits was found to be influ-

enced by two markers located in FADS1 and FADS2 (Fumagalli

et al. 2015). Following previous mapping efforts and based on

the literature published over the past 5 years, we constructed a

comprehensive list of adaptive traits and curated variants and

genes that are significantly associated with those traits. Genes

significantly associated with adaptations of interest were

recorded and included in the design (fig. 2 and supplementary

table S2, Supplementary Material online).

Forensic Informative Markers and Other Traits

To facilitate forensic studies, we aimed to infer forensic infor-

mative markers (FIMs) for DNA phenotyping. Following pre-

vious studies (Kayser 2015) and based on academic

publications made over the past 5 years, we developed a

panel of forensic-relevant traits and curated FIMs and genes

that are significantly associated with those traits. We also in-

cluded in the design markers and genes associated with

popular traits such as memory, language, circadian cycle, im-

mune system, and endurance (fig. 3 and supplementary table

S3, Supplementary Material online).

Enabling CNV Analyses

CNVs have contributed significantly to hominid evolution

(Sudmant et al. 2013), biodiversity (Freeman et al. 2006),

adaptations, traits, and disease (Sudmant et al. 2015; Zarrei

et al. 2015). CNVs may also be useful tools in forensics, similar

to that played by STRs. The ability to detect SNPs and CNVs in

the same genome screen is thereby advantageous to genetic

anthropology, forensics, and epidemiology.

Applied Biosystems Axiom arrays from Thermo Fisher

Scientific can be designed to detect both SNPs and CNVs.

Applied to whole-genome data from a set of human cell lines

with large chromosomal aberrations, Webster et al. (2013)

showed that in regions with sufficient probe density, both

copynumbergainsand lossescanbedetectedwithhighoverall

sensitivity and high breakpoint accuracy. We selected 351 ge-

nomic regions of varying lengths (�L¼125,452; L
�¼ 23,647 bp)

that were sufficiently large (L> 10,000 bp) or shown to differ-

entiate populations (Sudmant et al. 2015). These regions were

FIG. 2.—Local human adaptations. Following Fan et al. (2016), each adaptation is labeled by the phenotype and/or selection pressure. The genetic loci

under selection and the studied population are shown.
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FIG. 3.—Human traits and their associated genetic loci.
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covered by 29,195 probesets, designed by Thermo Fisher

Scientific at an average spacing of �1,500 bp. A majority of

the regions (306) were covered by 25 probesets or more to

ensure detection accuracy (supplementary fig. S2 and table

S4, Supplementary Material online).

Personalized Medicine Markers

To enable precision medicine applications, we selected phar-

macogenetic SNPs from public repositories and the literature.

SNPs were culled from the Pharmacogenomics

Knowledgebase (PharmGKB), whose data are associated with

human genetic variation in drug responses (Whirl-Carrillo et al.

2012) (�75% of 3,476 SNPs annotated by PharmGKB were

collected), and fromthe Applied Biosystems Drug Metabolizing

Enzymes and Transporters DMET) microarray (Sissung et al.

2010), whose genes are related to drug absorption, distribu-

tion, metabolism (�60% of 1,924 SNPs were collected). Genes

and SNPs implied by the eMERGE network to be associated

with phenotypic outcome like pain (e.g., SCN10A),

Hypothyroidism (e.g., FOXE1), cholesterol (e.g., CETP and

LIPC), platelets, and red and white blood cells (Crawford et al.

2014) were also included. We further included SNPs and genes

associated with Warfarin response like VKORC1, CYP2C9,

ADRB1, ADRA2C, and BEST (Johnson 2008; Scott et al. 2008;

Daneshjou et al. 2014) and nearly all the cytochrome P450

genes associated with drug metabolism. Lastly, we included

genes associated with aging (Shadyab and LaCroix 2015).

All Other Genome-Wide Markers

Studies of sex bias in human admixture, migrations, and kin-

ship analyses typically require a high coverage of the X chro-

mosome. We thereby enriched the X chromosomes with SNPs

selected uniformly throughout the genome. We prioritized

SNPs that had Applied Biosystems Axiom confirmed probes

and those that are targeted by Illumina’s HumanOmni5 array.

Overall, 50,265 SNPs were selected.

Of particular importance is the major histocompatibility

complex (MHC) locus involved in autoimmune and infectious

diseases. The MHC region is the most gene-dense region in

the human genome. However, the high density in polymor-

phisms and linkage disequilibrium have limited our under-

standing of its role. To facilitate further research of this

locus, we included SNPs for which Applied Biosystems

Axiom had confirmed probesets and that reside within the

4 M bp of the MHC. Overall 16,434 SNPs were selected.

To enable further research into traits of interests, we tar-

geted SNPs that reside within or in the 100 kilobases flanking

regions of the genes of interest. We used STRING (Jensen et

al. 2009) to find genes associated with the genes of interest

(figs. 2 and 3). In some cases, the entire gene families of genes

(e.g., keratin and cytochrome P450) strongly associated with

the phenotypes of interest were included in the design.

To enable cross-platform kinship analyses, we selected

�230,000 SNPs distributed uniformly throughout the ge-

nome that had Applied Biosystems Axiom confirmed

probesets.

Finally, we interrogating over nearly 14,000 markers to

identify SNPs defining Y and mtDNA haplogroups (supple-

mentary material S1, Supplementary Material online).

Vetting the Array

We excluded most of the SNPs that required four probesets or

more unless they were vital to call haplogroups. To improve

coverage, we prioritized SNPs that required a single probset

over those that required two. We also filtered out all the

markers that were recorded in the ClinVar database

(Landrum et al. 2016) (as of 2/23/2016). We thus designed

a multipurpose genotyping array dedicated for genetic an-

thropology and genealogy, forensics, and personalized

medicine.

Validating the DREAM Microarray Results

After excluding unreliable Y and mitochondrial markers, the

final DREAM microarray targets 794,302 markers: 730,581

autosomal and pseudoautosomal, 48,973 nonpseudoautoso-

mal (nonPAR) X, 13,576 Y-chromosomal, and 1,172 mito-

chondrial markers without clinical relevance. The design

spans over 1,903 genes (supplementary table S5,

Supplementary Material online) enriched with members of

the collagen (46), keratin (155), cytochrome P450 (68), fork-

head box (FOX) (22), RNA polymerase subunits (POLR) (34),

solute carrier (38), and interleukin (22) gene families. Of

DREAM’s autosomal, nonPAR X, Y and mtDNA SNPs,

95.8%, 98.6%, 57.0%, 73.3%, respectively are found in

the 1000 GP (phase 3). Coincidently, DREAM also shares a

significant number of SNPs with other commercial arrays, but

never more than 40% with any array.

Genotype accuracy was assessed by genotyping 139 indi-

viduals from 17 worldwide populations found in the 1000 GP

data (Altshuler et al. 2010) and cross-validating them with the

1000 GP data. About 100% (139/139) of the samples passed

sample QC, and 97.5% (774,648/794,302) of the markers

passed marker QC. For autosomes that passed marker QC,

the concordance rate was 99.70% (88,753,010 genotypes

agree/89,019,543 total genotypes) and the total marker call

rate was 99.70% (102,164,485AAþABþ BB genotypes/

102,468,039 AAþABþ BBþNo calls). For the nonPAR X

markers, the concordance between the genotypes from the

46,020 markers (included, passed markerQC, and part of the

1000 GP phase 3) and the 1000 GP phase 3 genotypes was

calculated as 99.76% (5,955,934/5,970,139). For the Y chro-

mosome, the concordance between the genotypes from the

7,745 markers (part of the 1000 GP phase 3) and the 1000 GP

phase 3 genotypes was 99.59% (448,458/450,297). For the

mtDNA markers, the concordance between the genotypes
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from the 859 markers (included and part of the 1000 GP

phase 3) and the 1000 GP phase 3 genotypes was calculated

as 99.84% (108,343/108,515). Overall, we confirmed that

nearly all the genotypes captured by the DREAM array are

accurate.

The SNP density across all chromosomes is shown in figure

4. 94% of the genome has a mean SNP density of 24.36,

33.34, 39.32 SNPs per 100 kilobases for the autosomes, X,

and Y chromosomes, respectively. The remaining 6% corre-

spond to the known gaps in the assembly of chromosomes 13,

14,15,and22.Theshortarmofchromosome6has thehighest

SNP density (56.41 SNPs per 100 kilobases) followed by the

short arm of chromosome Y (50.53 SNPs per 100 kilobases).

DREAM’s potential to assist in ancient DNA studies was

evaluated by calculating the number of ancient DNA geno-

types for each ancient genome (supplementary fig. S3,

Supplementary Material online). Of the 207 ancient human

genomes used in the design, 201 genomes were well cap-

tured (�L¼22,641 SNPs) with 150 genomes having >100

SNPs. The captured genomes represented 12 out of 14 coun-

tries, excluding Montenegro (two genomes) and Lithuania

(one genome), from time periods spanning 40,000 BC to

700 AD.

DREAM’s ability to infer uniparental haplogroups was com-

putationally assessed against the respective trees. DREAM

markers identified 94% and 61% parental and maternal hap-

logroups, respectively (fig. 5). All the primary and secondary

maternal haplogroups were detected.

Assessing DREAM’s Abilities to Discern Population
Structure

Comparing the Alternate Allele Frequency Distribution of
Various Microarrays

Compared with whole genome data, allele frequencies (AF) in

microarrays are typically shifted toward intermediate fre-

quency levels (Elhaik et al. 2013), which led to the exploration

of correction methods (Lachance and Tishkoff 2013). This is

expected, provided that the majority of SNPs are private and

that 1Mbp arrays that cover only 1% of the SNPs typically aim

to capture common SNPs. None of the arrays we examined

exhibited AF distribution similar to the 1000 GP, though they

FIG. 5.—Success rate in identifying Y-chromosomal (left) and mtDNA (right) haplogroups. The plots depict all known basal haplogroups (columns), the

number of known subgroups in each haplogroup (top of each column), and the proportion of computationally validated subgroups.

FIG. 4.—SNP density in the DREAM microarray. The average numbers

of DREAM SNPs per 100,000 nucleotides across the genome are color

coded. Gaps in the assembly are shown in gray.
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all roughly followed its trajectory (supplementary fig. S4,

Supplementary Material online). Considering autosomal

markers, DREAM had the highest proportion (70%) of com-

mon markers (AF> 0.05), after the Human Origins (77%),

and its AF distribution resembled that of the

HumanOmni2.5 array. Interestingly, despite its small size

(1,443,399), the AF distribution of the Multi ethnic global

array resembled that of the HumanOmni5 array for common

markers. DREAM’s AF distribution in the X chromosome re-

sembled the 1000 GP’s AF distribution after excluding rare

variants (AF< 0.01), likely due to its enrichment with random

markers. DREAM’s proportion of common markers (60%)

was second only to the HumanOmni2.5 array (66%).

Comparing the Genome-Wide FST Distribution of Various
Microarrays

The extent to which microarray technology is able to discern

and identify subpopulations is of principal interest. FST is a

measure of differentiation whereby the genetic variation of

the subpopulation is measured relative to the total population

(Wright 1951). Here, we employed data from the 1000 GP

CEU, YRI, and CHB to calculate FST in DREAM and compara-

tive arrays as in Elhaik (2012). DREAM produced the highest

proportion of high-FST autosomal and X chromosomal alleles

compared with other arrays (supplementary fig. S5,

Supplementary Material online). The Multi ethnic global array

had the second lowest FST values after the HumanOmni 5,

which can be explained by the high proportion of rare SNPs

they shared. The autosomes and X-chromosomal SNPs of the

comparative arrays had significantly lower FST values

(Kolmogorov–Smirnov goodness-of-fit test, P< 0.001) than

DREAM’s due to the high fraction of rare SNPs in these arrays.

The magnitude of the differences between the FST values of

these arrays was also large for autosomal (area overlap 69–

77%, Cohen’s d 0.23–0.3) and X-chromosomal SNPs (area

overlap 74–84%, Cohen’s d 0.17–0.26). These results sug-

gest a reduced ability of the competing arrays to elucidate

ancient demographic processes (Kimura and Ota 1973;

Watterson and Guess 1977).

Comparing the Identical by Descent of Various Microarrays

IBD and haplotype-based methods are widely used in popu-

lation genetic studies. Since, IBD coverage depends on the

choice of population, proportion of rare alleles, and the num-

ber of SNPs, we compared the ratio of the total IBD coverage

of three populations, which exhibit similar proportion of rare

alleles, to the number of SNPs of each microarray. A high ratio

indicates higher IBD coverage per SNP (supplementary fig. S6,

Supplementary Material online). DREAM has the highest ratio

for all populations compared with other arrays, excepting the

Human Origins array (FIN). HumanOmni5 has the lowest ratio

suggesting that the choice of SNPs is suboptimal. This is

evidenced by the mean IBD coverage of FINs, which is

295.4 M using HumanOmni5, 321.7 M using

HumanOmni2.5, and 214.8 M using DREAM. All arrays

have similar standard deviations, but after normalizing for

their size both DREAM and the Human Origins array exhibit

the highest standard deviations for all populations.

Comparing the Linkage Disequilibrium Patterns of Various
Microarrays

Optimizing microarray coverage can be done by including a

core SNP panel with essential markers and selecting the

remaining SNPs strategically to optimize imputation efforts.

Such microarray design would consist of a fewer SNPs in high

LD, whereas a wasteful or robust design (depending on one’s

point of view) would consist of a large number of SNPs in high

LD. A comparison of the LD patterns of SNPs from the four

1000 GP populations, which overlapped with each of the five

microarrays showed, that the Human Origins microarray had

the smallest fraction of high LD markers followed closely by

DREAM (supplementary fig. S7, Supplementary Material on-

line). This is expected as the Human Origins largely consists of

sparse ancient DNA SNPs, whereas DREAM consists of a high

fraction of genic markers. The LD cumulative probability dis-

tributions of the remaining microarrays generally clustered

together with markers of the multi ethnic global microarray

exhibiting the highest LD.

Detecting Interbreeding with Neanderthal and Denisovan

DREAM’s ability to infer IBD with archaic hominins was eval-

uated by comparing the total IBD between worldwide indi-

viduals, Neanderthal, and Denisovan calculated using the

complete 36 million SNPs (1000 GP data set) and DREAM

SNPs, representing 1.86% of the complete data set (supple-

mentary table S6, Supplementary Material online). Total IBD

region sizes were highly correlated (NNeanderthal ¼ 450,

rNeanderthal ¼ 0.75, NDenisovan ¼ 450, rDenisovan ¼ 0.91) and

exhibit similar between-population patterns in the two data

sets.

Biogeographical Origins of Worldwide Populations

Prediction of biogeographical origins is obtained by convert-

ing genomic information into geographical coordinates. All

biogeographical inferences were carried out using the geo-

graphic population structure (GPS) tool, which matches the

admixture proportions of a test individual with those of refer-

ence populations known to have resided in a certain geo-

graphical region for a substantial period of time (Elhaik

et al. 2014; Das et al. 2017). The efficacy of DREAM’s bio-

geographical predictions was assessed on 584 worldwide

individuals from 33 countries (fig. 6 and supplementary table

S7, Supplementary Material online). DREAM placed the ma-

jority of individuals (88%) within <200 km from their
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country’s political borders, in line with Elhaik et al.’s (2014)

report. For 36% of the countries, all the individuals were

predicted within these extended boundaries. The average pre-

diction distance from the true borders was 125 km, an im-

provement compared with previous studies (Das et al. 2016;

Marshall et al. 2016). As expected, the accuracy decreased to

78% and 54% in the leave-one-out individual and -subpop-

ulation analyses, respectively. There, in 15% and 6% 15% of

the countries, respectively, all the individuals were predicted

within the extended country’s boundaries in both cases and

the average distances from the true borders were 230 and

473 km, respectively. These findings are similar or better than

those reported by Elhaik et al. (2014) and reflect the choice of

AIMs and the improvement made in the assembly of the ref-

erence populations.

Individual clustering by admixture proportions is an effec-

tive way to describe population structure (Marshall et al.

2016) and evaluate the ascertainment bias and the AIMs

choice. An application of the graph-theoretical clustering

technique NBR-Clust (Matta et al. 2016) to the admixture

proportions of the Genographic individuals (supplementary

fig. S1, Supplementary Material online) constructed a graph

G (supplementary fig. S8, Supplementary Material online)

with eight clusters, corresponding to the geographical regions

that harbored the people. To examine whether individuals

with higher betweenness centrality represent genetic mixtures

with populations graphically adjacent to them, we created a

population graph GP (supplementary fig. S9, Supplementary

Material online) by merging individuals into their populations

in graph G. Here too, nodes with notably high betweenness

are the Bermudian, Tatarstan-Russian, Puerto Rican, Lima-

Peruvian, North-Northeast Indian, and Antananarivo-

Madagascan populations. These enlarged nodes lie on cluster

boundaries. For example, the Madagascan node with high

betweenness is adjacent to the Oceanic, East Asian, and his

own African cluster, in support of recent reports of shared

ancestry (Poetsch et al. 2013). North Indians are also adjacent

to three clusters representing the Near East, East Asia, and

their own Indian population, in agreement with recent studies

that depicted these genomes as two-way mixture between

West Eurasians and indigenous Andaman Islanders (Moorjani

et al. 2013). Our findings are therefore consistent with the

known history and demographics of the admixed populations

and support the utility of the NBR-Clust framework to repre-

sent population structure. Further insights can be made by

applying adjacency and graph distance information. We

note that graph theoretic representation retains high-dimen-

sional information that may be lost in performing 2D or 3D

PCA for visualization.

Analysis of CNVs in Worldwide Populations

Sudmant et al. (2015) reported that the CNV distribution in

human population can be used to reconstruct population

FIG. 6.—GPS predictions of biogeographical affinities for worldwide 33 populations. The x axis illustrates populations represented by a vertical stacked

column indicating the proportion of individuals predicted within 200km of their country’s political borders (blue) and the remaining individuals (green). The

average distance from the predicted location and true country of origin is indicated in red balls.
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structure. For example, the authors found that for dele-

tions, the first two principal components distinguished

Africans, West Eurasians, East Asians, and Oceanian pop-

ulations with many other populations clustering with their

continental populations. Similar trends were found for

duplications, albeit with far less clarity. They also reported

that African populations are broadly distinguished from

non-African for either deletions or duplications. Our

results reflect Sudmant et al.’s findings in that deletions

largely allowed distinguishing regional populations, dele-

tions identified a more coherent population structure than

duplications (supplementary fig. S10, Supplementary

Material online), and finally that Africans were largely sep-

arated from non-Africans for both CNV types.

Conclusions

We designed, developed, validated, and assessed the DREAM

microarray, an all-inclusive SNP genotyping chip dedicated to

genetic anthropology and genealogy, forensics, and person-

alized medicine. DREAM can be used to study the genetic

relationships between ancient humans, archaic hominins,

and modern humans as well as to improve our understanding

of human migratory history, adaptations, and the molecular

mechanisms that regulate forensic-relevant traits. By compar-

ing the MAF and FST distributions of the DREAM array to those

of the 1000 GP and commercially available arrays, we dem-

onstrated DREAM’s ability to differentiate populations within

global data sets. Lastly, we demonstrated the biogeographical

accuracy of DREAM and its potential ability to infer CNVs. We

expect that the use of the DREAM in genealogy and research

will expand our knowledge of our species.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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