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Abstract: Polypharmacology has emerged as novel means in drug discovery for improving treatment response in clinical use. However, 
to really capitalize on the polypharmacological effects of drugs, there is a critical need to better model and understand how the complex 
interactions between drugs and their cellular targets contribute to drug efficacy and possible side effects. Network graphs provide a con-
venient modeling framework for dealing with the fact that most drugs act on cellular systems through targeting multiple proteins both 
through on-target and off-target binding. Network pharmacology models aim at addressing questions such as how and where in the dis-
ease network should one target to inhibit disease phenotypes, such as cancer growth, ideally leading to therapies that are less vulnerable 
to drug resistance and side effects by means of attacking the disease network at the systems level through synergistic and synthetic lethal 
interactions. Since the exponentially increasing number of potential drug target combinations makes pure experimental approach quickly 
unfeasible, this review depicts a number of computational models and algorithms that can effectively reduce the search space for deter-
mining the most promising combinations for experimental evaluation. Such computational-experimental strategies are geared toward re-
alizing the full potential of multi-target treatments in different disease phenotypes. Our specific focus is on system-level network ap-
proaches to polypharmacology designs in anticancer drug discovery, where we give representative examples of how network-centric
modeling may offer systematic strategies toward better understanding and even predicting the phenotypic responses to multi-target thera-
pies. 
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1. INTRODUCTION 
 Over the past decades, there has been a massive progress in 
many scientific and technological developments in pharmaceutical 
research; yet, over the same time period, the number of new drugs 
approved or successfully translated into clinical use has signifi-
cantly declined, despite of massive investment on drug research and 
development by the global biotechnology and pharmaceutical in-
dustries [1]. This decline in pharmaceutical efficiency can be attrib-
uted to many factors, including lack of efficacy due to drug resis-
tance and individual variation in treatment responses, as well as 
clinical safety or toxicology observed for the candidate drug com-
pounds in pre-clinical or clinical studies in vivo [1-3]. It has also 
been increasingly understood that most drug molecules elicit their 
bioactivities by modulating multiple cellular targets and that such 
polypharmacological effects are behind many of the adverse side 
effects observed in clinical practice. However, polypharmacology 
can also be seen as part of the solution to the rather modest progress 
made so far in pursuing the expensive and suboptimal route of the 
current drug discovery. In particular, rather than trying to design 
selective ligands that target individual proteins only, polypharma-
cology aims to modify multiple cellular targets either by multi-
target drugs or targeted drug combinations. Such multi-target treat-
ments are being considered as a promising strategy to tackle the 
compensatory mechanisms and robustness of cellular systems, as 
well as to reduce unwanted off-target effects that often limit the 
clinical utility of many conventional drug treatments [3-5].  
 The potential of drug target combinations is perhaps best appre-
ciated in anticancer research, where both genetic and non-genetic 
bypass mechanisms have led to inherent redundancy and robustness 
of compensatory signaling pathways in many cancer phenotypes [3; 
6]. While most cancer cells show initial sensitivity to single-
targeted drugs, their molecular heterogeneity often results in  
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secondary outgrowth of new clones of rare cells that are resistant to 
the same therapy [7]. In contrast, combinations of drugs that target 
each individual clone and cancer escape pathway have the potential 
to kill cancers even at their advanced stages. However, one of the 
bottlenecks in the development of safe and effective anticancer 
drugs lies in the current inability to identify targeted compounds 
that will kill cancer cells at doses low enough to avoid severe side-
effects. Therefore, much of the contemporary anticancer research is 
aimed at identifying specific genetic dependencies associated with 
cancer cells, with the hope of using such addictions or vulnerabili-
ties to target directly cancer cells, while simultaneously reducing or 
even eliminating any unwanted side effects. However, large-scale 
cancer genome sequencing efforts have revealed tremendous muta-
tional heterogeneity and clonal evolution, which renders it difficult 
to translate the genetic information into clinically actionable treat-
ment strategies [8]. In particular, although cancer cells may harbor 
hundreds of genomic alterations in various biological pathways, 
only a subset of these alterations are driving the cancer initiation or 
progression in the different clones. Accordingly, the phenotypic 
response of even single drugs is often hard to predict because many 
of the compensatory cross-talk and feedback loops are still poorly 
understood in most cancer-related signaling pathways [9]. A global 
view of the interconnectivity of the signaling proteins and their 
functional contribution to cancer growth is therefore critical for the 
success of targeted single or multi-drug anticancer therapies. 
 Network graphs provide a convenient conceptual framework for 
system-level modeling, integrating and mining of high-throughput 
experimental datasets for understanding and gaining insights into 
different types of molecular relationship, such as how genes are 
linked to various diseases or interactions between drugs and their 
cellular targets. Systems or network biology has proven useful for 
deciphering fundamental research questions, such as how perturba-
tions in the cellular networks lead to certain phenotypes, including 
human diseases [9-16], whereas more recent field of network medi-
cine aims at applying network modeling to tackle treatment-
oriented drug discovery questions, such as where in the disease 
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networks one should target in order to inhibit the disease pheno-
types, for instance, cancer progression [9; 17-23]. In such network 
context, the efficacy of multi-target therapy can be understood from 
a robustness of disease networks to deal with single node perturba-
tions, due to inherent diversity and redundancy of compensatory 
signaling pathways that result in highly resilient network architec-
ture with modular and interconnected topology [3]. Therefore, net-
work-based drug discovery seeks for drug target combinations to 
perturb a specific subset of nodes in the disease-associated net-
works to inhibit the bypass mechanisms at systems level [4]. These 
recent developments have resulted in moving away from the tradi-
tional 'one target' strategy toward sub-network targets and systems 
or network pharmacology, a novel paradigm with potential to pro-
vide more global understanding of the mechanism behind drug 
action, resistance and side effects by considering drugs and their 
targets in the context of biological networks and interconnected 
pathways [2; 24-28]. However, even if sounding theoretically ideal, 
there is a need for efficient approaches to prioritizing most effective 
target combinations, while maintaining their safety and drug-like 
properties [2].  
 Rational and systematic design of network polypharmacology 
at systems level faces considerable challenges due to a number of 
experimental, modeling and computational challenges. Even with 
modern genome-level technologies for molecular profiling and drug 
screening, such as those based on next-generation sequencing or 
high-throughput screening of chemical compound libraries [29; 30], 
the number of possible drug and target combinations leads to a 
combinatorial explosion in the pharmacological and molecular 
spaces. Furthermore, the efficacy and side effects are also depend-
ent on several other factors, such as the dose levels and time order 
of drug administration [31], which should be considered when pre-
dicting various drug response phenotypes. Therefore, the exponen-
tially increasing number of possible combinations makes the pure 
experimental approach quickly unfeasible, and translates into a 
critical need for computationally efficient algorithms that can take 
into account the effect of partly overlapping target sets of promis-
cuous compounds to effectively reduce the search space for priori-
tizing most promising combinations for experimental evaluation. 
Ideally, given an input set of molecular or drug profiling measure-
ments, the computational approaches should be able to model the 
dynamic information flow through cellular networks, starting from 
the individual ligand-receptor interactions and resulting in com-
bined effects on biological sub-system or sub-networks [4; 32]. 
Moreover, there is an increasing evidence that non-genetic mecha-
nisms may in some instances be even more important than the ge-
netic factors when explaining, for instance, cancer evolutionary 
dynamics or intra-tumor heterogeneity [33; 34]. While more com-
prehensive computational modeling frameworks are still relatively 
far from the today’s reality and clinical practice, there are already a 
number of potential developments that are addressing specific steps 
in the modeling pipeline and information flow toward in silico pre-
diction of drug treatment phenotypes in vitro or even in vivo [35-
37]. 
 Towards these goals, this review describes a number of compu-
tational-experimental systems pharmacology approaches, in which 
the concept of a network graph is a key component for searching 
potential drug target combinations, and how such approaches can 
be used especially for designing effective and safe anticancer treat-
ments. As substantial efforts have recently been devoted to devel-
oping network-based methods for disease modeling and drug dis-
covery, only representative examples of different approaches can be 
surveyed here, with an emphasis on methods related to concrete 
treatment applications, rather than more general network medicine 
approaches that have been reviewed elsewhere [11; 12; 14; 15; 17; 
19; 20; 22]. Although our specific focus here is on global system-
level modeling approaches, we will also briefly cover some related 
formulations, such as those based on differential equation or Boo-

lean logic modeling, where typically only the model structure is 
represented in the form of a network graph, with connections de-
scribing either kinetic parameters or logic gates, respectively. There 
are also a number of recent excellent reviews and books that have 
touched upon some of these concepts, either in terms of the mecha-
nistic or biological rationale for existing drug combinations, or 
from the experimental design or computational algorithm points of 
view [4; 38-43]. Rather than providing mere perspectives, however, 
our aim here is to focus on concrete network-centric approaches 
toward developing computational-experimental polypharmacology 
designs.  
 The remaining sections of the review follow a conceptual 
workflow of multi-target drug discovery process (see Fig. (1)). We 
start by reviewing the current state of network analysis methods for 
in silico prediction of drug-target interactions. To understand the 
drug-target networks in the cellular context, systematic assessment 
of polypharmacological effects in the biological networks is next 
described and its implications for anticancer therapeutic design are 
highlighted. We further provide an overview of current resources 
and tools for integration of pharmacological and biological data, 
with representative examples of their successful applications to 
discovery of novel anticancer drug combinations. Finally, various 
models for scoring and optimization of potential drug combinations 
in the experimental validation phase are introduced as an integral 
part of the computational-experimental design strategy. 

2. GLOBAL PREDICTION OF DRUG-TARGET INTERAC-
TION NETWORKS 
 In the conventional paradigm for rational drug discovery, spe-
cial emphasis is placed on the molecular mechanism of a particular 
disease to first pinpoint ‘druggable’ proteins, followed by finding or 
designing suitable drug compounds that interact with the desired 
target proteins. An alternative to this ‘target-based’ approach is so 
called ‘phenotype-based’ drug discovery, which starts from large-
scale screening of chemical libraries to select those compounds that 
elicit desired phenotypes, and then tries to probe the targets of the 
candidate lead compounds in a specific disease setting to identify 
their mode of action (MoA) [44]. Regardless of the drug discovery 
paradigm, however, identification of cellular targets for the bioac-
tive compounds is a common and essential step in the drug discov-
ery pipeline, especially when going to multi-target designs. Global 
prediction of drug-drug and drug-target interaction networks pro-
vides a systematic means to explore the pharmacological space. In 
particular, network analyses at systems level allow us to link the 
pharmacological signatures of drugs to the molecular context of 
underlying cellular and tissue environment, from where the physio-
logical consequences of drug perturbations can be elucidated from a 
more global perspective. This will hold great promise to the discov-
ery of specific chemical compounds which modulate such cellular 
components that are therapeutically important in the disease proc-
esses, while better understanding and controlling their adverse ef-
fects prior to the actual clinical trials.  
 A rational design of anticancer treatments greatly benefits from 
quantitative proteome-wide characterization of drug-target interac-
tions at the molecular level using both experimental and computa-
tional approaches. High-throughput experimental techniques for 
rapid evaluation of drug-target interactions have been developed, 
including cell-based phenotypic screens [45], binding affinity as-
says [46], in vitro modeling of ADMET (absorption, distribution, 
metabolism, excretion and toxicity) [47], activity-based probes [48] 
and transcriptional profiling [49]. However, the current screening 
capacities are still limited in testing the huge amount of possible 
compounds against hundreds of therapeutically relevant protein 
targets. Recent technological improvements especially in chemo-
proteomic strategies are gradually improving the coverage and ac-
curacy of the experimental drug-target mappings [50]. On the other 
hand, in silico target profiling methods have been considered as 
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powerful complementary tool for providing efficient and systematic 
solutions to deduce relationships between chemicals and their cellu-
lar targets at the proteome scale. The predicted drug-target interac-
tions can provide mechanics insights into drug MoA to facilitate 
decision making for designing selective lead compounds during 
experimental studies. In this section, we focus on recent computa-
tional techniques for global prediction of target-target, drug-target 
or drug-drug networks. These networks among drugs and targets 
can be constructed based on similarities defined either on the basis 
of the chemical structure of drugs, the phenotypic responses of 
drugs or the molecular information of the targets [51].  

2.1. Ligand-based Prediction 
 Ligand is a substance (usually a small molecule) that binds to a 
site on a target protein (usually a receptor) to alter its chemical 
conformation leading to functional changes. Ligand-based ap-
proaches are based on the assumption that the bioactivity of a com-
pound against a target can be predicted from other targets that are 
similar in their ligand chemistry. If two drugs share similar ligand-
binding properties, then their targets may be related. Although this 
assumption might not hold true in specific cases, where a small 
change in ligand structure leads to a dramatic change of bioactivity 
[52], ligand-based prediction of drug targets has been successfully 
used in quantitative structure-activity relationship (QSAR) models, 
mainly for virtual screening of a large amount of compounds to 
identify those that have high probability of binding to a specific 
target [53]. Ligands are usually represented using chemical descrip-
tors about their substructural fragments, such as 2D topological 
fingerprints or 3D pharmacophore structures. The metrics for the 
chemical similarity between a pair of ligands is often based on the 
conventional Tanimoto coefficient, which is defined by the fraction 
of descriptors shared between the ligand pair [52]. By utilizing 
efficient statistical correlation-based methods, network models that 

relate targets to each other can be built based on the selected simi-
larity metrics. For instance, Keiser et al. recently developed a 
ligand set comparison method, named similarity ensemble approach 
(SEA) [54]. The SEA method is adapted from statistical techniques 
of the basic local alignment search tool (BLAST), which were 
originally designed for sequence similarity scoring [55]. More spe-
cifically, SEA calculates a raw similarity score by summing the 
Tanimoto coefficients of the ligand pairs across two sets that are 
known to bind to their targets. To access the significance of the 
ligand set similarity, the raw score is normalized to a Z-score and 
an expectation value (E-value) is derived by fitting the Z-scores of 
random sets to an extreme value distribution. The resulting matrix 
of SEA E-values among the ligand sets thus enables construction of 
a similarity network among targets either by sequential linkage of 
edges with significant E-values, or by constructing a minimum 
spanning tree to connect only the most similar neighbors [54]. 
 It has been shown that the ligand-based target networks defined 
by SEA tend to connect the targets that are most likely to be inhib-
ited by a common class of chemical compounds [56]. On the other 
hand, many targets that are related in biological functions also are 
clustered together in terms of their ligand chemistry. Applications 
of SEA to the ligand sets in the MDDR [57] and WOMBAT [58] 
databases have further revealed that the ligand-based chemoinfor-
matics networks appear to be highly self-organized in a way that 
resemble networks of many natural phenomena and human activi-
ties [59]. This observation has implied that polypharmacology 
might be an intrinsic property of many chemical agents, in the sense 
that their ligands can be related to multiple targets through only a 
few connections (so-called ‘small-world’ network property). This 
polypharmacological nature of chemical compounds would offer 
great promises for discovering new therapeutic indications of exist-
ing drugs, a problem commonly referred to as drug repurposing 
[60]. Among some of the recent efforts to predict potential off-

Fig. (1). A schematic workflow of network-based polypharmacology in drug discovery. Network-based models enable integration of 
molecular and pharmacological profiles of drugs and their cellular targets and processes in different disease phenotypes. Polypharmacology 
acts on biological systems through targeting the cellular entities that are involved in essential sub-networks of molecular interactions, includ-
ing signaling pathways, protein interactions and metabolic networks. Therefore, understanding how and where the essential pathways can be 
inhibited by drug treatments during a disease process becomes a crucial step in the discovery of effective and safe multi-target drugs or drug 
combinations. The increasing availability of phenotypic profiling of drug response opens a promising possibility to better understanding of 
the mechanism of drug action and resistance at the molecular level. These integrated data can be fed into mathematical models and data min-
ing tools for predicting the likely therapeutic outcomes of potential drug and /or target combinations. High-throughput experimental assays 
and efficient computational methods are then required for the evaluation of the most promising target combinations. 
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target affinities, Diller exploited pharmacological data stored in 
WOMBAT and BindingDB [61] to derive a ligand-based Shannon 
Entropy Descriptor (SHED) model that predicted the target profiles 
for a set of 767 drugs against a panel of 684 therapeutically-relevant 
targets [62]. The polypharmacological network was established by 
linking all targets sharing at least ten drugs. A fundamental discov-
ery from such a target-target network analysis was that aminergic G 
protein-coupled receptors (GPCRs) appear as the most connected 
hub in the network, suggesting that the drugs targeting GPCRs tend 
to be the most promiscuous ones. The GPCRs hub is also closely 
related to opioid, sigma, NMDA and 5-HT3 receptors [62], provid-
ing polypharmacology information for antidepressants and antipsy-
chotics drugs on their targets that were previously unknown to bind. 

2.2. Target-based Prediction 
 The ligand sets collected for a given target provide an empirical 
description of potential drug-target interactions, where the informa-
tion comes directly from compound libraries typically synthesized 
by combinatorial chemistry. Even though one might argue that 
ligand-based drug target discovery is more pharmacologically rele-
vant, the mechanisms of drug-target binding are often difficult to 
understand without knowing the molecular information of the drug 
targets. With the rapid technical advances in molecular biology, the 
genome sequences coding for target proteins have been deciphered. 
Functional annotations of drug targets can therefore be made based 
on their amino-acid sequences or 3D structures. The sequence simi-
larity reflects evolutionary relationship between ligands and associ-
ated proteins and thus provides a homology view of functional and 
structural links between proteins that are targeted by the same 
ligand [63]. In particular, recent advances in the determination of 
3D structures of receptor proteins have revealed many factors that 
may contribute to drug target binding, such as the concavity of 
ligand binding sites and polar interactions [64]. Given that the 
structure and sequence-based information of target proteins is 
known, one can also predict the drug-target binding interactions by 
analyzing the molecular similarities of protein targets [65].  
 Statistical and machine learning approaches, such as Bayesian 
methods and kernel-based methods, have proven useful for binary 
classification of drug-target interactions on the basis of sequence 
and/or structure-related information [66-69]. In these models, pro-
teins are usually encoded into a number of discrete vectors in terms 
of their biochemical and physiochemical features including, e.g.
hydrophobicity, polarity and secondary structure. For example, Li 
et al. applied support vector machine (SVM) algorithms to classify 
target proteins using a 146-dimension vector of physicochemical 
features based solely on protein sequence information [69]. Along 
the same lines, Yamanishi et al. developed a bipartite graph model 
to map drugs and proteins into a unified pharmacological space, 
where the distance is determined by a kernel regression model [70]. 
The method was applied to integrating genomic sequence of pro-
teins and chemical structures of ligands, with the aim to derive 
target interaction networks separately for four target classes includ-
ing human involving enzymes, ion channels, GPCRs and nuclear 
receptors. A similar bipartite graph approach was also constructed 
for the FDA-approved drugs based on their known binary associa-
tions [71]. As an alternative approach, He et al. introduced a feature 
selection method called Maximum Relevance Minimum Redun-
dancy (mRMR) algorithm, which ranks the sequence-based features 
according to their biochemical and physicochemical properties [72]. 
They showed an average success rate of 82.6% in the prediction of 
the drug-target benchmark data used by [70], albeit that many of 
predictions were not experimentally validated.  
 Mathematical modeling that utilizes 3D structures of targets, 
such as those based on reverse docking, have also become available 
[73; 74]. Reverse docking predicts those drugs that fit into the 
ligand binding site of a given target. Identification of ligand binding 
sites on proteins has recently become an area of tremendous inter-

est, including a number of methods, such as pocket detection based 
on protein geometry, the energy contours on the protein surface, or 
the sequence and structure similarity with proteins with known 
functional sites [75]. Toward side effect prediction, Xie et al.
showed that off-target binding can be also predicted on a proteome-
wide scale using structure-based ligand binding site models [76].  

2.3. Phenotype-based Prediction 
 Drug-target interactions often lead to phenotypic responses that 
can be measured using advanced pharmacological and molecular 
profiling methods. Information on drug target binding potency can 
thus be inferred indirectly by detecting the sets of proteins per-
turbed in response to the treatment. These phenotypic response 
profiles provide a new data layer that captures functional conse-
quences of drug action beyond the conventional ligand-based or 
target-based information, and thus can help to expand our under-
standing of drugs’ MoA at a systems pharmacology level. The sour-
ces of phenotypic measurements can be divided into several major 
classes: transcriptomics, proteomics, or side-effect phenotypes.  
 Transcriptomics-based methods assume that drug-target interac-
tions are the primary causes of transcriptional changes in cells as a 
response to the drug perturbations. The underlying idea is to iden-
tify gene-expression signatures for drug treatments, and then the 
similarity between signatures can be related to predict new targets. 
A notable transcriptomics-based ongoing effort is the Connectivity 
Map (CMap), where the transcriptional profiles in five human can-
cer cell lines were originally profiled to assess the phenotypic 
changes brought about by more than 1000 bioactive small mole-
cules [77]. Utilizing the CMap data, Iorio et al. developed a sys-
tematic approach to score the similarities of drugs based on their 
gene expression profiles and then they went on and constructed a 
drug-drug interaction network for the prediction of therapeutic and 
off-target effects [78]. Using this approach, they correctly predicted 
the MoA of 9 anticancer drugs, including HSP90 inhibitors and 
cyclin-dependent kinases (CDKs) inhibitors, which were not in-
cluded in the original CMap dataset. A related approach was intro-
duced by Hassane et al., where they combined the CMap data and 
the Gene expression omnibus (GEO) database [79] to construct a 
drug-disease network; they discovered two new compounds, celas-
trol and 4-hydroxy-2-nonenal, which produce a similar transcrip-
tional response in acute myelogenous leukemia (AML) cancer cells 
to that of a known agent parthenolide (PTL) [80].  
 Proteomics-based approaches utilize drug response measure-
ments at protein level, such as those based on bioactivity experi-
ments using affinity chromatograph or protein expression meas-
urements using protein microarrays [81]. Once the enzyme activi-
ties affected by drug treatment have been profiled, similar computa-
tional tools that are used for characterizing transcriptional responses 
of drug treatment can be applied. For example, Chen et al. built 
target-target interaction networks from the protein target similarities 
based on their binding affinity profiles computed from drug dose-
responsive assays [82]. These bioactivity-based networks were 
overlapped with the ligand-based network determined by SEA to 
capture common connecting edges that are indicative of strong 
pairwise relations between targets captured by the two network 
perspectives. In addition to many promiscuous targets, the networks 
also revealed unexpected links between targets that exhibit similar 
binding properties while being unrelated in their biological func-
tions.  
 Drug target identification can be also approached by side-effect 
phenotypic information. It has been observed that unrelated drugs 
can cause similar side effects due to their common off-target bind-
ing. Based on this concept, novel drug target associations can be 
found by comparing side effects of drugs [83]. In a seminal work, 
Campillos et al. exploited similarity in side effect to infer the drug 
target interactions and observed a relatively small overlap in the 
drug-drug relations predicted based on the side-effect similarity and 
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chemical similarity, respectively [84]. This suggested that side ef-
fect phenotypes contain added complementary information which is 
not encoded by the drugs’ chemical similarity or the sequence simi-
larity of their targets.  

3. DISCOVERING DRUGGABLE TARGETS USING NET-
WORK APPROACHES 
 The drug-target networks identified using the computational 
tools, such as those reviewed in the previous section, addresses the 
drug-target interaction problem aiming at discovering new targets 
for given drugs or new drugs targeting given proteins. As the anti-
cancer drugs’ MoA depends on many cellular factors and context, 
in-depth understanding of the effects of drug-target interactions 
need to be approached by the integration of disease network and 
drug-target interaction network to link the drug response pheno-
types with the genetic makeup of the cancer cells [85]. High-
throughput ‘-omics’ techniques have led to a better characterization 
of the global landscape of cancers, enabling e.g. a network-centric 
approaches to identification of druggable targets at the systems 
level. The integration of such ‘omics’ profiling with chemoinfor-
matics to associate drugs, targets and disease outcomes has been a 
crucial step for studying polypharmacological effects. The chal-
lenge here is how to relate disease phenotypes and drugs in the 
cellular context by organizing both genotypes and phenotypes into a 
complex network through connecting proteins that are either in-
volved in the disease development or serve as targets of drug treat-
ments. 
 System-level identification of druggable targets requires two 
critical steps. The first step involves identification of causal rela-
tionship between genotypes and phenotypes that are implicated in 
the disease under analysis. The disease-associated genes might be 
either causal or non-causal, and also their contributions to the dis-
ease process may be dependent on multiple other factors, such as 
genetic interactions and protein interactions [8; 11]. For instance, 
prediction of genetic interactions that are implicated in cancer tu-
morigenesis has become an important area of anticancer research 
for discovering more effective drug targets based on the concept of 
synthetic lethality [8]. Pathway analysis can further convert the 
network interactions into functional sub-networks, reflecting cross-
talk between biological processes and molecular-level mechanisms. 
In particular, metabolomics play an essential role in characteriza-
tion of cancer progression and it has provided rich links into the 
metabolite changes after drug treatments. Network modeling for 
understanding and controlling of side effects is also being devel-
oped. The second step is to identify the drug-associated genotypes 
and phenotypes [44]. The challenge here is to integrate the 
chemoinformatics and bioinformatics analyses for rational strategy 
to pinpoint potential targets. An ultimate goal of such integrative 
analysis is to construct a drug-disease network, where the MoA of 
drugs and their biological consequences for human physiology and 
pathophysiology are explicitly represented. 

3.1. Mathematical Modeling of Cell Signaling Pathways  
 Signaling pathways are particular types of canonical regulatory 
sub-networks that are involved in the transmission of cellular in-
formation about growth factors, nutrients and chemical perturba-
tions. Signaling pathways play key roles in governing many cellular 
functions and coordinating cell actions. Knowledge of the defects in 
signaling transduction underlying cancer tumorigenesis and tumor 
growth can thus provide valuable information for discovering effec-
tive anticancer targets. For example, dys-regulation of protein tyro-
sine kinase signaling by mutations and other genetic alterations is 
known to lead to many malignancies [86]. The proteins involved in 
these dys-regulated pathways are often the intended targets of 
small-molecule drugs. A number of computational models have 
been introduced to characterize the functions of drug targets on 
signaling pathways, or predict drug effects on cellular phenotypes, 

such as migration and apoptosis from the signaling information 
[87]. The construction of a network model of signaling pathways 
can roughly be classified into three major model types: mass action-
based, statistical association-based and Boolean logic-based. These 
modeling frameworks often capture causal protein interactions that 
can be predictive of cell behavior under a wide range of disease 
conditions, and thus can help in silico testing of potential drug 
combinations.  
 Mass-action based modeling typically begins with a collection 
of molecular interactions represented as ordinary or partial differen-
tial equations (ODEs and PDEs), with network topology describing 
the underlying kinetic rate parameters and their dynamic properties. 
A reliable construction of such detailed models often requires sen-
sible selection of model parameters that are experimentally meas-
ured, as well as a control of model complexity to avoid overfitting 
to the data. Even after rigorous computational model validation, 
such as cross-validation, the model predictions should be subjected 
with experimental validation [88]. As an example, Birtwistle et al.
developed a comprehensive ODE model that describes the ligand-
dependent activation kinetics in both extracellular and cytoplasmic 
compartments, including a total of 117 species, 235 parameters and 
96 reactions [89]. The mass-action model predicted the responses of 
two kinases, ERK and Akt, in the ErbB signaling pathways to the 
stimulation with EGF and HRG ligands in MCF-7 breast cancer 
cells. Mechanistic understanding of the ligand-dependent signaling 
is a crucial step for elucidating the ErbB network’s dys-regulation 
in many cancers. A similar study on the ErbB pathway was carried 
out, where two other ligands, TGFalpha and HRG, were modeled 
after their stimulations using H292 lung cancer cells [90]. These 
computational modeling frameworks of the ErbB signaling path-
ways may provide a critical assessment of the factors that influence 
drug efficacy, and thus have the potential to give insight into the 
effective combinations with ErbB-targeted drugs, such as ErbB1 
kinase inhibitors erlotinib and gefitinib and monoclonal ErbB2 
antibody, trastuzumab. 
 The logic-based models for signaling networks are usually rep-
resented as a regulatory graph where the response of the network is 
given by Boolean logic functions [91]. Nodes in the network repre-
sent components of the signaling pathways, such as receptors, 
ligands and transcription factors. Each node in the network takes 
value of 0 (inactive) or 1 (active), depending on the values of its 
regulators. The logic networks are usually structured into three 
layers: input, intermediate and output layers. Simulation of the net-
work model starts with implementing a set of logical rules for the 
activation of each node, and the biological output of such a pertur-
bation event can be derived by propagating input signals according 
to the logical connections in the network. The logical rules can be 
derived either from stoichiometric models or from the literature. 
Logic-based models are ideal for evaluating combinatorial effects 
of activation or inactivation, and thus provide insights into potential 
drug combinations that are targeting therapeutic components in 
cancer signaling pathways. Logic-based model can be applied to 
evaluate the phenotypic outcomes of knockdown of multiple pro-
tein components. For example, Sahin et al. employed a Boolean 
logic model to evaluate gene regulatory interactions, and predicted 
that combinatorial targeting of ERBB2 and EGFR may not inhibit 
the cancer growth in trastuzumab resistant breast cancer cells [92]. 
Instead, c-MYC was identified as a new potential drug target for 
breast cancer cells. A recent work by Morris et al. has extended 
Boolean logic network models to quantitative data by using con-
strained fuzzy transfer functions to provide quantitative relation-
ships between the input and output components [93]. 
 In comparison to the logic-based and mass-action-based mod-
els, association-based models for cell signaling are at the other end 
of the modeling spectrum, where data-driven statistical or machine 
learning methods are being applied. Network models in this cate-
gory do not necessarily rely on any prior knowledge of molecular 



28    Current Pharmaceutical Design, 2014, Vol. 20, No. 1 Tang and Aittokallio 

interactions among the entities; rather they utilize the observed 
correlations and other patterns in the experimental data when mak-
ing inferences regarding network structure. Statistical approaches 
have widely been used in cancer research for identifying specific 
nodes in signaling networks that are amiable for therapeutic inter-
vention. For instance, probabilistic graphical models (PGMs) pro-
vide a natural representation of signaling networks that can be used 
to also model cross-talk between the signaling components [94]. In 
this setting, the signaling components are considered as random 
variables and their values are dependent on the related components 
subject to uncertainty. Edges in the network can be either direc-
tional or non-directional, representing e.g. a measure of correlation 
or causality depending on the model assumptions. Due to the high 
dimensionality of omics datasets, the challenge has been in the 
learning of the underlying network topology as well as in reliable 
estimation of the model parameters [95]. For instance, Yörük et al.
utilized dynamic Bayesian networks on protein array data to capture 
the time progression of protein signaling dynamics [96]. The net-
work topology determined by the Bayesian networks can also be 
complemented with more detailed ODE-based approaches. In the 
application to the breast cancer cell line MDA-MB-468, the model 
discovered possible interaction between the MAPK and JAK/STAT 
pathways. Notably, the cross-talk was further validated by observ-
ing a reduced phosphorylation of STAT3p (S727) after treatment of 
an MEK inhibitor (MEKi), which inhibited MAPK as well. 

3.3. System-level Metabolic Modeling of Drug Mode of Action  
 According to the systems biology view, most of the genetic 
components of complex disease phenotypes, such as cancer suscep-
tibility, are not based on individual genes, but rather their interac-
tions with other genes as well as with the environmental factors. In 
this context, the measurement of traits that are modulated but not 
encoded by the DNA sequence, commonly referred to as intermedi-
ate phenotypes, is of particular interest. One important class of 
intermediate phenotypes is metabolites. Metabolites are small-
molecules present in a biological system, such as metabolic inter-
mediates, hormones and other signaling molecules involved in 
breaking down and synthesis of human biological processes. Tech-
niques for global metabolite profiling include liquid chromatogra-
phy-mass spectrometry (LC-MS), gas chromatography-mass spec-
trometry (GC-MS), shot-gun mass spectrometry and nuclear mag-
netic resonance (NMR) [97]. Metabolomics as the systematic study 
of metabolic compounds has recently emerged as a powerful tool 
for the characterization of complex phenotypes, as well as for the 
identification of biomarkers for the onset and progression of can-
cers. During cancer development, cellular metabolism is often al-
tered to adapt the requirements of excessive proliferation. Drugs 
also influence the metabolism of living cells by targeting enzymes 
which catalyze metabolic reactions where the metabolite concentra-
tions and fluxes are affected. Therefore, metabolic networks lay 
down an important foundation for computational tools for disease 
modeling, and evaluation of metabolites that are perturbed by in-
tended targets has suggested a potential way to drug discovery [98]. 
In particular, the reconstruction and analysis of system-level meta-
bolic networks allow us to systematically explore the metabolic 
behavior of cells, and may thus increase the coverage of drug-target 
identification for cancers. 
 Reconstruction of metabolic networks usually starts by collect-
ing from the integrated databases or literature the knowledge of 
numerous metabolic reactions that have been individually studied, 
and manually collecting the metabolic components in a bottom-up 
manner. Large-scale experimental mapping efforts for human 
metabolic networks are also under progress. One notable work is 
the first generic genome-wide human metabolic network, namely 
Human Recon 1, where stoichiometric interactions between me-
tabolites were mapped and visualized [99]. An alternative is the 
Edinburgh Human Metabolic Network (EHMN), which has a 
higher coverage in the number of reactions than in the Human Re-

con 1 [100]. A third human metabolic network reconstruction is 
HumanCyc [101], which is derived computationally by matching 
the annotated human genome with the metabolic pathways provided 
in MetaCyc [102]. It was found that the consensus between the 
generic human metabolic networks was surprisingly low, especially 
at the reaction level, where about 18% of the reactions were com-
monly identified in a pairwise comparison [103]. The low level of 
overlap may be resolved by an integration effort, where useful 
complementary information can be discerned from inconsistent 
database biases, so that the accuracy and completeness of the hu-
man metabolic network can be improved. Tissue-specific human 
metabolic networks, such as the ones built for liver, kidney and 
brain using the INIT (Integrative Network Inference for Tissues) 
algorithm are also available, which enable the study of particular 
tissues under various genetic and physiological states [104]. The 
INIT algorithm starts by constructing the Human Metabolic Reac-
tion (HMR) database, which incorporates existing genome-scale 
metabolic models, Recon1, EHMN and HumanCyc, as well as the 
KEGG database. Tissue-specific metabolic enzyme profiles were 
then obtained from the Human Protein Atlas (HPA) [105], where 
cell type specific high quality proteomic data are being stored. Us-
ing the INIT algorithm, the metabolic networks for 16 different 
cancer types were reconstructed, from which a number of such 
reporter metabolites were identified that are significantly enriched 
in the metabolism of cancer cells. Recently, another method was 
introduced that utilizes tissue-specific transcriptional profiles and 
metabolic network structure to infer genome-scale metabolic mod-
els for 126 human tissues and cell types [106]. The network recon-
struction is based on ranking of gene-associated reactions according 
to a combination of expression-based and connectivity-based evi-
dence using an algorithm called metabolic Context-specificity As-
sessed by Deterministic Reaction Evaluation (mCADRE). By com-
paring the networks built for cancer tissues and normal tissues, such 
metabolic reactions can be identified that are occurring significantly 
more often in tumor including those in the ecosanoid metabolism 
pathway. 
 Constrained-based models have recently gained considerably 
popularity for downstream analysis of the system-level network 
constructions for cancer specific metabolic features. Unlike mecha-
nistic simulations of biological processes, which require measure-
ments of kinetic rate parameters, constraint-based models aim at a 
steady-state characterization of the genome-scale metabolic net-
works by utilizing stoichiometric network connectivity structure. 
The models enforce physico-chemical constraints on biological 
networks including stoichiometric, mass balance and other con-
straints to define the space of allowed metabolic fluxes [107]. 
Metabolic fluxes are the intermediates of many biological signaling 
pathways in cancer physiology, where the cell genotypes and phe-
notypes meet. Constraint-based models, such as those based on flux 
balance analysis (FBA), can be used for identifying an optimal 
reaction flux distribution in order to achieve a biologically relevant 
objective function, such as ATP production or cell growth rate 
[108]. Depending on the application area, FBA can be classified as 
cell-specific, tissue-specific or context-specific. As the constraints 
are usually much easier to determine than the kinetic parameters, 
FBA has enabled near genome-scale models for several organisms. 
In human diseases, FBA-based modeling has typically been based 
on integration of genomic and bibliomic data. Using the Recon 1 as 
a template, a recent study further integrated a human metabolism 
modeling with gene expression data to predict flux distributions for 
metabolic reactions of NCI-60 cancer cell lines [109]. By reasoning 
that a drug’s target can catalyze its associated metabolic reactions, a 
Drug-Reaction Network (DRN) was constructed for evaluation of 
the drug influences on the metabolic network. FBA-based modeling 
has also been used in drug-target identification in cancer. For in-
stance, Folger et al. reported the development of a genome-scale 
cancer metabolic network to predict characteristic alterations in 
cancer metabolism [110]. They first constructed a cancer metabolic 
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model to capture major metabolic functions common across differ-
ent cancer types. The model contained a total of 772 reactions and 
683 genes. The FBA predictions on the network model were found 
to agree well with essential genes and mutations in cancers [110].  

3.4. Network-based Modeling and Controlling for Side Effects  
 Designing effective and safe drug combinations is a fine trade-
off between optimizing drug efficacy and minimizing adverse side 
effects. It has been observed in many cases that complex interac-
tions between on-target and off-target binding of chemical com-
pounds is responsible not only for the side effects but is also critical 
for therapeutic efficacy of many drugs, including unintended off-
target binding of statins and multi-target modulation of protein 
kinase inhibitors [76]. In anticancer applications, drugs with differ-
ent toxic effects that attack cancer cells through distinct molecular 
mechanisms and cancer driving pathways should ideally be com-
bined. However, our rudimentary knowledge of the MoA of many 
anticancer drugs is hindering such rational drug combination strate-
gies [7]. Moreover, while intelligently selected synergistic drug 
combinations may allow a therapeutic effect to be achieved with 
lower doses of administered medicine, enthusiasm for this approach 
has been tempered by concerns that the therapeutic synergy of a 
combination will be accompanied by synergistic side effects if these 
are not properly taken into account in the design phase [5]. There-
fore, global understanding of drug-target and drug-drug networks is 
essential not only for designing maximally effective drug combina-
tions, but also for controlling their potential side effects. However, 
the efficacy and toxicity of multi-target drugs is not only attribut-
able to complex interactions between drugs and their cellular tar-
gets, but also to many pharmacodynamic, pharmacokinetic, genetic, 
epigenetic, and environmental factors that affect the drug response 
phenotypes in vivo [4]. Given the great complexity of these interac-
tions, it is understandable that the computational approaches to 
predicting compound toxicity — let alone adverse side effects in 
patients — is currently lagging behind the models for predicting 
drug efficacy [23].  
 Systems pharmacology is playing also an important role in 
understanding drug side effects by means of studying the adverse 
events as complex network responses [111]. As an example, more 
abstract network-based studies have focused on the global charac-
terization of the correlation between interaction network topology 
and drug side effects. For instance, Brouwers et al. quantified the 
contribution of protein interaction network neighborhood on the 
observed side-effect similarity of drugs, and found out that drugs 
targeting proteins that are close in the network explain much less 
fraction of side-effect similarities, compared to side-effect similari-
ties caused by overlapping drug targets; moreover, those targets that 
cause similar side-effects were more frequently in a linear part of 
the network, e.g. same pathway, than drug targets in general [112]. 
Similarly, Mizutani et al. observed in a comprehensive analysis of 
correlated sets of targeted proteins and side effects that most of 
these correlated sets were significantly enriched with proteins that 
are involved in the same biological pathways, even if their molecu-
lar functions were different [113]. Along the same lines, Wang et
al. observed that while the close distance between the drug targets 
and disease genes seem to improve the efficacy of the targeted 
drugs, this may also increase incidence of side effects for drugs 
with too small distances; in particular, those drugs that have failed 
in clinical trials due to severe side effects showed smaller network 
distances than approved drugs [114]. These pathway and network 
topology characterizations not only provide systematic and even 
mechanistic interpretation regarding the relationship between drug-
targeted proteins and known side effects, but may also be useful for 
predicting potential side effects of new multi-target drugs or drug 
combinations based on their protein-binding profiles and other in-
formation. 

 While screening candidate drugs for binding against every pro-
tein encoded in the human genome is not experimentally possible, 
computational approaches to predicting drug-target binding can 
facilitate also prioritization of follow-up mechanistic or pre-clinical 
studies for off-target binding or possible adverse effects. Most of 
these approaches are based on analyzing features in the chemical 
and molecular structures of drugs and their potential targets. Such 
structure-based approaches for global analysis of off-target binding 
have been successfully applied for specific drug chemicals [76]. For 
instance, Xie et al. used computational docking methods to pre-
dicted protein-ligand networks for a set of Cholesteryl Ester Trans-
fer Protein (CETP) inhibitors, with or without known side effects, 
and suggested that adverse drug effects might be minimized by 
fine-tuning multiple off-target interactions using single or combina-
torial therapies along multiple interconnected pathways [115]. Be-
yond studying specific therapeutic targets alone, certain structure-
based approaches may be systematically applied to a wide range of 
drug classes. Recently, Lounkine et al. carried out a large-scale 
evaluation of their SEA approach, in terms of predicting the activity 
of 656 marketed drugs approved for human use on 73 unintended 
‘side-effect’ targets [116]. Since SEA utilizes only chemical simi-
larity in the target prediction, it can be applied systematically for all 
those targets that have known ligands. Based on a guilt-by-
association metric that linked the targets to adverse drug reactions 
(ADRs), they further constructed a drug-target-ADR network, 
which may prove useful in prioritizing and streamlining the drug 
discovery process. 
 Genome-wide metabolic models are also providing a rich 
source of system-scale information for controlling potential side 
effects on a network-level. For instance, Li et al. formulated the 
problem of detecting optimal drug targets as an integer linear pro-
gramming model, which finds such sets of targeted enzymes that 
provide maximal inhibition efficacy and minimal side effects origi-
nating from non-target compounds in the context of metabolic net-
works [117]. Similarly, Facchetti et al. developed an algorithmic 
solution, which uses genome-scale metabolic networks for system-
atic investigation of synergistic drug effects, and applied it to find-
ing anticancer drug combinations with minimal side effects on the 
normal human metabolism [118]. Using a metabolism of the human 
kidney as a model system, Chang et al. evaluated metabolic drug 
response phenotypes in silico for a specific CETP inhibitor, torce-
trapib, in the context of human renal function [119]. A number of 
causal drug off-targets were predicted to impact renal function, as 
well as genetic risk factors for drug treatment, which may play a 
role in the adverse side effects observed in clinical trials. These 
studies demonstrate possibilities of integration of structural and 
systems biology toward computational systems medicine strategies 
for personalized medicine. In many cases, drug candidates are 
found to be unsafe only late in the drug discovery process and clini-
cal trials [120]. In fact, some adverse effects are not observed until 
a drug is on the market and widely used in genetically diverse 
populations. The field of pharmacogenetics focuses on the role of 
genetic factors in differential drug efficacy and toxicity in individu-
als with different genetic backgrounds; however, this field is out of 
the scope of the present review, and the readers are referred to re-
cent excellent reviews [121; 122]. 
 In general, prediction of drug off-targets and side effects can 
utilize many different sources of information about drugs and their 
targets, such as those from signaling, metabolic and protein interac-
tions among targets. Moreover, it has also been shown that compu-
tational algorithms can relatively accurately predict side effects of a 
new drug, given the information on other drugs, such as their struc-
tural similarity and known side effects [123]. There are also dedi-
cated databases, such as SIDER [124], which connect drugs to 
known side effects and ADRs. Towards integrative analyses, a 
number of recent computational approaches have combined a wide 
variety of molecular and pharmacological information to predicting 
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drug combinations and interactions. For instance, Huang et al.
showed that protein interaction network combined with drug struc-
ture can facilitate the prediction of ADR profiles over a number of 
side effect categories [125]. Further, Zhao et al. combined multiple 
data sources of drug features, such as their medical indications, 
molecular targets, toxicity profiles or anatomical therapeutic and 
chemical classifications to predict effective and safe drug combina-
tion [126]. Recently, Gottlieb et al. developed an algorithmic 
framework, called INDI, which calculates the likelihood that that a 
query drug pair interacts based on different drug-drug similarity 
measures, including those based on chemical similarity and regis-
tered or predicted side effects, as well as similarity measures con-
structed between drug targets, including sequence similarity, dis-
tance on a protein interaction network and Gene Ontology (GO) 
semantic similarity [127]. Notably, INDI is capable of handling 
both pharmacokinetic and pharmacodynamic interactions, and it 
was shown to provide relatively accurate prediction of adverse 
drug-drug interactions, as well as the severity level of co-
administration of drugs used in the clinical practice. 

4. DATABASE RESOURCES AND KNOWLEDGE DISCOV-
ERY FOR NETWORK PHARMACOLOGY 
 Regardless of the approach taken, the common objective in 
multi-target drug design for anticancer treatments is to develop 
optimized computational-experimental approaches to systematically 
explore how drugs and their cellular targets interact to modulate 
cancer phenotypes on a global-network-level. The aim of such net-
work pharmacology analyses is to identify molecular pathways 
behind drug action, as well as to identify key set of vulnerabilities 
in cancer networks and suggest effective and safe combinatorial 
treatment strategies that can block the cancer survival pathways. 
With the massive amounts of data from pharmacology and molecu-
lar biology, together with the development of public and proprietary 
resources, bioinformatics data integration tools have become crucial 
for data modeling and mining in a cost-effective manner. The first 
objective is to integrate multiple pharmacological databases to re-
late drug target profiles and the therapeutic effects in specific can-
cer types. The challenge here is that data acquisition from different 
research groups using different measurements need to be made 
comparable. A number of recent studies have revealed that drugs in 
general tend to bind to multiple targets involved in drug efficacy as 
well as in promiscuous off-target binding [4]. Furthermore, recent 
results of binding affinity assays of marketed drugs indicate that 
their therapeutic efficacy is not necessarily associated with high 
binding affinity only [46]. To predict the effect of a drug combina-
tion, it is essential to capture both high- and low-affinity binding of 
drug-target interactions on a proteome-wide scale. 
 Integrative drug-target interaction analysis and network con-
struction can be done by combining data from comprehensive pub-
lic data resources that focus on drug-target relationships. Experi-
mental binding-affinity data can be retrieved from multiple data-
bases, including BindingDB [61], ChEMBL [128] and canSAR 
[129] databases. DrugBank [130], Therapeutic Target Database 
[131], SuperTarget [132] and Matador [133] provide additional 
resources related to drug-target interactions by text mining the lit-
erature. The side effects of drugs are also accessible in some of 
these databases, while SIDER [124] focuses specifically on drug 
adverse effects. The PubChem Bioassay database is public informa-
tion resource, consisting of bioactivity data generated by high-
throughput screenings and chemical functional assays [134]. It also 
contains high-throughput siRNA screens targeting genes in human 
genome. A number of Web portals have also been developed for 
integrating multiple drug-target databases. For instance, STITCH is 
a public tool that integrates information about protein-ligand inter-
actions from metabolic pathways, crystal structures, binding ex-
perimental data and text mining; it further provides a convenient 
network representation of protein-chemical relations for over 
68,000 chemicals and the numbers are constantly increasing [135]. 

ChemProt integrates ChEMBL, DrugBank, PubChem, BindingDB 
and STITCH [136]; its current version includes more than 700,000 
unique chemicals with bioactivities for 30,578 proteins, and more 
than 2 million chemical-protein interactions are represented in the 
context of protein-protein interaction networks [136]. Data mining 
can be implemented on the available databases for extracting and 
standardizing quantitative binding affinity data for anticancer drugs. 
Particularly, data normalization approaches are needed to allow 
direct comparison between the binding affinity from different 
measurement readouts [137].  
 The continuously growing ‘omics’ databases are commonly 
being used in drug discovery by deducing information on targeted 
pathways of drug treatments in terms of related changes in gene 
expression, protein abundance or metabolic concentration levels. 
The gene expression signatures of drug action can be retrieved, for 
example, from the CMap database [77]. One of the limitations is 
that the data in CMap is based on cancer cell lines and thus may not 
reflect the pathophysiology at the tissue or organism levels. Gene 
Expression Omnibus (GEO) is a generic public repository for gene 
expression profiles, where specific tissue types can be studied [79]. 
Protein interaction data can be extracted, for example, form MIPS 
[138], BIND [139] and PRIDE [140] databases. PINA is one of the 
most comprehensive efforts to integrate protein-protein interaction 
data from six databases including IntAct [141], MINT [142], Bi-
oGRID [143], DIP [144], HPRD [145] and MIPS [146], where a 
meta-database is provided with a set of web-based tools for network 
analysis and visualization [147; 148]. Knowledge about metabolic 
networks is commonly retrieved from KEGG [149] and BiGG 
[150]. Further integration of the data resources for heterogeneous 
phenotypes of drug response holds great promise for understanding 
drug MoA on a global scale. A remarkable examples of database 
integration are Chem2Bio2RDF [151] and PROMISCUOUS [152], 
where data of different types such as phenotypic data and drug side 
effects were linked to chemical data. These databases provide mul-
tiple data sources for understanding the relationships between drug-
target interactions and the disease physiology from the perspective 
of the whole organism. Table 1 summarizes a selection of currently 
available databases for integration of pharmacological and biologi-
cal information, as well as some of the application areas in cancer 
polypharmacology. 

5. EXPERIMENTAL TESTING OF THE POLYPHARMA-
COLOGY PREDICTIONS 
 It has been observed in large-scale experimental studies that 
synergistic drug combinations are relatively rare [160]. Therefore, 
computational models for prioritization of the most potential com-
binations for experimental testing can speed-up the drug discovery 
process and save experimental efforts, since many of the combina-
tions in exhaustive testing would end up being negative hits. How-
ever, also in the experimental exploration of the potential drug 
combinations, which correspond to the selected multi-target modu-
lations, one need to define appropriate models for synergy scoring 
and also efficient experimental strategies for exploring even the 
prioritized drug-dose combinatorial space.  

5.1. Computer Aided Design for Drug Combination Screens
 Computational search algorithms have successfully been ap-
plied in the past to optimize drug combinations prior to their ex-
perimental screening in the lab. For example, in smaller drug 
screening setups, including six drugs to lymphoma cancer, the 
search space of all possible drug combinations was represented 
graphically using a hierarchical tree, a special type of network 
graph [161]. The root level of the tree consisted of individual drugs 
and at the next levels the size of combination increased by adding 
one drug. The search for the best drug combinations was achieved 
by stack sequential algorithm aiming for a step-by-step optimal path 
through the tree that maximizes the effectiveness of a drug combi-
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nation. Although showing good results in smaller drug setup, the 
computational complexity of this algorithm may become a limiting 
factor, as the maximal number of drugs that can be tested is only 
nine.  
 A similar effort to search for minimal drug combinations has 
been proposed using data from the NCI60 cell line collection [162]. 
Their goal was to determine a minimal set of drugs which can ef-
fectively treat all of the 60 cell lines of various cancer types. The 
method is mainly applicable to conventional cytotoxic chemothera-
peutic drugs, as it considers the drug combination as a universal 
therapy that will kill both cancer and normal cells, which is seldom 
the purpose for targeted kinase inhibitors in personalized medicine 
applications. However, the method should be useful as a prioritiza-
tion method, which narrows down the list of potential drug combi-
nations, without further implication in their interaction patterns that 
may vary depending on the cancer type.  
 Other types of advanced algorithms have been proposed for 
prioritizing drug combinations in a cost-effective and timely man-
ner using more complex cellular phenotypes. For instance, a multi-
objective evolutionary algorithm was proposed for analyzing drug 
treatment-induced gene expression changes in a selected IL-1b 
cancer pathway [163], and a stochastic search algorithm has been 
developed for determination of optimal concentrations of drug 
combinations [164]. However, in the absence of link between the 
detailed pharmacological profiles of drugs and the underlying cellu-
lar contexts, the synergistic mechanisms behind these proposed 
combinations may be relatively difficult to understand. 

5.2. Synergy Scores for Characterization of Drug Combination 
Effects  
 The drug perturbation effects are commonly measured using 
either cell proliferation or apoptosis phenotypes. These phenotypic 
outcomes can be quantified using simple measures, such as IC50 
(defined as the dose of an antagonist that causes half-maximal inhi-
bition) or EC50 (defined as the dose of an agonist that gives half 
maximal activation), or more recently introduced Activity Area, 
which corresponds to the area under the non-linear drug-dose re-
sponse curve. In drug combinatorial screening, the drug synergistic 
effects are generally manifested either as potency shifts or efficacy 
boosts [39]. The commonly used synergy metrics are based on 
models such as Loewe additivity, Bliss independence or Highest 
single agents model [165]. When pairwise drug combinations are 
largely available for testing, Tan et al. used so-called S-score for 
each drug pair by averaging the interactions between replicates 
normalized by the variance of drug pairs as controls [166]. Similar 
scoring model has been used previously for detecting positive and 
negative genetic interactions in model organisms [167; 168].  
 While the assumptions behind these models are different, the 
antagonistic and agonistic synergy is generally interpreted as the 
discrepancy between the observed outcome and the effect that is 
expected in the cases when the individual drugs act independently 
(null hypothesis). The common feature about these synergy scores 
is that they measure the relative synergy compared to single agent 
effects. The synergy scores can be divided into those that do not 
take into account the nonlinearity in the dose response curves of the  

Table 1. Representative Examples of Database Resources and their Application to the Multi-Scale Modeling in Polypharmacology 

Databases URL Description Applications 

ChEMBL 
[128] 

http://www.ebi.ac.uk/chembl A bioactivity database for over 1 million drug-
like bioactive compounds and 5400 protein 

targets 

Drug-target interaction predictions [112] 

Structure-activity relationships [47] 

canSAR [129] http://cansar.icr.ac.uk/ A repository of cancer specific biological data 
including gene expression, protein-protein inter-
action and RNAi screens together with chemical 

screening and pharmacological data 

Identification of potential druggable targets 
from protein interactions [153] 

Polypharmacology map showing the shared 
compounds between queried targets [129] 

STITCH 

[135]  

http://stitch.embl.de/ A chemical-protein interaction database to query 
chemicals or proteins for their known and pre-
dicted relations using combined evidence from 

literature, experimental data and other databases 

Benchmark for validation of in silico predic-
tion of drug-target interactions [154]  

PINA 

[148] 

http://cbg.garvan.unsw.edu.au/pina/ An integrative platform collecting protein-
protein interaction data from six manually cu-

rated public databases 

Network construction, filtering and visualiza-
tion for protein functional modules for six 

model organisms [147; 155; 156] 

CMap [77]  http://www.broadinstitute.org/cmap/ A database of publicly available genome-wide 
gene expression profiles of five cancer cell lines 
in response to over 1300 bioactive small mole-

cule treatments 

Drug repurposing by linking drugs to each 
other or to diseases according to their gene 

expression signatures [157; 158]  

BiGG [150] http://bigg.ucsd.edu/ A knowledge-based reconstruction of genome-
scale metabolic networks including human 

Prediction of downstream effect of a drug 
perturbation in a disease network [109; 159] 

SIDER [124] http://sideeffects.embl.de A database to connect marketed drugs to their 
recorded side effects and adverse drug reactions 
obtained from public resources using text min-

ing 

Linking side effects to drug-target interac-
tions and pathways [123; 126] 
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single agents (such as Bliss independence), and those that model 
also the joint dose-response curves of the combinations (such as 
Loewe additivity). These synergy metrics have been mainly de-
signed for double drug combinations, but it is relatively straight-
forward to extend these also to higher combination orders. When 
the combination order is increased, one may also consider the dif-
ferential synergy score to measure the gain by adding one more 
drug [169].  
 Visually perhaps more informative way to assess pairwise drug 
synergy is to look for response patterns in the three-dimensional 
dose-response surfaces where the mechanistic interactions between 
drugs can be visually compared [170]; however, applying such a 
method requires a detailed single agent dose-response matrix which 
may be experimentally difficult to obtain. Based on the Loewe ad-
ditivity model, Cokol et al. developed a drug interaction score to 
quantify the concavity of the isophenotypic contours in a combina-
torial dose response grid map, and they identified 38 novel drug 
synergies in the yeast S.cerevisiae which can be explained by ge-
netic interactions on which they act [171]. A network representation 
of drug-drug interactions was also constructed from which a cluster 
of 6 drugs were found to be highly synergistic. Drug classes that 
have intrinsic tendencies towards synergy were also revealed. 
Moreover, the Loewe synergy score has also been extended to in-
corporate the structure information of the underlying signaling 
pathways related to the combinatorial drug targets [172; 173].  
 A recent study applied a synergy score based on a combination 
index by deriving a dose matrix for pairwise combinations for 13 
experimental screens including anticancer screens [5]. The inhibi-
tory effects of drug combinations were further illustrated in terms 
of their mechanisms using a FBA on E.coli metabolism models. A 
strong synergy between LY 294002 and camptothecin was found in 
H460 lung cancer cells, while not in Colo-205 colon cancer cells, 
suggesting that the interaction of drug combinations might be can-
cer-specific. Another study derived an analytical synergy score by 
first formulating a probabilistic model for the single-agent dose 
response curve [174]. The method was applied to chemical pertur-
bation data of two drugs on 65 non-small lung cancer cell lines, 
where the synergy of EGFR/ERBB2 inhibitor BIBW-2992 and a 
PI3K/mTOR inhibitor PI-103 were found in EGFR and ERBB2 
mutant cell lines. 
 In addition to applying synergy scores on static drug responses, 
Lopez et al. provided a model-based approach for evaluation of 
drug combinations using the time progression of tumor volume as 
drug response data [175]. The novelty here is that the in vivo time 
trajectories of tumor volume were explicitly represented in a differ-
ential equation growth model. The method also considered the dif-
ferences in timing and order of drug administration. The method 
was applied to MCF-7 breast cancer cell line data, where the com-
binatorial effects were evaluated for two drugs doxorubicin and 
rhuMAb HER-2 that were given at different times and in different 
orders.  

6. CONCLUSION 
 Although many current anticancer drug combination designs 
focus on targeted polypharmacology of a priori selected pathways 
or protein families, we argue that global network models may pro-
vide more comprehensive and unbiased insight into the underlying 
molecular mechanisms and pathways cross-talks behind cancer 
development, which are eventually required for the systematic iden-
tification of most critical pathways that go awry in disease and 
identification of optimal therapeutic strategies for controlling the 
dys-regulated sub-networks. Accordingly, although detailed mod-
els, such as those based on ODEs or Boolean logic formulations, 
have provided valuable quantitative or discrete insights into system 
behavior for predicting drug response phenotypes [163; 176-178], 
these modeling frameworks require rather detailed experimental 
characterization of the interaction kinetics and/or structure of dis-

ease-related key pathways, which are typically unavailable for 
many cancer phenotypes and may also bias the modeling results. In 
contrast, global models, based on e.g. metabolic network construc-
tions or other global experimental measurements, should prove 
useful for predicting most effective multi-target drugs or drug com-
binations for anticancer therapies. 
 There are many potential directions how the experimental-
computational approaches can be improved in the future. From the 
disease biology point of view, improved understanding of molecu-
lar vulnerabilities of cancer cells, in relation to normal cells, using 
concepts such as signal addictions or synthetic lethality, will likely 
to provide invaluable additional insights into the models of cancer 
progression and treatment. In theory, these concepts can address the 
fundamental challenges of anticancer therapy by optimally targeting 
differential features in each cancer type while sparing normal cells 
[8]. From the technology point of view, it seems necessary to de-
velop more comprehensive drug screening panels and high-
throughput screening platforms, in addition to more in-depth ge-
nomic and other ‘omics’ profiling technologies. Ideally, the ex-
perimental setup should be both economical and practical, utilizing 
large-scale functional measurements and such phenotypic readouts 
that are readily available in typical drug screening experiments. The 
experimental improvements, together with development of novel 
computational approaches for making most of these exciting meas-
urements, should synergize the experimental-computational studies 
aiming at designing more effective and safe combinatorial drug 
treatments in the future.  
 While most current approaches to predicting cancer drug targets 
focus on large-scale profiling of genetic dependencies, the large 
number of genetic alterations present in tumor cells makes the dis-
crimination of the cancer type specific driver mutations and path-
ways highly challenging. Even when genetic aberrations with 
pathogenetic importance can be identified, directly targeting these 
is often challenging. Furthermore, genes that are not altered at the 
genomic level may play essential roles in cancer development and 
treatment [21]. There is also substantial heterogeneity in response; 
even patients who share the targeted mutation and cancer type may 
show drastically different responses to the same treatment in vivo 
[9]. Therefore, functional screening of genes for their contribution 
to cancer progression has to go along with the structural characteri-
zation of the cancer genome to provide complementary insight into 
the molecular mechanisms and pathways behind various cancer 
types and to pinpoint the druggable drivers and other clinically 
actionable vulnerabilities as targets for personalized therapies. In 
particular, network-based approaches have the capacity to go to-
ward predicting tumor-specific treatment responses [18; 21]. 
 In more general terms, the emerging paradigms of network 
medicine and systems pharmacology have the potential to offer 
holistic information on disease networks and drug responses, ena-
bling identification of more effective drug targets and their combi-
nations tailored for safe and personalized cancer medicine. How-
ever, while such approaches to rational selection and evaluation of 
effective drug target combinations may offer possibilities to move 
beyond empirical, and often painstaking clinical trial and error, it 
should be appreciated that network medicine is still an emerging 
area of research and therefore all these methods should be consid-
ered as experimental. Model predictions needs to be carefully vali-
dated in experimental settings, something that has already been 
started in the context of metabolic network models in vitro [110]. 
However, it will likely take many years of extensive experimenta-
tion and iterations between computational and experimental cycles 
before fulfilling the promises of the systems pharmacology, espe-
cially in clinical settings in vivo. However, system-level computa-
tional-experimental approaches, such as those discussed here, could 
eventually offer improved means to facilitate the transition toward 
network pharmacology and systems medicine in the coming years. 
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