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ABSTRACT

Introduction: A prompt severity assessment
model of patients with confirmed infectious
diseases could enable efficient diagnosis while
alleviating burden on the medical system. This
study aims to develop a SARS-CoV-2 severity
assessment model and establish a medical sys-
tem that allows patients to check the severity of
their cases and informs them to visit the
appropriate clinic center on the basis of past
treatment data of other patients with similar
severity levels.

Methods: This paper provides the development
processes of a severity assessment model using
machine learning techniques and its applica-
tion on SARS-CoV-2-infected patients. The
proposed model is trained on a nationwide data
set provided by a Korean government agency
and only requires patients’ basic personal data,
allowing them to judge the severity of their own
cases. After modeling, the boosting-based deci-
sion tree model was selected as the classifier
while mortality rate was interpreted as the
probability score. The data set was collected
from all Korean citizens with confirmed
COVID-19 between February 2020 and July
2021 (N = 149,471).
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Results: The experiments achieved high model
performance with an approximate precision of
0.923 and area under the curve of receiver
operating characteristic (AUROC) score of 0.950
[95% tolerance interval (TI) 0.940–0.958, 95%
confidence interval (CI) 0.949–0.950]. More-
over, our experiments identified the most
important variables affecting the severity in the
model via sensitivity analysis.
Conclusion: A prompt severity assessment
model for managing infectious people has been
attained through using a nationwide data set. It
has demonstrated its superior performance by
surpassing that of conventional risk assess-
ments. With the model’s high performance and
easily accessible features, the triage algorithm is
expected to be particularly useful when patients
monitor their health status by themselves
through smartphone applications.

Keywords: Machine learning; Deep learning;
COVID-19; Triage protocol; Mortality; SARS-
CoV-2

Key Summary Points

Why carry out this study?

Traditional risk prediction models are
limited to identifying the condition of an
asymptomatic patient who deteriorates
from mild to moderate or extremely
severe risk of COVID-19 at triage

Existing disease risk assessment models
were developed with limited size data sets,
input variables, and unstandardized
independent features without specific
machine learning algorithms

What was learned from the study?

This prediction model, trained with
patient-generated health data (PGHD)
from nationwide COVID-19 screening
centers, can be globally utilized to
monitor hospitalized or quarantined
patients with confirmed SARS-CoV-2
infection daily

This risk assessment model, developed
with multivariable factors like
demographic, geographic, and clinical
characteristics of a superior performance,
can be successfully deployed to triage
patients with COVID-19

INTRODUCTION

Countries such as the UK, Singapore, Germany,
Portugal, and Israel—with high vaccination
rates—have created strategies for the new nor-
mal after COVID-19 [1–3] as many are resuming
their pre-COVID-19 lives. However, as the
coronavirus mutations cause breakthrough
infections, the current vaccine has little effect
on reducing the transmission of the virus. The
number of confirmed cases in the UK and Sin-
gapore has been increasing since October 2021
[4]. The variants put a great burden on the
healthcare system of those countries [5]. Thus,
it is evermore imperative to ensure medical
readiness at a national level by preparing accu-
rate and reasonable patient severity classifica-
tion criteria and procedures [6].

Over the past year and 10 months, South
Korea has experienced four COVID-19 out-
breaks, and the occurrence of confirmed cases
has been suppressed through the 3T strategy
(test, confirmation, investigation, tracking,
treatment) and adjustment of social distancing
without border blocking and regional blockade
[7]. According to the Organization for Eco-
nomic Cooperation and Development, South
Korea has achieved quarantine results without
any containment measures, minimizing eco-
nomic damage, and most effectively blocking
the spread of the virus [8]. Although South
Korea has been performing relatively well in
controlling COVID-19, it had difficulty in
managing patients whose clinical condition
deteriorated frommild to modulate risk level. In
fact, there have been cases where patients died
at home or a community treatment center, a
facility for isolating asymptomatic and mildly
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symptomatic patients with COVID-19, as a
result of delayed response [9, 10].

Thus, a risk prediction model that accurately
identifies the condition of a patient who dete-
riorates from mild to moderate or severe risk is
required. Furthermore, it is crucial to triage
patients with COVID-19 on the basis of the
severity of their infection to secure the entire
medical system of a nation. For the self-quar-
antining population of COVID-19, accurate
severity assessment tools are necessary to
appraise health status every day [11, 12]. Several
models have been developed to predict the
prognosis of patients with confirmed COVID-19
or the possibility of COVID-19 diagnosis of
patients before confirmation. However, there
were several problems: (1) the size of the
research data sets was too small, (2) the number
of input variables was limited, (3) the non-s-
tandard variables were difficult to use by other
institutions, or (4) the specific method of using
the model was not presented. Moreover, to the
best of our knowledge, there was no study on
the mortality rate of SARS-CoV-2 according to
symptoms at national level while there have
been several studies conducted on the estab-
lishment of a model for predicting COVID-19
confirmation based on nationwide data set with
features related to COVID-19. Preventing the
spread of COVID-19 has difficult aspects such as
requiring not only medical staff but also
national action. In contrast, lowering the mor-
tality rate can be effectively managed by medi-
cal staff by developing an appropriate triage
protocol.

Thus, this study aims to review previous
research of prediction models for COVID-19
and develop a model predicting mortality rate
of SARS-CoV-2 using nationwide multicenter
data, thereby allowing patients to easily predict
the severity of COVID-19 by entering their
patient-generated health data (PGHD) during
quarantine out of hospital.

METHODS

Review of Previous Research

The review of previous research was based on a
search of three databases: Google Scholar,
PubMed, and medRxiv. The following keywords
were searched in combination: severity,
machine learning, deep learning, COVID-19,
triage protocol, mortality, and SARS-CoV-2.

In this paper, we propose a machine learning
model that predicts the mortality of SARS-CoV-
2 based on questionnaires completed by
patients. This research was approved by the
Institutional Review Board of Seoul National
University Bundang Hospital (X-2110-717-902).
An Informed consent form was not obtained
owing to the nature of retrospective studies. The
study was performed in accordance with the
Helsinki Declaration of 1964 and its later
amendments.

Data Source and Study Cohort

The data set was collected from February 2020
to July 2021 by the Korea Disease Control and
Prevention Agency (KDCA), a government-af-
filiated organization, for all Koreans who tested
positive for SARS-CoV-2 in polymerase chain
reaction (PCR). Our study was approved by the
Institutional Review Board of Seoul National
University Bundang Hospital (X-2110-717-902).
The data set consists of 149,471 patients who
tested positive, of whom 2000 died. The data set
is labeled according to whether the patient is
dead or alive, and it is highly imbalanced
(98.7% imbalance ratio). The data set are mainly
composed of three types of patient data: (i) basic
personal information, (ii) types of first symp-
toms, and (iii) underlying diseases. A detailed
description of these features is given in Tables 1
and 2. As mentioned in the ‘‘Introduction’’, the
area of residence is included in the data feature
because it affects the degree of virus activation
and medicalization scale.

The data was collected from 1382 designated
COVID-19 screening centers in South Korea.
These centers consist of national safe hospitals
(263), dedicated respiratory clinics (518),
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Table 1 Baseline characteristics of input features

Type Variables N (total = 149,471) %

Basic information Sex

Male 75,073 50.23

Female 74,398 49.77

Age Mean = 44.36

(std = 20.27)

Area of residence

Latitude Mean = 36.93

(std = 0.93)

Longitude Mean = 127.39

(std = 0.76)

Body temperature (T, �C)

T B 36.5 121,557 81.32

36.5\T\ 37.5 6310 4.22

37.5 B T\ 38.3 17,227 11.53

T C 38.3 4377 2.93

Respiratory symptom Cough

True 34,201 22.88

False 99,997 66.90

Sputum

True 17,108 11.45

False 117,090 78.34

Sore throat

True 25,078 16.78

False 109,120 73.00

Dyspnea

True 1962 1.31

False 132,236 88.47
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screening clinics in public health centers (627),
temporary screening offices (200), and car
mobile screening clinics (15). The process of
initial screening, transfer, admission to a hos-
pital or community treatment center (CTC) is
presented in Fig. 1.

The triage process of patients with confirmed
COVID-19 was initiated on the basis of the
severity of their symptoms: asymptomatic to
mild, moderate, severe, and critical. Symptoms
were assessed by telephone interviews or face-
to-face in the first-visit facility, and patients
were quarantined at designated facilities
according to their severity. Asymptomatic and
mildly symptomatic patients were admitted to
CTCs. Meanwhile, patients with an aggravated
severity were hospitalized at tertiary hospitals.
The referral system at each level of medical care
aims to allow for patients to be efficiently
transferred to a higher level of care before
worsening clinical status [13].

The overall process of hospitalization and
transfer is presented in Fig. 1.

Data Collection and Measurement

Previous studies revealed that the outbreaks of
COVID-19 were associated with latitude, tem-
perature, and humidity measurements, which
reflects seasonal variation in the incidence of
respiratory viruses [14, 15]. Thus, geographic
information of latitude and longitude have
been integrated into our model.

Easy-to-measure features are defined as vari-
ables such as body temperature, pulse rate, res-
piratory rate, blood pressure, any symptoms,
and past medical history that can be directly
collected from patients without much delay.

Table 1 continued

Type Variables N (total = 149,471) %

Non-respiratory symptom Musculoskeletal pain

True 24,017 16.07

False 110,181 73.71

Headache

True 16,337 10.93

False 117,861 78.85

Chill

True 17,227 11.53

False 116,971 78.26

Ageusia

True 4846 3.24

False 129,352 86.54

Anosmia

True 5498 3.68

False 128,700 86.10

Infect Dis Ther (2022) 11:787–805 791



Table 2 Underlying diseases of study participants

Disease Count Total (N = 149,471)

N %

Liver diseasea 0 148,632 99.44

1 354 0.24

2 475 0.32

3 10 0.01

Cancerb 0 147,260 98.52

1 594 0.4

2 1423 0.95

3 187 0.13

4 5 0.00

5 2 0.00

Diabetes mellitus 0 139,063 93.04

1 10,408 6.96

Cardio-cerebrovascular diseasec 0 127,608 85.37

1 2165 1.45

2 18,719 12.52

3 825 0.55

4 139 0.09

5 15 0.01

Renal diseased 0 148,698 99.48

1 758 0.51

2 15 0.01

Degenerative diseasee 0 146,945 98.31

1 2331 1.56

2 193 0.13

3 2 0.00
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Table 2 continued

Disease Count Total (N = 149,471)

N %

Lung diseasef 0 147,253 98.52

1 2086 1.40

2 122 0.08

3 10 0.01

aLiver disease includes hepatitis B, cirrhosis, and any other hepatitis
bCancer includes liver cancer, thyroid cancer, oral cancer, acute myelogenous white blood, ovarian cancer, brain cancer,
colon cancer, lymphoma, chronic myelogenous white blood, bladder cancer, esophageal cancer, cancer, stomach cancer,
cervical cancer, uterine cancer, prostate cancer, rectal cancer, skin cancer, hematoma, laryngeal cancer, prostate cancer,
hematologic cancer, hematoma, and blood cancer
cCardio-cerebrovascular disease includes hypertension, stroke, cerebral infarction, myocardial infarction, myocardial hem-
orrhage, arteriosclerosis, and angina
dRenal disease includes renal failure, renal failure, and glomerular disease
eDegenerative diseases include Alzheimer disease, other dementia, and Parkinson disease
fLung disease includes emphysema and any other lung disease

Fig. 1 Management strategy of COVID-19 confirmed cases in South Korea
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Outcome Definition

The outcome was defined as deceased cases due
to COVID-19 in hospitals, CTCs, and at homes.
The mortality cases were collected by the KDCA
from national statistics.

Feature Generation

We observed that the structural stability of
individual SARS-CoV-2 virus-like particles could
be affected by the temperature and humidity of
the atmosphere [16]. In addition, hospitaliza-
tion rates may vary depending on access to
medical resources and the severity of previous
diseases [17]. For these reasons, we utilized
additional features such as the date of the onset
of symptoms (in months), the area of residence
(in longitude and latitude coordinates), and
underlying patient symptoms.

The features of the data set provided by
KDCA as follows: sex, age, body temperature,
clinical symptoms (cough, sputum, sore throat,
dyspnea, musculoskeletal pain, headache, chill,
ageusia, anosmia), self-reported underlying dis-
eases. For body temperature (T), we divided
patients and categorized them into four sub-
groups: (1) no fever with T B 36.5 �C, (2) mild
elevation of body temperature with
36.5 �C\T\ 37.5 �C, (3) mild fever with
37.5 �C B T\38.3 �C, and (4) overt fever with
T C 38.3 �C. All clinical symptoms have binary
values: true or false. Since underlying diseases
are self-reported in a free format, we manually
classified the reported diseases into seven sub-
groups: liver disease, cancer, diabetes mellitus,
cardio-cerebrovascular disease, renal disease,
degenerative disease, and lung disease. Thus, if a
patient had lung cancer and liver cancer, they
were assigned a value of two to the feature
named ‘‘cancer’’ for this patient. This was done
to reduce the sparsity of our data set. Since there
are so many different diseases, our data set
would become very sparse if we treated each
disease as a different feature. If a model is
naively trained on a given sparse data set, the
performance of the model would degenerate;
worse still, it could increase the chances of the
model wrongly predicting the mortality

probability for a patient with a rare disease.
Moreover, requiring many features would lower
user convenience.

Training and Evaluation

We split the data set into training sets and test
sets with an 80:20 ratio, and the model was
evaluated on the test set. We used a tree-based
gradient boosting machine learning model with
binary logistic objectives, XGBoost (XGB) [18].
This model is a decision-tree-based ensemble
machine learning model known for its powerful
performance in classification problems in vari-
ous fields [19, 20]. Since this is a tree-based
model, it has the advantage of being able to
process data with missing values [21]. Another
benefit of using gradient boosting algorithms is
that they enable straightforward measurement
of feature importance scores in prediction by
calculating how useful each feature is in the
construction of the weak learners within the
model. Therefore, this method does not tell us
how positively or negatively the features affec-
ted the prediction and does not consider the
association relations among features in making
predictions.

Meanwhile, originating from game theory,
the SHapley Additive exPlanations (SHAP)
algorithm [22] is used to compute Shapley val-
ues [23] for each feature, where each Shapley
value represents the impact of the feature to
which it is associated and predicted. When used
for tree-based models, SHAP has the great
advantage of being able to calculate Shapley
values relatively quickly. Therefore, we have
utilized it to identify the principal features in
model prediction.

The model was evaluated on the test set
using various metrics, including area under the
curve of receiver operating characteristic
(AUROC), area under the precision–recall curve
(AUPRC), F1 score, precision, sensitivity, and
specificity. Moreover, we performed a decision
curve analysis on the model. ROC analysis
provides information about diagnostic test per-
formance; a ROC curve consists of the true
positive (TP) and false positive (FP) rates and
demonstrates the discriminatory ability of a
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binary classifier system by varying the discrim-
inant thresholds. In other words, the discrimi-
natory ability of the test could be powerful
when the vertex of the curve is closer to the
upper left (high TP rate and low FP rate). In
addition, the baseline for AUROC is always 0.5.

On the other hand, PR curves plot the pre-
cision against the recall, and AUPRC is espe-
cially useful for imbalanced data in a setting
where we focus more on detecting the positive
examples. Unlike AUROC, the baseline for
AUPRC is equal to the fraction of positives. This
means that obtaining an AUPRC of 0.4 on a
class with 10% positives is good but obtaining
an AUPRC of 0.6 on a class with 80% positives is
undesirable [24].

RESULTS

Literature Review

Previous research was classified according to the
five classification criteria: (1) type of learning
data, (2) type of prediction models, (3) outcome
variables, (4) data type, and (5) whether or not
easy-to-measure input features were utilized. In
terms of modeling and utilizing the prediction
models, they have four major components:

gathering patients’ information such as symp-
toms, signs, previous medical history; results of
imaging studies; and laboratory tests; confir-
mation of COVID-19 through reverse tran-
scriptase polymerase chain reaction (RT-PCR)
test; and triage of confirmed cases. The sche-
matic flow of management for patients with
COVID-19 is presented in Fig. 2.

In terms of outcome variables, previous
studies were classified into four major classes.

Outcome class 1: diagnosis.

A ? B ) 1 (Zoabi, Menni) [25, 26].
B ) 1 (Yanamala) [27].
D ) 1 (Gozes, Song, Jin, Punn) [28–31].
A ? B ? C ? E ? 2a ) 1 (Feng) [32].

Outcome class 2: mortality.

F ? 1 ? 2a ? 2b ? 2c ) 3a vs 3b (Cifuentes)
[33].
A ? B ? C ? E ? 1 ? 2a ) 3a vs 3b (Her) [34].
C ? 1 ? 2a ? 2b ? 2c ) 3a vs 3b (Cho) [35].
C ? E ? 1 ? 2a ) 3a vs 3b (Ikemura) [36].

Outcome class 3: mortality and
complication.

B ? D ? E ? 1 ? 2a ) (3a ? 3c) vs 3b
(Shamout) [37].

Fig. 2 Classification of the previous prediction models according to the type of learning data and type of prediction models
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C ? E ? 1 ? 2a ) (3a ? 3c) vs 3b (Subudhi)
[38].
A ? B ? C ? E ? 1 ? 2a ) (3a ? 3c) vs 3b
(Marcos) [39].
A ? B ? C ? 1 ? 2a ) (3a ? 3c) vs 3b (Kim)
[40].
C ? E ? 1 ? 2a ) (3a ? 3c) vs 3b (Su) [41].

Outcome class 4: complication.

A ? B ? C ? 1 ? 2a ? 2b ? 2c ) 3b vs 3c
(Rinderknecht) [42].
A ? B ? C ? D ? E ? 1 ? 2a ) 3b vs 3c
(Wang) [43].

We reviewed 19 existing studies and classi-
fied them by the four classification criteria into
the four major outcome classes. The result is
presented in Table 3.

The baseline characteristics of the input fea-
tures used in the research are presented in
Tables 1 and 2. The area of residence for each
confirmed patient was converted to floating-
point variables using the Python Google Maps
API client owing to its large scale.

The distribution of longitude and latitude of
the study participants is presented in Fig. 3. The
x-axis represents the latitude–longitude coordi-
nate, while the y-axis shows its number of

Table 3 Previous research regarding COVID-19 prediction models

Class Studies Prediction
type

Outcome
variable

Data type Sample size Easy-to-measure
input features

Our model Prognosis Mortality Nationwide 149,471 Yes

1 Zoabi et al. [25] Diagnosis RT-PCR Nationwide 99,232 Yes

Yanamala et al. [27] Diagnosis RT-PCR Local 3883 No

Gozes et al. [28] Diagnosis RT-PCR Local 157 No

Song et al. [29] Diagnosis RT-PCR Local 275 No

Feng et al. [32] Diagnosis RT-PCR Local 164 No

Jin et al. [30] Diagnosis RT-PCR Local 11,356 No

Punn et al. [31] Diagnosis RT-PCR Local 1214 No

Menni et al. [26] Diagnosis RT-PCR Nationwide 2,618,862 Yes

2 Cifuentes et al. [33] Prognosis Mortality Nationwide 1,033,218 Yes

Cho et al. [35] Prognosis Mortality Nationwide 7590 No

Ikemura et al. [36] Prognosis Mortality Local 4313 No

Her et al. [34] Prognosis Mortality Nationwide 5628 No

3 Subudhi et al. [38] Prognosis Complication or mortality Local 10,826 No

Shamout et al. [37] Prognosis Complication or mortality Local 3661 No

Marcos et al. [39] Prognosis Complication or mortality Local 1270 No

Kim et al. [40] Prognosis Complication or mortality Nationwide 4787 Yes

Su et al. [41] Prognosis Complication or mortality Local 14,418 No

4 Rinderknecht et al. [42] Prognosis Complication Nationwide 15,753 Yes

Wang et al. [43] Prognosis Complication Local 3008 No

RT-PCR reverse transcription polymerase chain reaction
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Fig. 3 Histogram of patients’ distribution by latitude (top) and longitude (bottom)

Fig. 4 Cumulative number of confirmed cases per month
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patients. The l and r in the title denote the
mean and the standard deviation, respectively.
Even though discrepancies between the actual
area of residence and latitude–longitude pair
exist, they were ignored because such cases were
rare.

The seasonality of the cumulative number of
confirmed cases per month is presented in
Fig. 4. The height of each bar represents the
number of patients in that month. We marked
the number of patients and their percentage (%)
at the top of the bar.

Model Performance

The proposed model achieved an AUROC score
of 0.950 at a 95% tolerance interval (TI)
0.940–0.958 and 95% confidence interval (CI)
0.949–0.950, Youden’s index of 0.739, F1 score
of 0.861, recall 0.807, precision 0.923, and
specificity 0.933. Since the size of the test set
was 29,895, and there were 398 positives in the
test set, the fraction of positives is 0.013, which
is the baseline for the AUPRC score. The model
achieved an AUPRC score of 0.268 (with 95% TI
0.225–0.310 and 95% CI 0.266–0.269), greatly
outperforming the baseline score of 0.013. The

Fig. 5 a ROC curve and b precision–recall curve. The gray bands around the curves are pointwise 95% TI and 95% CI,
which are derived by bootstrapping with 1000 repetitions
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Table 4 Performance of four different models

XGBoost Light GBM Random forest CatBoost

AUPRC 0.268 0.260 0.240 0.261

AUROC 0.950 0.943 0.944 0.947

Precision 0.923 0.925 0.978 0.881

Recall 0.807 0.769 0.025 0.897

F1 0.861 0.840 0.049 0.889

Youden’s index 0.739 0.707 0.025 0.776

Specificity 0.933 0.938 0.999 0.879

Fig. 6 Feature importance plot
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general ROC curve and PR curve are presented
in Fig. 5.

We compared the performance of four dif-
ferent models (Table 4). The XGB model
achieved the highest scores with an AUROC of
0.950 and AUPRC of 0.268.

Explainability

Feature importance was measured by SHAP, as
presented in Fig. 6. Features in the plot are sor-
ted in descending order by their maximum
absolute values. A single dot on each row rep-
resents the explanation for each patient, and
the original feature values are represented by
their colors. The SHAP analysis proved age to be
the most important relevant risk factor for
mortality. Body temperature was also an
important risk factor, as were previous diseases
before COVID-19 infection, such as renal dis-
ease, degenerative disease, cancer, liver, cardio-
vascular, and lung disease. Among initial
symptoms of patients, dyspnea was shown to be
an important risk factor. Geographic informa-
tion is also closely related to the mortality of
patients with COVID-19. Higher longitude and
latitude are related to high mortality. The
northeast region is covered with more moun-
tains than the west or southern region in South
Korea while almost all large cities are located in
the southern and western parts of the country.
In terms of accessibility to acute care facilities,
geographic location significantly affects the

mortality of patients with acute respiratory
diseases [44, 45]. Different weather according to
location may also affect the severity of disease
or mortality of the patients [46].

Cost–Benefit Analysis

Decision curve analysis (DCA), as depicted in
Fig. 7, provides the range of threshold proba-
bilities in which a prediction model shows the
value and magnitude of benefit [47]. In the
context of this research, the threshold can be
used to decide whether a self-quarantined
patient should be hospitalized or not. The
threshold should be set depending on the
medical and economic environment of the
country in which the model is implemented.
The DCA identified the optimal threshold range
in which net benefit does not fall below zero. In
our model, the optimal threshold for the DCA
ranged from 0 to 0.05.

We also investigated the types of medical
institutions visited by patients according to
their predicted mortality probabilities, as shown
in Fig. 8. First, we divided the test set into three
groups: patients with predicted mortality prob-
abilities less than 0.05, those between 0.05 and
0.5, and those greater than 0.5. Then, we ana-
lyzed the types of medical institutions that the
patients visited first for each group. Since public
health centers are the first places where patients
receive the PCR test in general, the proportion
of public health centers among the medical

Fig. 7 Decision curve analysis and the histogram of predicted probabilities of the XGB model
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institutions where patients get treated is great.
However, the proportion of hospitals in the pie
chart increases if the mortality rate of patients
increases, which means more severely infected
patients visited hospitals at first than those with
less severe cases.

DISCUSSION

In this research, we propose a machine learning
model that predicts the prognosis of SARS-CoV-
2-infected patients by obtaining 20 basic pieces
of PGHD. The model was developed using the
data of 149,471 patients from 1382 designated
COVID-19 screening centers. Thus, our model
can be utilized globally for triaging patients
with confirmed SARS-CoV-2 infection at the
initial stage and monitoring hospitalized or
quarantined patients daily.

The characteristics of SARS-CoV-2 and the
related spectrum of signs and symptoms are the
subjects of much ongoing research. Initial triage
of the patients is crucial to prevent the shut-
down of the entire medical system of a country.
Thus, there have been many studies on devel-
oping patient triage algorithms using easily
obtainable signs and symptoms. The model in
this study provides a novel method integrating
easily obtainable signs and symptoms, along
with geographic and seasonal data that reflect
characteristics of respiratory viruses, all from
the nationwide multicenter database, including
hospitalization and mortality data.

Accurate patient triage may lower the burden
currently faced by health systems through
facilitating optimized management of health-
care resources during future waves of the SARS-
CoV-2 pandemic [48]. This is especially impor-
tant in developing countries with limited
resources to maintain essential health services
[49].

While reviewing the existing research, we
found that most of the previous studies utilized
limited data. Furthermore, almost all of them
utilized various input features that are not easy
to measure. Compared to the previous studies,
we adopted two types of demographic infor-
mation, one geographic location, one sign, nine
symptoms, and seven underlying diseases,
which are easy to measure. Only body temper-
ature and the nine symptoms are changeable
during quarantine and hospitalization. Thus,
patients can check the severity of the disease
every day with the variable input features. The
data for the research was collected from 1382
designated COVID-19 screening centers in
South Korea, which means the developed model
covered patients with variable clinical charac-
teristics from all over the country. In addition,
we adopted longitude and latitude in our model
to reflect clinical characteristics of the acute
respiratory virus by weather and accessibility of
acute care facilities in each region.

Through the result of DCA, users can set a
threshold for intervention such as transfer to a
higher level of care or medical facility or a
thorough examination by doctors. For example,
if they are allowed to have a higher false-

Fig. 8 First-visit facility of patients with COVID-19 according to the patients’ mortality probabilities
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positive rate and want to screen necessary
patients for intervention as much as possible,
they can set the threshold near 0. If they have to
save hospital beds for severe patients when
medical resources are depleting, they can set the
value closer to 0.05.

The SHAP analysis found patients with pre-
vious renal, degenerative, or cardiovascular
diseases or cancer should be monitored thor-
oughly. In addition, body temperature and
dyspnea should be considered the most impor-
tant factors to assess aggravation of their health
daily.

One of the main limitations of the study is
that our model has not yet been extensively
applied to the field. Therefore, we could not
quantify how efficiently our model could lower
the burden on the healthcare system. However,
since our model has high performance and is
easily accessible, we expect to have positive
results and leave this analysis for future work.

CONCLUSION

We developed a model for predicting COVID-19
diagnosis by obtaining 20 basic pieces of PGHD
based on nationwide multicenter data reported
by KDCA. With the help of COVID-19 vacci-
nation and medicine to be released soon, it will
be more important to manage patients under
quarantine at home or a facility. Our framework
can be implemented and utilized conveniently
to triage patients with positive RT-PCR test
results as well as enabling them to monitor
themselves at home or a quarantine facility.
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