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Abstract: Halloysite is a promising building block in nanoarchitectonics of functional materials,
especially in the development of novel biomaterials and smart coatings. Understanding the behavior
of materials produced using halloysite nanotubes within living organisms is essential for their
safe applications. In this study, quantum dots of different compositions were synthesized on the
surface of modified clay nanotubes, and the biodistribution of this hybrid material was monitored
within Caenorhabditis elegans nematodes. The influence of the modification agent as well as the
particles’ composition on physicochemical properties of hybrid nanomaterials was investigated.
Several microscopy techniques, such as fluorescence and dark-field microscopy, were compared in
monitoring the distribution of nanomaterials in nematodes’ organisms. The effects of QDs-halloysite
composites on the nematodes’ life cycle were investigated in vivo. Our fluorescent hybrid probes
induced no acute toxic effects in model organisms. The stable fluorescence and low toxicity towards
the organisms suggest that the proposed synthesis procedure yields safe nanoarchitectonic materials
that will be helpful in monitoring the behavior of nanomaterials inside living cells and organisms.

Keywords: Caenorhabditis elegans; quantum dots; in vivo imaging; reproductive toxicity; halloysite

1. Introduction

A nanoarchitectonics approach for targeted production of biomaterials, catalysts,
membranes, sensors and smart coatings based on halloysite is a fast-developing area of
research [1–5]. In biomedical studies, halloysite clay nanotubes have been extensively stud-
ied as a component of food packaging materials, tissue engineering scaffolds, drug delivery
systems, bone implants, as antibacterial materials and in cosmetics [6–11]. Together with
organoclay composites, the synthesis of nanoparticles of various shapes, compositions, and
functional properties using halloysite clay tubes as a template is exceptionally promising
due to a large number of prospective applications.

Scientific and industrial applications motivate the collection of more data on halloysite-
based nanomaterials toxicity and behavior within living organisms [12–14]. Pristine hal-
loysite nanotubes are known to be biocompatible, which has been demonstrated in various
cell cultures and organisms. When other nanoparticles are synthesized or adsorbed on the
surface of clay tubes, their toxicity and behavior might be different from that of pristine
nanotubes, which was previously reported based on in vitro and in vivo studies [15–18].

Currently, just a handful of papers report on the cytotoxicity of semiconductor
nanoparticles stabilized on halloysite and even less are based on the studies using the
clay-derived nanomaterials in vivo [14,19,20]. One of the reasons to investigate these issues
is that the monitoring of pristine halloysite or nonfluorescent probes in vivo is difficult due

Materials 2021, 14, 5469. https://doi.org/10.3390/ma14195469 https://www.mdpi.com/journal/materials

https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://orcid.org/0000-0001-6094-7405
https://orcid.org/0000-0003-2015-7649
https://orcid.org/0000-0002-0570-6577
https://doi.org/10.3390/ma14195469
https://doi.org/10.3390/ma14195469
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ma14195469
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma14195469?type=check_update&version=2


Materials 2021, 14, 5469 2 of 10

to the low contrast of materials to living tissues. The anchoring of fluorescent quantum
dots (QDs) to nanoclay will be helpful to obtain novel insights about cellular uptake and
halloysite transportation within the organisms [21]. We have recently demonstrated that
quantum dots synthesized in situ on halloysite were more stable fluorescent probes if
compared to traditional fluorescence dyes [22,23].

Quantum dots have a great advantage due to composition-dependent optical proper-
ties, such as fluorescence emission spectra, quantum yield and stability. Free QDs have
been extensively investigated recently. The CdS, ZnS, and CdSe free QDs, showed to be
toxic to Caenorhabditis elegans [24]. Nanoarchitectonics approach to the design of fluorescent
QDs based on clay tubes and their in vivo studies will help to design less toxic fluorescent
probes for bioimaging and on-line monitoring of nanomaterials in living organisms.

C. elegans is a free-living soil nematode with a body length of 1 mm and a width of
70–90 µm, which is frequently used as a model organism for studying various processes in
biology, including energy metabolism, immunity and aging. Reproduction rate, optical
transparency of the body, the short life cycle (3 days), the short life span (2–3 weeks), being
not expensive, and relatively easy cultivation in a laboratory make this nematode species
an ideal model organism [25]. Importantly, the bioinformatic analysis demonstrated that
60–80% of C. elegans genes are homologous to human genes [26]. For this reason, these
nematodes are widely used to model complex human diseases, including Alzheimer’s
disease [27], Parkinson’s disease [28], diabetes mellitus [29], Duchenne muscular dystro-
phy [30] and cancer [31]. In addition, the free-living C. elegans nematodes are considered as
an important alternative in vivo model system for laboratory studies of toxic effects and
elucidation of the fundamental mechanisms of the formation of toxicity in engineering
nanomaterials [32–34].

Microscopy imaging can reveal the uptake efficiency, dispersion state and poten-
tial cytotoxicity of nanomaterials. Fluorescence imaging using wide-field fluorescence
or confocal laser scanning microscopy is among the most commonly used methods for
visualization and tracking of nanomaterials, providing dynamic and real-time information
of the interactions between nanomaterials and organisms. In this work, quantum dots with
different compositions synthesized on the surface of modified halloysite nanotubes were
used for monitoring of the distribution of clay inside C. elegans nematodes. Their physico-
chemical properties were investigated in relation to composition and synthesis procedure.
The toxicity of this material was studied in vivo. Fluorescent imaging was compared to
the enhanced dark-field hyperspectral imaging (EDF-HSI), which combines dark-field
microscopy (DEM) and hyperspectral imaging (HSI), to monitor the nanomaterials inside
living organisms.

2. Materials and Methods
2.1. Materials

Halloysite (HNT), f Furan-2-carbaldehyde (C5H4O2), (3-aminopropyl)triethoxysilane
(APTES), cadmium nitrate tetrahydrate (Cd(NO3)2·4H2O) and zinc nitrate hexahydrate
(Zn(NO3)2·6H2O) were purchased from Sigma-Aldrich (St. Louis, MO, USA), while thioac-
etamide (TAA), ammonium hydroxide solution (NH4OH) and 96% ethanol and hydrazine
hydrate (N2H4) were all purchased from Acros.

2.2. Synthesis of Quantum Dots on HNT
2.2.1. HNT Surface Modification with (3-Aminopropyl)triethoxysilane

A total of 0.2 g of APTES was added to a dispersion of 1 g of HNT in ethanol, and the
mixture was kept in an ultrasonic bath for 30 min and then transferred to a closed flask and
stirred at 60 ◦C for 24 h. Afterward, the dispersion was washed several times with ethanol
to eliminate an excess of the reagents. The precipitate was dried at 60 ◦C for 12 h.
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2.2.2. Halloysite Surface Modification with 1,2-Bis(2-furylmethyl-ene)hydrazine

A total of 1 g of halloysite was dispersed in 20 mL of hydrazine hydrate and stirred
for 30 min. The excess hydrazine was removed by centrifugation. To the precipitate, 30 mL
of furfural solution in ethanol was added, and the dispersion was ultrasonicated for 30 min
to result in 1,2-Bis(2-furylmethyl-ene)hydrazine (azine) on the surface of clay nanotubes.

2.2.3. QDs Synthesis on the Surface of Modified Clay Nanotubes

For the synthesis of CdS or Cd0.7Zn0.3S QDs on the surface of clay tubes, the obtained
HNT-NH2 or HNT-Azine was dispersed in a Cd(NO3)2 or Cd(NO3)2/Zn(NO3)2 ethanolic
solution of calculated concentration and kept in an ultrasonic bath for 30 min. Then the
TAA ethanolic solution with concentration calculated, taking into account a S/Me molar
ratio of 1, was added, and the pH was adjusted to 10 with NH4OH. The reaction time
was 5 min. After the reaction, the precipitate was centrifuged, washed several times with
ethanol and dried at 60 ◦C for 24 h. The resulting samples were named HNT-NH2-CdS,
HNT-Azine-CdS or HNT-Azine-Cd0.7Zn0.3S. The scheme of synthesis is shown in Figure 1.
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2.3. Nanomaterials Characterization

The morphology of the nanomaterials was studied using transmission electron mi-
croscopy (TEM) (JEM-2100, JEOL, Tokyo, Japan). To analyze the elemental compositions
of the samples, inductively coupled plasma mass spectrometry (ICP-MS) was used (Ag-
ilent, Santa Clara, CA, USA). The crystalline structure was analyzed with X-ray phase
analysis (Bruker D8, Bruker, Billerica, MA, USA). The analysis was carried out using Cu
Kα radiation (wavelength 0.154 nm, voltage 40 kV, current 40 mA). Spectral character-
ization was carried out with UV-Vis diffuse reflectance spectra analysis in the range of
350–800 nm with 1 nm of resolution (Jasco V-770, Shimadzu, Tokyo, Japan). The fluores-
cence spectra of nanomaterials were measured from a solid sample using a fluorometer
(Agilent Cary Eclipse, Santa Clara, CA, USA) at room temperature in a region from 200 to
600 nm. Zeta-potential measurements were conducted using nanoparticles size analyzer
SZ-100 (Horiba, Tokyo, Japan).

2.4. In Vivo Studies

Nematode cultures [15] were grown at 20 ◦C in Petri dishes filled with Nematode
Growth Media supplemented with Escherichia coli OP50 bacteria as a food source. The
sterile eggs were inoculated to the nutrient agar media, and the animals were cultivated
to reach the adult hermaphrodite developmental stage. To consider the efficiency of the
delivery of nanoparticles and their toxicity, we evaluated certain physiological parameters,
such as body length and reproductive potential (egg number per animal). Both body length
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and fertility were determined using optical microscopy images of adult nematodes at
certain times, as indicated. An Olympus BX51optical microscope equipped with CytoViva
dark-field condenser was used to study the distribution of nanoparticles in nematodes.
Optical bright-field and epifluorescence microscopy experiments were conducted using
a Carl Zeiss Imager Z2 upright optical microscope equipped with apochromatic objec-
tives (40×, 63× and 100×). Fluorescence imaging was performed using Carl Zeiss HXP
120 C excitation light source and Carl Zeiss fluorescence FITC narrow band cube (exci-
tation: 475/40 nm, emission: 530/50 nm). Images were captured using an HRC CCD
camera (Carl Zeiss). Nematodes were cultivated for 3 days on 6 lunar planets in a solid
medium with the addition of the various studied samples of nanotubes (CdS/HNT-Azine,
Cd0.7Zn0.3S/HNT-Azine, CdS/HNT-NH2) at a concentration of 1 mg/mL (0.5 mg/mL).
The pristine halloysite nanotubes were used as the reference sample.

3. Results and Discussion

The spectral characteristics of quantum dots are outlined by their composition and
structure; therefore, nanoarchitectonics of semiconductors and semiconductors-based
hybrid materials is important for research and industrial applications. Currently, the
synthesis of QDs of different compositions in situ on the surface of inorganic nanomaterials
and investigation of their properties, including in vivo studies, is poorly studied. Herein,
based on the QDs-halloysite composites, we show a novel approach for the synthesis of
nanostructured hybrid photonic materials and potential applications of such probes in
monitoring nanomaterials in vivo.

The synthesis of CdS/HNT-Azine, Cd0.7Zn0.3S/HNT-Azine and CdS/HNT-NH2
was performed according to a procedure described in [22] (Figure 1). The stabilization
of QDs on the surface of clay tubes was achieved by prior surface modification with
(3-aminopropyl)triethoxysilane (APTES) or 1,2-Bis(2-furylmethyl-ene)hydrazine (azine).
CdS and Cd0.7Zn0.3S were synthesized in situ on the surface of modified clay following a
simple precipitation method. We demonstrate that this kind of synthesis procedure led
to the self-organization of sulfide particles with less than 10 nm size selectively on the
surface of the clay and not in the bulk. Such materials are quite stable and have good
water dispersibility.

TEM investigation revealed that all samples exhibited a homogeneous distribution
of QDs on the surface of modified clay tubes (Figure 2a). Due to the close packing of
nanoparticles and their transparency under the electron beam, it was difficult to determine
particles size distribution using TEM. The crystal structure of materials was confirmed
by XRD (Figure 2b). Pristine halloysite displayed characteristic Bragg peaks at 2θ = 11.52,
19.95, 24.63, 34.91 and 54.51 ◦ [1]. The XRD patterns of functional materials proved the
formation of sulfide particles with less than 10 nm (QDs). In the case of halloysite with CdS
nanoparticles synthesized on the surface of azine modified halloysite CdS/HNT-Azine,
new peaks were revealed at 2θ = 43.01 and 52.54◦, corresponding to cubic CdS [35]. For
the Cd0.7Zn0.3S/HNT-Azine, the reflectance peak correspondent to (110) lattice plane
shifted to the higher diffraction angles (44.8◦), indicating the formation of Cd0.7Zn0.3S
solid solution [36]. CdS/HNT-NH2 refractogram had Bragg peaks at 2θ = 43.21 and 52.34◦,
corresponding to cubic CdS lattice.

Elemental composition analysis was performed using ICP-MS. Cd content was found
to be 3.5, 3.2, and 3.9 wt.% in CdS/HNT-Azine, Cd0.7Zn0.3S/HNT-Azine, and CdS/HNT-
NH2, respectively. Zn content was 0.9 wt.% in Cd0.7Zn0.3S/HNT-Azine. This is in good
correlation with the calculated amounts of metals used during the synthesis procedure.

Zeta-potential measurements were performed at each reaction stage. We found that
successful surface modification with APTES changed zeta-potential for pristine halloysite
from −45 to +12 mV. Modification with azine resulted in a slight change in this value to
−25 mV. HNTs-QDs composites were characterized by zeta-potential values of −30, −32,
and −20 mV in CdS/HNT-Azine, Cd0.7Zn0.3S/HNT-Azine, and CdS/HNT-NH2.
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Spectral characteristics of QDs-halloysite composite were analyzed to investigate the
influence of the composition to the properties of QDs stabilized on clay tubes. A broad
absorption region below 500 nm in all samples was attributed to the charge transfer from
the valence to the conduction band of QDs (Figure 3a). UV-Vis diffuse reflectance spectra
mathematical processing revealed that the band gap of the materials was dependent on the
composition of quantum dots (Figure 3b). It equaled 2.52, 2.50, and 2.61 eV for CdS/HNT-
NH2, CdS/HNT-Azine, and Cd0.7Zn0.3S/HNT-Azine, respectively. The band gap of a bulk
CdS is 2.4 eV [37]. A slight increase in band gap values in the case of CdS stabilized on
modified clay could be due to the very small particles size of sulfide crystals. Further
increase in the band gap in the case of Cd0.7Zn0.3S/HNT-Azine was due to the formation
of solid Cd0.7Zn0.3S solution. The addition of Zn in various concentrations increases a band
gap of mixed sulfide [38].
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In vivo studies of QDs-halloysite composites were performed using C. elegans as a
model organism. First, we investigated the biodistribution of the clay nanotubes in the
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nematodes, as shown in Figure 4; in all experiments, halloysite nanotube composites in the
form of yellow spots were exclusively seen in the worm’s digestive system, from the bulbus
to the anus, with significant congestion in the pharynx, mainly in the extensions, and tail.
Nanotubes were also clearly visible in the middle part of the gut, but fewer aggregations
were observed. Single isolated halloysite nanotubes were not static or intestine-attached; in-
stead, Brownian motion patterns of halloysite in the intestines of nematodes were detected.
It is important to note that halloysite nanotubes were not found outside the nematode
intestine. Previous studies indicate that silicon oxide nanoparticles enter the organism of
C. elegans not only through the oral apparatus but also through the vulva, from where they
diffuse into other organs [24].
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(b) Tails of the nematodes fed with fluorescent halloysite nanotube. A—optical images, B—
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The distribution of quantum dots stabilized on the surface of halloysite nanotubes
inside the intestine of nematodes is shown in fluorescence photographs as bright blue
clusters in the pharynx and tail (Figure 4b). In the control experiments, the nanotubes do
not show fluoresce; however, the autofluorescence of the lipofuscin droplets is observed in
the intestinal cells (Figure 4a(B1)). During the ingestion of bacterial food, nanotubes were
pushed down the digestive tract and taken out within an hour. Consequently, nematodes
have normal feeding behavior, just like the worms that were fed normal bacterial food
(with no nanotubes added). This indicates that the exposure and the need for nanotubes
with stabilized quantum dots do not cause a gross behavioral defect in the organism.

The dark-field images (Figure 5a) confirm the effectiveness of uptake of halloysite
nanotube decorated with stabilized quantum dots on their surface. Apart from dark-field
images, the light scattering intensity of nanomaterials were studied in the hyperspectral
microscopy mode. The corresponding spectra (absorption peak ranges) differ from those
of the initial halloysite nanotubes and from each other due to QDs composition and
surrounding differences (Figure 5b,c). The most intensive signal was obtained in the case
of QDs supported on halloysite modified in APTES. This is more likely to be attributed
to surface modification. Earlier it has been shown that the optical scattering intensity of
the peptide nanoparticles was enhanced by the amidation [39]. Figure 3a also confirms
the higher light reflection intensity of this material. As for azine modified halloysite with
Cd0.7Zn0.3S, it has a higher light adsorption. Halloysite UV-Vis diffuse reflectance analysis
showed that it reflects more than 80% of light in UV and visible regions [40]. Despite this,
hyperspectral microscopy showed that its modification leads to better image qualities.
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[26]. Difficulty in laying the eggs, damaged eggs left in the vulva, and damaged eggs with-
out an intact eggshell were observed in this study after 1 day of exposure. As can be seen 
from Figure 6a, the synthesized samples of HNT-NH2-CdS, HNT-Azine-CdS, and HNT-
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Figure 5. (a) Dark-field images and (b) the corresponding spectral curves of nematodes feed with: A—pristine halloysite,
B—CdS/HNT-Azine, C—Cd0.7Zn0.3S/HNT-Azine, D—CdS/HNT-NH2, (c) Hyperspectral mapping of nematodes feed
with: A—pristine halloysite, B—CdS/HNT-Azine, C—Cd0.7Zn0.3S/HNT-Azine, D—CdS/HNT-NH2.

We then investigated some physiological parameters in nematodes exposed to CdS/
HNT. We found that long-term exposure (from stage L1 to an adult) with the nanotubes
does not cause abnormalities in the reproductive organs of nematodes associated with the
appearance of the BOW phenotype, in which fertilized embryos hatch inside the mother’s
body and begin to feed on its tissues (Figure 6). In the case of free QDs, the short (12 h to
3 days) and especially long-term (16 days) exposure leads to the accumulation of QDs in the
uterus and vulva, the eggs were full of QDs even after short term exposure [26]. Difficulty
in laying the eggs, damaged eggs left in the vulva, and damaged eggs without an intact
eggshell were observed in this study after 1 day of exposure. As can be seen from Figure 6a,
the synthesized samples of HNT-NH2-CdS, HNT-Azine-CdS, and HNT-Azine-Cd0.7Zn0.3S
did not affect the reproductive ability of nematodes. By comparing the growth in body
length of C. elegans nematodes exposed to CT, we can determine the sensitivity to toxins
and toxicity at an early stage of exposure. As can be seen from Figure 6b, the body length
of nematodes developing under the influence of nanomaterials did not change significantly.
These facts indicate the absence of any acute toxic effects on model organisms in vivo.
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4. Conclusions

A new approach that may help in monitoring the behavior of nanomaterials inside
living organisms by the anchoring of QDs on their surface was proposed in this study.
Fluorescent quantum dots synthesized on the surface of modified clay nanotubes were
used to study the distribution of halloysite clay tubes within the body of model nematodes
C. elegans. It has been shown that using fluorescent probes with stable fluorescence, it is
possible to study the distribution of clay tubes that are extensively studied as drug delivery
polymer-composite systems, in food polymeric packages, and other polymer materials.
This approach may help to obtain new data on such important issues as nanomaterials
toxicity, cells uptake, and the traveling of nanoparticles within a body. It has been stated
that these fluorescent QDs stabilized on halloysite nanotubes showed no acute toxic effects
on reproduction ability, life cycle, and behavior of model nematodes. It is especially
worth noting that the nanomaterials were not found in the uterus, spermatheca, and
nematode embryos.
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