ARTICLE

Mechanochemical feedback control of dynamin
independent endocytosis modulates membrane
tension in adherent cells
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Plasma membrane tension regulates many key cellular processes. It is modulated by, and can
modulate, membrane trafficking. However, the cellular pathway(s) involved in this interplay is
poorly understood. Here we find that, among a number of endocytic processes operating
simultaneously at the cell surface, a dynamin independent pathway, the CLIC/GEEC (CG)
pathway, is rapidly and specifically upregulated upon a sudden reduction of tension. More-
over, inhibition (activation) of the CG pathway results in lower (higher) membrane tension.
However, alteration in membrane tension does not directly modulate CG endocytosis. This
requires vinculin, a mechano-transducer recruited to focal adhesion in adherent cells. Vin-
culin acts by controlling the levels of a key regulator of the CG pathway, GBF1, at the plasma
membrane. Thus, the CG pathway directly regulates membrane tension and is in turn con-
trolled via a mechano-chemical feedback inhibition, potentially leading to homeostatic reg-
ulation of membrane tension in adherent cells.
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iving cells sense and use force for multiple functions like
development!, differentiation?, gene expression®, migration*
and cancer progression®. Cells respond to changes in ten-
sion, passively by creating membrane invaginations/blebs®-, and
actively by modulating cytoskeletal-membrane connections,
mechanosensitive channels and membrane trafficking®%10.
Membrane trafficking through endo-exocytic processes can
respond to and modulate membrane tension!?. While exocytosis
acts to reduce plasma membrane tension as a consequence of
increasing net membrane area, endocytosis could function to
reduce membrane area and enhance membrane tension.
Membrane tension has long been shown to affect the endocytic
process. Decreasing tension by the stimulation of secretion or
addition of amphiphilic compounds increases endocytosis!!12,
On the other hand, an increase in tension upon hypotonic
shock!! or as evinced during mitosis!?, results in a decrease in
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endocytosis. Although many studies suggest that endocytosis
responds to changes in membrane tension, the specific endocytic
mechanisms involved in these responses have not been
elucidated.

We have recently shown that upon relaxing the externally
induced strain on cells, tubule-like membrane invaginations
termed ‘reservoirs’ are created®. This is purely a passive
mechanical response of the plasma membrane following which
cells deploy active cellular processes to resorb the excess mem-
brane (cartoon: Fig. 1a).

Here we explore the nature of such active responses. We test
the role of multiple endocytic pathways on modulation of
membrane tension by three different approaches. In parallel, we
utilize optical tweezers to measure membrane tension on mod-
ulating endocytosis. We find that subsequent to the passive
membrane response, a clathrin-, caveolin- and dynamin-
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Fig. 1 A fast transient endocytic response to decrease in membrane tension. a Cartoon showing membrane remodeling responses after mechanical strain.
Cells after the stretch and relax protocol form invaginations termed ‘reservoirs'®. These reservoirs are resorbed in a few minutes by an active process and
requires ATP. b The illustration shows the longitudinal section of a vacuum-based equi-bi-axial stretching device. Cells plated on a PDMS sheet are
stretched by the application of controlled vacuum below the circular PDMS sheet, which stretches it in a calibrated manner. Releasing the vacuum relaxes
the strain on PDMS thus relaxing the cell. Cells plated on PDMS can be imaged in an upright or inverted microscope as required. ¢ Fluid uptake (90s) in
CHO cells at steady state (steady state), immediately on relaxing the stretch (stretch-relax), or after a waiting time of 90 s on relaxing the stretch
(stretch-relax-wait) (n = control (316), stretch-relax (257), stretch-relax-wait (277)). d Fluid uptake in CHO cells for 3 min in adhered cells (Spread),
during de-adhering (Deadh), or immediately after cells are detached and in suspension (Suspension). Images and box plot show the extent of fluid-phase
uptake under the indicated conditions (n = spread (196), deadh (241), suspension (274)). Box plot shows median, 25th and 75th percentile, and whiskers
show the standard deviation. Individual data points are overlaid on box plot where each data point is the mean intensity per cell. The 'n’ indicates total
number of cells in each condition pooled from two different experiments with duplicates per experiment; *p < 0.001, ns not significant by Mann-Whitney

U test. Scale bar, 10 um
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independent endocytic mechanism, the CLIC/GEEC (CG)
pathway, is specifically and transiently upregulated. Vinculin, a
protein involved in mechanotransduction!3, regulates this
tension-mediated modulation of endocytosis in adherent cells.
In its absence, the CG pathway fails to respond to changes
in membrane tension and cell membrane tension is altered.
On the other hand, perturbing the CG pathway directly mod-
ulates membrane tension, suggesting that this cellular mechanism
is likely to be involved in homeostatic control of membrane
tension.

Results

A rapid endocytic response to changes in membrane tension.
Active cellular processes are involved in resorbing the ‘reservoirs’
formed following a strain relaxation®. To determine whether
endocytosis could be one such active process, we monitored the
extent of endocytosis by providing a timed pulse of a fluid-phase
marker, fluorescent-dextran (F-Dex), during and immediately
after the stretch-relax procedure (using a custom built stretch
device® shown in Fig. 1b). Compared to cells at steady state, there
was a marked increase in fluid-phase endocytosis immediately
after relaxation of the areal strain (Fig. 1c), while uptake was
markedly reduced during strain application (Supplementary
Fig. la). This increase in endocytosis was transient and dis-
appeared as early as 90 s after strain relaxation (Fig. 1c). This also
corresponds to the time scale of resorption of reservoirs by an
active process observed earlier®. By rapidly upregulating endo-
cytosis, cells thus respond to a net decrease in tension in a fast,
transient fashion and return swiftly to a steady state.

Exocytosis delivers membrane rapidly in response to increased
membrane tension during cell spreading!. On de-adhering, cells
round off decreasing their surface area, while on replating, cells
spread by adding membrane. Thus, we hypothesized that
upregulation of endocytic pathways may help retrieve membrane
on de-adhering due to a decrease in net membrane tension®1°.
We monitored endocytosis of F-Dex during and immediately
after the de-adhering and compared it to that measured in the
spread state (Fig. 1d schematic). We found that the net fluid-
phase uptake increased during de-adhering but subsided back to
the steady-state level once de-adhered and held in suspension
(Fig. 1d). The observed increase in endocytic uptake during the
de-adhering process was not due to the accumulation of
endocytosed cargo due to a recycling block (Supplementary
Fig. 1b).

To further consolidate our findings, we used an alternate
method to modulate membrane tension. We shifted cells from
hypotonic to isotonic medium, which made passive invaginations
similar to reservoirs called vacuole-like dilations (VLDs)®. This
alternate method also results in an enhancement of fluid-phase
endocytosis (Supplementary Fig. 1c). Together, these results
suggested that using multiple strategies to reduce membrane
tension triggered a fast and transient endocytic response.

Response of multiple endocytic pathways to membrane ten-
sion. A number of endocytic pathways function concurrently at the
cell surface!®!°. In addition to the well-characterized clathrin-
mediated endocytic (CME) pathway, there are pathways that are
independent of clathrin but utilize dynamin for vesicle
pinching!®20. Additionally, there are clathrin- and dynamin-
independent pathways which function in a number of cell
lines?!-23, but not in all**. The CLIC/GEEC (clathrin-indepen-
dent carrier/GPI-anchored protein-enriched early endosomal
compartment) pathway is a clathrin- and dynamin-independent
pathway, responsible for the internalization of a major fraction of
the fluid phase and several glycophosphatidylinositol (GPI)-

anchored proteins (GPI-AP)21:23 as well as other plasma mem-
brane proteins such as CD442°, To ascertain which of the mul-
tiple endocytic pathways respond to changes in tension, we
examined specific cargo and regulators of these distinct pathways.

The endocytic uptake of the transferrin receptor (TfR), a
marker of CME, did not increase in the cells which exhibited a
transient rise in the fluid phase after a hypotonic shock (Fig. 2a)
or detachment (Fig. 2b) as visualized using two -color
fluorescence microscopy. However, uptake of the folate receptor,
a GPI-AP that is internalized via the CG pathway?®?7, exhibited
a considerable increase (Fig. 2c). This indicated that perhaps
clathrin-independent endocytosis rather than CME might be
involved in the fast response to a decrease in membrane tension.

To rule out clathrin-independent but dynamin-dependent
endocytic pathways!'®21, we tested whether the increase in fluid-
phase uptake required dynamin. We used a conditional triple
knockout (TKO) cell line that removes all three dynamin
isoforms from the genome?3, thereby abolishing all the
dynamin-mediated endocytic pathways (Supplementary Fig. 2a).
This dynamin TKO mouse embryonic fibroblasts (MEFs)
exhibited higher steady-state fluid-phase endocytosis as reported
earlier?8. Despite this, TKO cells also transiently increased their
fluid-phase endocytosis upon both stretch-relax cycles to the
same extent as wild-type (WT) MEFs (Fig. 3a) and hypotonic/
isotonic media changes (Supplementary Fig. 2b). Thus, neither
CME nor dynamin-dependent endocytic pathways appear to
respond to an acute reduction in membrane tension.

A caveolin-dependent endocytic process is important to
retrieve specialized membrane on de-adhering?®, and a
caveolae-mediated passive mechanism is reported to buffer the
rapid increase in membrane tension and prevent cell lysis
triggered by the flattening of caveolae”3". To test if caveolin-
dependent endocytic mechanisms could be important for this
rapid endocytic upregulation, caveolin-null MEFs were subjected
to the stretch-relax protocol. These cells exhibited a transient
increase in fluid-phase uptake similar to their WT controls
(Fig. 3a). In addition, caveolin-null cells also exhibit a fast
transient upregulation of fluid-phase endocytosis during de-
adhering as well (Supplementary Fig. 2c).

We next examined the morphology of the endocytic carriers
formed by reduction of membrane tension induced by de-
adhering using electron microscopy (EM). For this, we utilized
cholera toxin bound horseradish peroxidase (CTxB-HRP), which
is an excellent marker of the internalized plasma membrane. We
used a procedure in which the surface remnant peroxidase
reaction product is quenched with ascorbic acid, revealing only
the internalized CTxB-HRP-labeled membrane?>. After 5min
post de-adhering, the major endocytic structures labeled had the
typical morphology of CG carriers (or CLICs) comprising
structures with tubular and ring-shaped morphology (arrows,
Supplementary Fig. 3a). Morphologically identical structures were
also observed in WT MEFs at steady state3! and in caveolin-null
MEFs (arrows, Supplementary Fig. 3a) consistent with the
observation of fast fluid-phase uptake in caveolin-null cells via
CG (Supplementary Fig. 2c). At this time point, surface-
connected caveolae (containing no peroxidase reaction product)
persist in the WT MEFs (arrowheads, Supplementary Fig. 3a),
consistent with the possibility that the caveolar pathway does not
play a significant role in transiently modulating endocytosis at
these early times of de-adhering.

To further understand the nature of endosomes on reducing
tension, we imaged the fluid uptake in cells following a hypotonic
shock at high resolution. Cells form larger endosomes on
recovering from hypotonic shock (Supplementary Fig 3b) and
the number of endosomes also increases (Supplementary Fig 3c,
3d and Supplementary Movie 1, 2).
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Fig. 2 Endocytic pathways differ in their response to decrease in tension. a Fluid-phase and transferrin uptake in CHO cells under isotonic conditions (Iso)
or immediately after shifting from the hypotonic to isotonic state (Hypo-Iso) by incubating cells with A647-Tf (Transferrin) or TMR-Dex (Fluid). Wide-
field images (left) show the extent of endocytosed fluid-phase in isotonic or hypotonic-isotonic (Hypo-Iso) conditions. Box plot (right) show the extent of
TMR-Dex and A647-Tf endocytosis in the Hypo-Iso condition normalized to those measured in the isotonic condition (gray dashed line) (n = transferrin
(266), fluid (214)). b Fluid-phase and transferrin uptake in CHO cells using TMR-Dex (Fluid) and A647-Tf (Transferrin) for 3 min when the cells are
adherent (Spread) or during de-adhering (Deadh). Wide-field images (left) show the extent of endocytosed fluid-phase in Spread and during de-adhering
condition (Deadh). Box plot (right) shows the extent of TMR-Dex and A647-Tf endocytosis in the de-adhered condition normalized to that measured in
the Spread condition (gray dashed line) (n = transferrin (246), fluid (244)). ¢ GPI-AP and transferrin uptake in CHO cells using fluorescent folate to label
GPl-anchored folate receptors (GPI-AP) and A647-Tf (Transferrin) in adherent cells (Spread) or during detachment (Deadh). Wide-field images (left)
show the extent of endocytosed GPI-anchored folate receptor in Spread and during the de-adhering condition. Box plot (right) shows the extent of A647-Tf
and folate receptor endocytosis in the de-adhered condition normalized to those measured in the Spread condition (gray dashed line) (n = transferrin
(321), GPI-AP (261)). Box plot shows median, 25th and 75th percentile, and whiskers show the standard deviation. Individual data points are overlaid on
box plot where each data point is the mean intensity per cell. The ‘'n" indicates total number of cells in each condition pooled from two different experiments

with duplicates per experiment; *p < 0.001, ns not significant by Mann-Whitney U test. Scale bar, 10 um

Together, these experiments indicated that there is a rapid
endocytic response that correlates with a reduction in membrane
tension. This endocytic response is clathrin, dynamin and
caveolin independent, and tracks the fluid-phase or GPI-
anchored protein uptake which is endocytosed via the CG
pathway. CG-mediated endocytosis is a high-capacity pathway
capable of internalizing the equivalent of the entire plasma
membrane area in 12 min?, and of recycling a large fraction of
endocytosed material®2. Thus, the CG pathway could be involved
in responding to tension by rapidly increasing endocytic capacity
to endocytose a large portion of excess membrane for
homeostasis.

The CG pathway responds to alterations in membrane tension.
Since the CG cargo uptake negatively correlates with changes in
tension, we explored this finding in further detail. The CG
pathway is regulated by the small GTPases, ARF1, its guanine

nucleotide exchange factor (GEF) GBFI, and CDC42 at the
plasma membrane?”-3334 Hence, we utilized small-molecule
inhibitors of CDC42 and GBF1 to acutely inhibit CG
pathway3>36. The CDC42 inhibitor ML141 decreased fluid-phase
endocytosis in cells at steady state but not CME (Supplementary
Fig. 4a), and prevented the increase in fluid-phase uptake upon
de-adhering (Supplementary Fig. 4b). Next, we utilized LG186, an
inhibitor of GBFI1, which also decreased fluid-phase endocytosis
in cells at steady state but does not affect CME (Supplementary
Fig. 4c). Inhibiting GBF1 prevents the increase in fluid-phase
endocytosis observed upon stretch-relax (Fig. 3b) or de-adhering
(Supplementary Fig. 4d). Similar to the decrease in fluid phase on
increasing tension during stretch (Supplementary Fig. 1a), CD44,
a CG pathway-specific cargo, shows reduced endocytosis during
hypotonic shock (Supplementary Fig. 4e).

To confirm that this response is due to CG endocytosis, we
assessed the effect of the stretch-relax protocol on cells that lack
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Fig. 3 CG pathway is the primary pathway for fast endocytic response. a Fluid uptake in wild-type (WT MEF), caveolin-null (Cav=/=) or conditional
Dynamin triple knockout MEFs (Dyn TKO) for 90 s using TMR-Dex at steady state (control) and immediately after relaxing the stretch (stretch-relax).
Images (left) show representative cells used to generate the box plots (right) which provide a quantitative measure of the extent of endocytosis of TMR-
Dex for the indicated treatments. The uptake on stretch-relax is normalized to the steady-state uptake in the respective cell lines (n=WT MEF-Control
(117), Stretch-Relax (123); Cav—/—-Control (173), Stretch-Relax (187); Dyn TKO-Control (179), Stretch-Relax (177)). b Fluid uptake in CHO cells treated
with DMSO (Control) or with LG186 (10 ug/ml) (to inhibit GBF1) for 30 min, either at steady state (steady state) or immediately after relaxing the stretch
(stretch-relax). Images (left) show representative cells used to generate the box plot (right) which provide a quantitative measure of the extent of
endocytosis of TMR-Dex for the indicated treatments, normalized to the control steady-state condition (n = Control-Steady state (170), Stretch-Relax
(189); LG186-Steady state (248), Stretch-Relax (210)). Box plot shows median, 25th and 75th percentile, and whiskers show the standard deviation.
Individual data points are overlaid on box plot where each data point is the mean intensity per cell. The 'n’ indicates total number of cells in each condition
pooled from two different experiments with duplicates per experiment; *p < 0.001, ns not significant by Mann-Whitney U test. Scale bar, 10 um

CG endocytosis. HeLa cells lack a robust CG endocytic understood, we find that fluid-phase endocytosis in HeLa cells is
pathway?426 and use CME as the major endocytic pathway?*.  insensitive to GBF1 inhibition by LG186 (Supplementary Fig. 5c).
To confirm this, we downregulated CME with adaptor protein 2 GBF1 is recruited to the plasma membrane as punctae in CHO
(AP2) short hairpin RNA (shRNA)37 in these cells. AP2 shRNA  cells®* and in AGS3® cells that exhibit robust CG endocytosis.
caused a decrease in both TfR endocytosis and fluid uptake in However, Hela cells do not show an obvious recruitment of GBF1
HeLa cells (Supplementary Fig. 5a). In contrast, AP2 shRNA to the plasma membrane compared to CHO cells (Supplementary
treatment of AGS cells that exhibit a bonafide CG pathway>® only ~ Fig 5d/e). Correspondingly, the Hela cells did not exhibit a rapid
reduced TfR uptake while fluid uptake was increased (Supple- increase in fluid-phase endocytosis on a hypotonic to isotonic
mentary Fig. 5b). While the molecular basis for this defect is not  shift (Supplementary Fig. 5f and 5g).
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We recently found that IRSp53, an I-BAR domain protein, is
necessary for the functioning of the CG pathway?3. Cells lacking
this protein show reduced fluid uptake compared to IRSp53-null
cells restored with a wild-type version of IRSp53. Consistent with
a central role for the CG pathway in the rapid tension-triggered
endocytosis, lowering membrane tension in IRSp53-null cells
failed to elicit the enhanced fluid-phase response, but the IRSp53-
restored cells exhibited a robust enhancement (Supplementary
Fig 6a).

A recent study showed that HeLa cells do respond to decreases
in membrane tension in a GRAF1-dependent manner3®. How-
ever, we note that this occurred under much more drastic
conditions of membrane tension/osmolarity perturbation. In the
aforementioned study, cells were treated with >6x diluted
medium (<50 mOsm) for 10 min, followed by a 10 min return
to isosmotic conditions. In contrast, in our method we subject
cells to a maximum of 2x diluted medium (~150 mOsm) for 1
min, followed by a return to iso-osmolarity for a 1 min. Since the
former treatment is an extreme hypotonic shock and for an
extended period, we examined if similar to the HeLa, the CG-
deficient IRSp53-null as well as the IRSp53-WT addback line
would respond to this regime. We find that all the cell lines (with
or without a bonafide CG pathway) respond to this extreme
osmotic shock (Hypo 6x) followed by a return to isotonic
conditions by enhancing their fluid-phase uptake (Supplementary
Fig. 7a and b). These results suggest that extreme osmolarity
changes are likely to trigger different mechanisms that may also
function to restore membrane morphology, independent of the
CG pathway. It should be emphasized that after the restoration
period, the cells look distorted and in many cells the endosomes
are present outside the bright-field image of the cell body (arrows,
Supplementary Fig. 7a and 7b), indicating a distinct form of
membrane internalization whose detailed mechanism needs
further investigation.

In summary, the CG endocytic pathway is specifically involved
in a rapid, transient response correlated to moderate changes in
membrane tension.

Passive and active response to changes in membrane tension.
As mentioned above, upon a rapid reduction in membrane ten-
sion, cells form passive structures such as reservoirs and VLDs
similar to the response of an artificial vesicle. Reservoirs are
formed upon strain relaxation in the membrane after stretching
cells, whereas VLDs are formed by water expelled by the cell after
a hypo-to-isotonic-shock recovery®. Both reservoirs and VLDs
are reabsorbed and disappear within a couple of minutes, coin-
cidental with an increase in endocytosis. This lead us to test if
inhibiting the CG pathway could have a measurable impact on
the rate of disappearance of such passive structures. The CG
pathway exhibits exquisite temperature sensitivity and is barely
functional at room temperature (25 °C), and is not efficient even
at 30 °C unlike CME in CHO cells (Fig. 4a). Correspondingly, the
reservoir resorption in CHO cells was impaired after lowering
temperature (Fig. 4b). In addition, inhibition of the CG pathway
in CHO cells by inhibiting GBF1 reduced the rate of reservoir
reabsorption at 37 °C (Fig. 4a). In contrast, HeLa cells lacking a
characteristic CG pathway did not show any difference in the rate
of disappearance of reservoirs upon inhibiting GBF1 and were
much less affected by lowering of temperature than CHO cells
(Supplementary Fig. 8a). Thus, the resorption of the reservoirs is
partly due to an increase in CG endocytosis.

We next examined if passively generated structures could help
initiate endocytosis at the sites of their formation. The gradual
disappearance of each reservoir indicates that it is not a single
step process (Fig. 4b), and therefore reservoirs are unlikely to be

pinched off directly as endosomes. Further, we did not observe
endosomes form at the site of the reservoirs (Supplementary
Fig. 9a). To test this, we took advantage of our earlier observation
that cells plated on polyacrylamide gels do not form VLDs upon
hypotonic to isotonic shifts®. Despite the lack of generation of
VLDs in cells grown on polyacrylamide (Supplementary Fig. 9b),
they still showed an increase in endocytosis similar to when
plated on glass, upon exposure to hypo-to-isotonic-shock
procedure (Supplementary Fig. 9¢). Thus, VLD formation is not
necessary for the endocytic response. Together, these data suggest
that CG endocytosis occurs subsequent to the passive response by
the membrane and the active response of the CG pathway does
not depend on the passive morphological changes in the
membrane exhibited by the cell.

Role of the CG pathway in setting membrane tension. Since the
CG endocytic pathway responded to changes in membrane ten-
sion, we hypothesized that it might be involved in the setting of
steady-state plasma membrane tension as well. To explore this
hypothesis, we measured tether forces by pulling membrane
tethers using optical tweezers in adherent cells*®. The restoring
force experienced by the bead associated with the membrane
tethers provides a way to measure the plasma membrane ten-
sion?! (Fig. 5a and Methods). Tether force is related to membrane
tension by T = F}/8Bn* where F, is the tether force and B is the
bending stiffness (related to the force needed to bend a membrane
of a given radius of curvature). Unlike in bare lipid vesicles, the
membrane tension term from tether forces in cells is a combi-
nation of in-plane membrane tension and
membrane-cytoskeleton adhesion. It is difficult to separate out
these contributions and therefore the restoring force measured by
these optical trap experiments is referred to as apparent mem-
brane tension or effective membrane tension®*2,

We found that acutely inhibiting the CG pathway by GBF1
inhibition drastically reduced tether forces in adherent cells at
steady state (Fig. 5b). We next examined tether forces in cells
where the CG pathway is upregulated. We reasoned that since the
Dynamin TKO cells show a higher fluid-phase endocytosis
(Fig. 5¢ and Supplementary Fig 9d), it is likely that this would
increase its effective membrane tension. Tether forces were
indeed higher in the Dynamin TKO cells compared to control
cells (Fig. 5d). Consistent with the role of the CG pathway in
setting effective membrane tension, inhibiting the CG pathway in
Dynamin TKO cells by GBF1 inhibition (Fig. 5¢ and Supple-
mentary Fig 9d) reduced the tether forces below control levels
(Fig. 5d).

To further confirm this observation, we measured tether forces
on acutely increasing CG endocytosis by using Brefeldin A (BFA)
as reported earlier’>. BFA treatment disrupts endoplasmic
reticulum (ER) to Golgi secretion and also serves to free up
ARF1, making it available at the cell surface to increase CG
endocytosis3®. This increase is mediated through GBF1-sensitive
CG endocytosis (Fig. 5e). We treated cells with BFA and
measured tether forces when the increase in endocytosis was
most prominent. Tether forces were higher on treating cells with
BFA compared to the control case (Fig. 5g). Since BFA treatment
also inhibits secretion®3, this could also increase the effective
membrane tension due to a reduction of membrane delivery from
the secretory pathway, independent of its effect on CG
endocytosis. To test this, we treated HeLa cells that lack the CG
pathway with BFA. BFA treatment disrupted the Golgi in both
CHO and HeLa cells (Supplementary Fig. 9¢), consistent with its
inhibition of the secretory pathway. However, neither fluid-phase
uptake (Fig. 5f) nor the tether forces were affected in HeLa cells
(Fig. 5g). This indicated that the increase in tether force in CHO
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Fig. 4 Temperature dependence of CG pathway and reservoir resorption. a Fluid and transferrin uptake in CHO cells (pre-equilibrated at the indicated
temperatures) using TMR-Dex (Fluid) and Tf-A647 (Transferrin) for 5 min at the respective temperatures. All values were normalized to the respective
mean endocytosis at 37 °C. Representative images (left) of cells used to generate the box plot (right) were obtained from two different experiments with
duplicates per experiment (total number of cells = Transferrin: 37 °C (252), 30 °C (269), 25 °C (252); Fluid: 37 °C (249), 30 °C (291), 25°C (270)). Box
plot shows median, 25th and 75th percentile, and whiskers show the standard deviation. Individual data points are overlaid on box plot where each data
point is the mean intensity per cell. The ‘n' indicates total number of cells in each condition pooled from two different experiments with duplicates per
experiment. Scale bar, 10 um. b The reservoir fluorescence intensity after stretch-relax of CHO cells transfected with a fluorescent membrane marker
(pEYFP-mem) was quantified as a function of time at 37 °C in the absence (37 °C control) or presence of LG186 (37 °C inhibitor), or at room temperature
(26 °C control). Each point represents mean reservoir intensity over time from more than 100 reservoirs from at least 10 cells. Scale bar, 10 ym

cells upon BFA treatment is specifically due to an increase in CG
endocytosis at these timescales.

These results show that modulating the CG pathway by
activating or inhibiting key regulators modifies the membrane
tension.

Mechanical manipulation of the CG endocytosis machinery.
We next tested if key regulatory molecules involved in different
endocytic pathways could be directly modulated by changes in
tension. GBF1 is involved in the CG pathway and re-localizes
from the cytosol to distinct punctae at the plasma membrane
upon activation as visualized using total internal reflection
fluorescence (TIRF) microscopy>>34. We imaged GBF1-GFP
recruitment to the plasma membrane in live cells, during a
hypotonic shock and after recovery, using TIRF microscopy.
GBF1 punctae were lost on hypotonic shock (Fig. 6a, b) indi-
cating a direct response by GBF1 on increasing tension. On the
other hand, recovery from a hypotonic shock caused the rapid
assembly of GBF1 punctae (Fig. 6a, b). In contrast, clathrin,
which redistributes from the cytosol to membrane to help in
CME, is not affected by similar changes in tension (Supplemen-
tary Fig. 10a). These experiments indicated that the molecular

machinery involved in regulating the CG pathway is modulated
by moderate changes in membrane tension.

Vinculin serves as a mechanotransducer. For cells to respond to
changes in tension, they must first sense and transduce this
information. Since focal adhesion-related molecules help trans-
duce and respond to force>*4*> we hypothesized that these
molecules could transduce a mechanical stimulus to regulate
endocytic processes. Membrane tension could be transmitted
across integrins*® and even regulate focal adhesion positioning
through vinculin®’. Indeed, several of these proteins were ‘hits’ in
a recent RNA interference screen for genes that influence CG
endocytosis*8. The focal adhesion is an intricate macromolecular
complex that has multiple functional modules*” of which vinculin
is a critical part of the mechanotransduction machinery*44>49,
Unlike the ‘hits’, Talin or p130CAS, there is only a single func-
tional isoform of vinculin in non-muscle cells. Therefore, we used
vinculin-null MEFs®? to test its role in the mechano-responsive
behavior of the CG pathway.

We noticed that the basal fluid-phase uptake in vinculin-null
MEFs is higher than that of WT MEFs (Supplementary Fig. 10b).
To directly test if vinculin could be involved in the tension-
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sensitive regulation of the CG pathway, we stretched vinculin-null
cells. Unlike WT MEFs that show ~82% reduction in uptake on
stretching (Supplementary Fig. 1a), vinculin-null MEFs show
only a moderate drop of ~36% at the same strain levels (Fig. 7a).
Increasing the extent of membrane tension by hypotonic shock
showed a concomitant decrease in fluid-phase endocytosis of
WT cells (Fig. 7b). By contrast, vinculin-null MEFs were much
more refractory to the same extent of hypotonic shock, registering

a reduction in fluid-phase uptake only at much higher
hypotonicity (Fig. 7b).

Furthermore, upon strain relaxation, fluid-phase endocytosis
in vinculin-null MEFs did not show an increase (Fig. 7a), unlike
that observed for WT MEFs (Fig. 3a) or CHO cells (Fig. 1c).
However, the membrane of vinculin-null MEFs did respond to
changes in membrane tension (Supplementary Fig. 10c). This
was further confirmed in the de-adhering assay where vinculin-
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Fig. 5 CG pathway regulates membrane tension. a Cartoon shows a membrane tether attached to a polystyrene bead trapped in an optical trap, used to
measure tether forces. Displacement of the bead from the center of the trap (Ax) gives an estimate of the tether force (F) of the cell (see Methods).
b Tether forces from CHO cells either treated with DMSO (CHO Control) or LG186 (CHO LG186) for 30 min. The box plot shows data points, with each
point corresponding to a tether per cell with data combined (n =16 (CHO control) and 19 (CHO LG186)) from two different experiments. ¢ Fluid uptake in
wild-type (WT) MEF or conditional Dynamin TKO cells either pre-treated with DMSO control or LG186. The box plot show fluid-phase uptake normalized
to that observed in untreated WT MEF cells (n=WT-Control (148), LG186 (110); TKO-Control (155), LG186 (87)). d Tether forces in WT MEF or
conditional Dynamin TKO cells either pre-treated with DMSO or LG186 (n =25 (WT MEF), 19 (DYN TKO) and 22 DYN TKO LG186)). e Fluid uptake in
CHO cells treated with DMSO (Control) or with BFA (20 ug/ml) alone or with LG186 for 30 min (n = Control (309), LG186 (319), BFA (290), BFA+LG186
(247)). f Fluid uptake in Hela cells treated with BFA or DMSO control. The box plot shows the extent of fluid-phase uptake under the indicated conditions,
normalized to that observed in control (n = Control (207), BFA (193)). g Box plot shows tether forces measured in CHO or Hela cells treated with DMSO
(Control) or with BFA for 45 min (n=17 (CHO Control), 23 (CHO BFA),18 (HelLa Control), 19 (HelLa BFA)). Box plot shows median, 25th and 75th
percentile, and whiskers show the standard deviation. Individual data points are overlaid on box plot where each data point is the mean intensity per cell
(c, e, f) or tether force per cell (b, d, g). The 'n’ indicates total number of cells in each condition pooled from two different experiments with duplicates per
experiment; *p < 0.001, ns not significant by Mann-Whitney U test
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Fig. 6 Mechanical modulation of CG molecular machinery. a GBF1-GFP punctae in WT MEF cells by live TIRF microscopy on modulating osmolarity by
changing the media from isotonic (Iso) to 40% hypotonic (Hypo) and back to isotonic (Iso). b Quantification of the number of punctae per cell in (a). The
GBF1 spots upon hypotonic shock and subsequent shift to isotonic medium are normalized to original number of spots in the respective cell and plotted as a
box plot. Each data point is a measurement from a single cell and box plot shows data of 12 cells from two independent experiments. Scale bar, 10 um

null cells did not show an increased fluid-phase uptake, unlike
the WT cells (Supplementary Fig. 10d). Thus, vinculin-null cells
do not exhibit an endocytic response to changes in tension.
Further, when WT cells are de-adhered from the substrate and
kept in suspension, they too failed to exhibit an endocytic
response to changes in tension created during hypo-iso
conditions (Supplementary Fig. 10e). However, similar to
spread cells (Fig. 4b), the suspension cells also exhibit
characteristics consistent with the passive changes expected
from the reduction in membrane tension (Supplementary
Fig. 10f and Supplementary Movie 3). These observations
indicate that attachment to the surface via integrins, and
concomitant vinculin activation, is important for the control of
the endocytic response.

Vinculin negatively regulates CG endocytosis. To test if the
endocytic effects of vinculin-null cells are specifically due to a lack
of vinculin, we expressed full-length vinculin (Vin WT)! in
vinculin-null cells. This caused a decrease in fluid-phase endo-
cytosis (Fig. 7c and Supplementary Fig. 11a) and rescued the
transient endocytic response on decrease in tension (Fig. 7c¢).
Vinculin is activated by binding to talin localized at integrin-
mediated focal complex!. Unlike WT-Vinculin addback in the
vinculin-null cells (Fig. 7¢), vinculin with talin binding mutation
(Vin-A50I)>! did not reduce fluid uptake (Fig. 7d), indicating that
talin is required for vinculin to regulate the CG pathway. On the
other hand, constitutively active vinculin (Vin-CA) and Vin-CA
with a talin binding mutation (Vin-A50I-CA)>! reduced fluid-
phase uptake significantly, but failed to respond to changes in
tension (Fig. 7e). This indicates that talin-mediated activation of
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vinculin is required for the mechano-response of the CG
pathway.

Vinculin-null cells have a higher basal endocytosis rate
(Supplementary Fig. 10b) and it is possible that they are unable
to respond to a decrease in membrane tension and increase in
endocytosis. Firstly, we confirmed that a GBFl-sensitive CG
pathway is functional in vinculin-null cells. Upon GBF1
inhibition in vinculin-null cells, fluid-phase uptake decreased to
the same levels as cells expressing vinculin, also suggesting that
GBF1 operates downstream of vinculin (Supplementary Fig. 11a).
Next, we observed that BFA-treated vinculin-null cells showed an
increase in their endocytic rate which is sensitive to GBF1
inhibition, similar to WT cells (Supplementary Fig. 11b). This
shows that vinculin-null cells have the potential to upregulate the
CG pathway and their inability to do so on reducing tension is
due to the lack of mechanotransduction.

We next tested if GBF1 shows a tension-dependent membrane
localization in vinculin-null cells. The level of punctae remained
constant and failed to respond to hypotonic shock (Fig. 7f), unlike
that observed in WT MEF (Fig. 6a). The density of GBF1 punctae
at the plasma membrane was also slightly higher in vinculin-null
cells compared to WT cells (Supplementary Fig. 11c). This is
consistent with higher fluid-phase endocytosis in vinculin-null
cells compared to control MEF cell line (Supplementary Fig. 10b).

Finally, we determined the steady-state membrane tension in
vinculin-null cells compared to WT cells. Tether forces, as
measured using optical tweezers, were higher for vinculin-null
cells compared to WT cells (Fig. 8a). The high tether force in cells
lacking vinculin was drastically reduced on inhibiting the CG
pathway (Fig. 8a), consistent with the role of the CG pathway in
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regulating the effective membrane tension. Thus, vinculin acts as
a negative regulator of CG pathway and is necessary for the
transduction of physical stimuli for the biochemical control of
the CG pathway.

Mechanochemical control of cell membrane tension. To ratio-
nalize our experimental results, we propose a simple feedback
inhibition model based on a mechanochemical mechanism for
the sensing and control of membrane tension. The

10

Hypo Hypo—-Iso

mechanochemical mechanism involves (i) membrane flux via CG
endocytosis, (ii) concentration of membrane-bound vinculin (in
the active open configuration) and (iii) concentration of activated
membrane-bound GBF1, which together go to sense and regulate
the membrane tension. Membrane tension is determined by the
relative balance between CG endocytosis and exocytosis, which in
turn depends on the levels of activated GBF1 and tension. The
levels of activated GBF1 depend on the concentration of
membrane-bound vinculin. Such a negative feedback inhibition
model can give rise to a robust control of membrane tension
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Fig. 7 Vinculin-dependent mechanoregulation of CG pathway. a Fluid uptake in vinculin-null cells either during a 6% stretch or on relaxing this strain (n=
Control (281), Stretch (229), Stretch-Relax (347)). b Fluid uptake in WT and vinculin-null MEFs in increasing hypotonic medium as indicated (n=WT
MEF: 0 (425), 10(391), 20 (416), 30 (368), 50 (346); Vinculin —/—: 0 (355), 10 (376), 20 (333), 30 (342), 50 (340)). ¢ Fluid uptake in vinculin-null cells
(Vin—/—=) or Vin —/— transfected with Vinculin WT (VinWT) either in isotonic medium (Iso) or in isotonic medium after a hypotonic shock for 1min
(Hypo-lso) (n = Vin—/—-lso (256), Hypo-Iso (272); VinWT-Iso (188), Hypo-Iso (146)). d Fluid uptake in Vin —/— or Vin —/— transfected with vinculin
with talin binding mutation (Vin-A50l) either in Iso or Hypo-lso (n = Vin—/—-Iso (251), Hypo-Iso (264); Vin-A50I-Iso (219), Hypo_lso (190)). e Fluid
uptake in Vin —/—, Vin —/— transfected with constitutively active vinculin (Vin-CA) or constitutively active vinculin with talin binding mutation (Vin-
A50I-CA) in Iso or Hypo-Iso (n = Vin —/—-lIso (327), Hypo-Iso (334); Vin-CA-Iso (238), Hypo-Iso (179); Vin-A50I-CA-Iso (139), Hypo-Iso (150)). Box
plot shows median, 25th and 75th percentile, and whiskers show the standard deviation. Individual data points are overlaid on box plot where each data
point is the mean intensity per cell. The ‘n" indicates total number of cells in each condition pooled from two different experiments with duplicates per
experiment; *p < 0.001, ns not significant by Mann-Whitney U test. f Vinculin-null cells transfected with GBF1-GFP and imaged live using TIRF microscopy
on changing media from isotonic (Iso) to 40% hypotonic (Hypo) and back to isotonic (Iso). GBF1 organization at the plasma membrane during the osmotic
shifts is shown in a representative cell (left panel). Number of punctae per cell during hypotonic and isotonic shifts is normalized to the initial number of
spots (gray dotted line) and plotted as a box plot. Each data point is measurement from a single cell and box plot shows data of 13 cells from two
independent experiments. Scale bar, 10 um
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Fig. 8 Membrane tension and vinculin. a Tether forces in WT (Vin +/+) or vinculin-null MEFs (Vin —/—) treated with LG186 (to inhibit GBF1-mediated
CG pathway) compared to the control treated cells (total number of cells = 20 (Vin +/+), 25 (Vin +/+ with LG186), 25 (Vin —/—) and 29 (Vin —/— with
LG186)). Vinculin-null cells show a higher basal membrane tension compared to WT MEF, while inhibiting the CG pathway drastically reduced membrane
tension in both cell lines. Box plot shows median, 25th and 75th percentile, and whiskers show the standard deviation. Individual data points are overlaid on
box plot where each data point is the tether force per cell. The 'n’ indicates total number of cells in each condition pooled from two different experiments;
*p <0.001 by Mann-Whitney U test. b Feedback inhibition description provides a model for robust feedback control of membrane tension that involves
slow activation and fast inhibition. To provide robust feedback control, tension set point ys should be compared to the instantaneous tension y,,; and
compensate for the difference. See supplementary information (Supplementary Note 1) for detailed description of the mechanochemical model

(Fig. 8b). The mathematical details of this model are discussed in  surface, there is a correlated increase (decrease) in the CG path-

the supplementary information (Supplementary Note 1). way, bringing about a rapid endocytic response to reset the cell’s
resting membrane tension. Conversely, inhibiting the CG pathway
Discussion decreases membrane tension while upregulating the pathway

Membrane tension has been long proposed to be tightly coupled increases membrane tension. This negative feedback inhibition is

to vesicular trafficking through endo-exocytic pathways. However, used'iglz many different biologic‘al contexts to 'ma.in'te_iin home-
the specific trafficking mechanisms have remained elusive. Here, ostasis>~, and is captured by our simple feedback inhibition model.
we show that a GBFl-, ARF1-, CDC42- and IRSp53-dependent The separation of time scales between the fast dynamics of the
CG endocytosis rapidly responds to changes in tension, and helps activation of vinculin (triggered by sensing talin stretch), and
restore any change from a tension set point (Fig. 8b). When slower dynamics of the displacement of GBF1 from the membrane

membrane tension decreases (increases) in cells attached to a and inhibition of CG endocytosis, suggests that vinculin is a sensor
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of the instantaneous membrane tension. The negative feedback
inhibition is predicated on a fast sensing of tension by vinculin
and a slower regulation of the endocytic machinery.

Akin to the passive response to tension®, physical parameters
could directly regulate the active endocytic machinery by influ-
encing the extent of membrane deformation needed to make an
endocytic vesicle. However, our results from studying vinculin-
null cells suggest otherwise. Vinculin, a key focal adhesion pro-
tein, transduces many mechanical inputs at the site of the focal
adhesion into information for the cell to process'®*>4%, In this
context, it appears that vinculin plays a central role in transducing
the increase (or decrease) in membrane tension to the CG
pathway to help inhibit (or activate) its endocytic mechanism
(Supplementary Fig. 12a). Membrane tension has been shown to
regulate tension that is experienced by integrin molecule®3, and
tension also influences focal adhesion positioning®’. In turn, this
focal adhesion tension, transduced via vinculin, regulates GBF1
and thus the CG pathway, further influencing membrane tension.
Thus, it is likely that the changes in membrane tension are
communicated via changes experienced in forces at attachment
sites. Consistent with this hypothesis, cells in suspension that lack
attachment sites do not modulate their CG pathway, similar to
cells that lack vinculin.

Vinculin recruits phosphatidylinositol-3-kinase (PI3K) in a
force-dependent manner helping in tumor progression®* and
mechanical cues transmitted through focal adhesions have been
implicated in cancer progression®. PI3K products help recruit
GBF1, an ARF1 GEF, to the plasma membrane and this is
necessary for CG endocytosis®>, indicating a possible mechanism
for vinculin-dependent regulation of the CG pathway. Regardless
of the details, mechanotransduction mediated by vinculin is
important for translating mechanical information into a bio-
chemical read-out to influence the CG endocytic rate.

Multiple endocytic pathways operate in a cell with a possible
functional specialization for each. Caveolae passively buffer
increases in tension’, while CME concentrates specific ligands
and mediates robust endocytosis despite the increase in tension®.
Membrane tension is also involved in transition of clathrin
coats from flat to curved®’, while actin machinery helps provide
forces to internalize clathrin coat under high tension®®>%%. De-
adhered cells exhibit an increased caveolin-mediated inter-
nalization that persists over hours in suspension, and is crucial
for anchorage-dependent growth and anoikis?®. Unlike the
caveolar pathway, we find that the CG pathway showed an
upregulation of endocytosis only during de-adhering that did
not persist in suspension. The CG pathway is also more
temperature-sensitive than CME. In cells such as HelLa that lack
a typical dynamin-independent CG pathway242°, they appear
to have an AP2-, GRAFI- and dynamin-dependent endocytic
machinery?*. These cells also do not upregulate endocytosis in
response to moderate osmotic shock but do so in response to
extreme osmolarity changes applied for longer time points
(such as Hypo6X-Iso). Considering that osmotic changes are also
likely to trigger different cellular responses®, the endocytic
response in these contexts while dependent on GRAF13° requires
further characterization. Inhibition of GRAFI in HeLa causes a
blebbing response3® (possibly due to a complete shutdown of
endocytosis®) and this helps in cancer cell migration®. Together,
these results indicate that different endocytic pathways have
distinct regimes of operation and serve important functions in
eukaryotic cells.

In this study we find that the composition-sensitive high-
capacity CG pathway?>>3? is modulated by mechanochemical
inputs. This could increase the potential of membrane tension to
regulate other cellular processes, such as those that may need a
supply of membrane at long and short time scales, e.g. migration

and phagocytosis. Thus, the CG pathway responds to and coor-
dinates a variety of cellular inputs, including membrane tension,
and is likely to function in multiple physiological contexts.

Methods
Cell lines, constructs and synthesis of LG186. See Supplementary Materials and
Methods.

Chemicals and reagents. BFA (Sigma Aldrich), ML141 (Tocris Bioscience) and
LG186 (see synthesis section below) dissolved in dimethyl sulfoxide (DMSO) were
used at 20 pg/ml, 10 uM and 10 uM respectively. ML141 and LG186 treatment was
done for 30 min in serum free media and maintained during endocytic assays.
Tetramethyl rhodamine-labeled dextran (TMR-Dex) (10,000 molecular weight;
Molecular Probes, Thermofisher Scientific) was used at 1 mg/ml. The 4-hydroxy
tamoxifen (Sigma Aldrich) was used at 3 uM to remove Dynamin 1/2/3 from the
conditional dynamin triple knockout MEF cells as reported previously?$. TrypLE
express (GIBCO, Invitrogen) was used to detach cells according to the manu-
facturer’s instruction. FuGENE HD transfection reagent (Promega) was used for
transfection as per the manufacturer's instruction unless otherwise mentioned.
SYLGARD 184 silicone elastomer kit (Dow Corning) was used to make PDMS
sheets according to the manufacturer’s instruction. For the reservoir experiments,
cells were transfected with a membrane targeting plasmid pEYFP-mem (Clontech)
using the Neon transfection device according to the manufacturer’s protocol as
described earlier®.

Endocytic and recycling assays. CG endocytosis was monitored using
fluorescent-dextran (TMR-Dextran) at 1 mg/ml in medium or fluorescent folate
analog (N%pteroyl-N¢-Bodipy ™R.-L-lysine (PLBT™R)) in folate free medium for
the indicated time points at 37 °C. Endocytosis of TfR was monitored using 10 ug/
ml fluorescent transferrin (Tf) at 37 °C incubation for indicated time points.
Endocytosis was stopped using ice-cold HEPES-based buffer (M1) (M1:140 mM
NaCl, 20 mM HEPES, 1 mM CaCl,, 1 mM MgCl,, 5 mM KCl, pH 7.4). To remove
surface fluorescence, cells were treated with PI-PLC (50 pg/ml, 1 h; GPI-APs) or
with ascorbate buffer (160 mM sodium ascorbate, 40 mM ascorbic acid, 1 mM
MgCl,, 1 mM CaCl,, pH 4.5; Tf) at 4 °C, surface transferrin receptor labeled using
anti-hTfR(OKT9) monoclonal antibody (used at 1:100) and subsequently fixed
with 4% paraformaldehyde for 10 min.

To study endocytosis on de-adhering, cells were detached using TrypLE
containing fluorescent-dextran at 1 mg/ml concentration for 3 min and the
detached cells were pipetted into an ice-cold vial containing M1 buffer to stop
the endocytosis. Cells were then re-plated back on coverslip bottom dish
maintained at 4 °C, fixed, washed and imaged. To look at endocytosis in
suspension, the cells soon after detaching were pipetted into a vial containing
fluorescent-dextran kept at 37 °C. The volume was adjusted to have a final
concentration of 1 mg/ml of the TMR-Dex and after 3 min the endocytosis
was stopped by shifting vial to ice. The cells are spun down at 4 °C and then re-
plated on coverslip bottom dish coated with ConA, maintained at 4 °C, fixed,
washed and imaged.

To understand recycling of cargo on de-adhering, cells were pulsed with F-Dex
for 3 min, quickly washed with M1 buffer at room temperature and then detached
with TrypLE at 37 °C for 5 min, pipetted into a vial containing ice-cold M1 buffer
and kept on ice. Cells were then re-plated back on coverslip bottom dish coated
with ConA maintained at 4 °C, fixed, washed and imaged.

Endocytosis of fluid and transferrin at different temperatures were done by pre-
equilibrating the cells to the respective temperatures and then pulsing TMR-Dex
(fluid) or Tf-A647 (transferrin) for 5 min at these temperatures.

AP2 shRNA or its control pSUPER vector3’ was transfected into FR-AGS or
Hela cells for 4 days to knock down AP2- u2 and inhibit CME as reported earlier3”
and was followed by endocytosis experiment as described above. Different small-
molecule inhibitors were incubated with cells for 30 min in serum free media in
their respective final concentrations and then medium was removed and pulsed
with F-Dex at 1 mg/ml in serum free media containing the inhibitors since the
inhibitor activity is reversible. Endocytosis was stopped by washing with ice-cold
M1 buffer, fixed and imaged.

Preparation of PDMS membrane ring. Sylgard 184 silicone elastomer kit comes
in two parts which are added in 10 to 1 mix ratio between the polydimethylsiloxane
base and the curing agent. This is thoroughly mixed and degassing is done either
using a vacuum desiccator or by centrifugation. To prepare polydimethylsiloxan

(PDMS) sheets, 7 ml of this mixture was added to the middle of a circular 6 inch
plate which is spun at 500 R.P.M for 1 min on a spin coater. This was cured at 65 °
C overnight and then carefully peeled off either after treatment with oxygen plasma
cleaner for 40 s or without treatment. This PDMS sheet is spread evenly and tightly
placed between rings of the stretcher (Fig. 1b). The cells were plated in the middle
of the PDMS sheet surrounded with water-soaked tissue paper to retain humidity
and prevent drying up of medium. These rings were placed in the stretcher and
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stretched by varying the level of vacuum as needed according to the calibration for
the experiments.

Stretch and osmolarity experiments. For the stretch-relax experiments, cells
plated on PDMS membrane were loaded on the cell stretcher system (Fig. 1b)
within a temperature-controlled chamber at 37 °C. Vacuum was applied beneath
the ring containing the PDMS sheet, deforming the membrane and stretching the
cells plated on the PDMS. The setup was calibrated to stretch cells equi-biaxially to
cause 6% strain for 90 s. Cells were pulsed for 90 s either during stretch or on
releasing the strain. Medium containing F-Dex was kept at 37 °C in a water bath,
and used for the endocytic pulse for the indicated time during or after stretch (see
endocytic protocol above). Control cells were treated in the same way except for
application of stretch.

For the osmolarity experiments, cells were treated with 50% hypotonic medium
(unless otherwise mentioned) made with deionized water at 37 °C for the indicated
time points and then pulsed with TMR-Dex either in hypotonic or isotonic
medium as needed. The shock was applied for 60 s and pulse done for 60 s unless
otherwise mentioned. For the extreme hypotonic experiment, 6x diluted medium
was used for 10 min followed by isotonic pulse for 10 min to replicate the earlier
protocol®. Endocytosis was stopped with ice-cold M1 buffer, washed, fixed and
imaged.

Optical tweezer measurements. Tether forces were measured using a

custom built optical tweezer using IR laser (continuous wave,1064 nm, TEM_00,1
W) along with 100x, 1.3 NA oil objective and motorized stage on an Olympus
IX71 inverted microscope. Uncoated polystyrene beads added to the imaging
chamber were allowed to settle and then held in the optical trap while
simultaneously imaging through bright field on a coolsnap HQ CCD camera.
Uncoated polystyrene beads bind to the membrane due to non-specific
interactions. Membrane tethers are formed by attaching the beads to the cell
membrane for a few seconds and by moving the bead away from the cell

using the piezo stage. Uncoated polystyrene beads bind to the membrane due

to non-specific interactions and a thin membrane tether is formed from the

cell to the bead (Fig. 5a). The tether is held at a constant length and the fluctua-
tion in the trapped bead is detected by using a quadrant photodiode which in
turn is acquired and saved using a LabVIEW program through a Data
Acquisition Card (USB-6009 NI). The trap stiffness is calibrated using the power
spectrum method. The displacement of the bead from the center along with the
trap stiffness is used to calculate the tether forces live using a custom written
LabVIEW code.

CTxB-HRP uptake and DAB reaction and Electron Microscopy. WT and
Cav~/~ MEFs were de-adhered at room temperature followed by internalization of
4 pg/ml CTxB-HRP (Invitrogen) at 37 °C for 5 min, washed two times with ice-cold
phosphate-buffered saline (PBS) followed by incubation on ice for 10 min with 1
mg/ml 3,3’-diaminobenzidine (DAB; Sigma Aldrich) with 50 uM ascorbic acid.
This is followed by a 10-min treatment with DAB, ascorbic acid and 0.012% H,0,
and then washed twice with ice-cold PBS. Cells were fixed using 2.5% Glutar-
aldehyde (ProSciTech) at room temperature for 1 h followed by PBS wash for two
times and then washed with 0.1 M Na cacodylate and left in the same for overnight
at 4 °C. Cells were contrasted with 1% osmium tetroxide and 4% uranyl acetate.
Cells were dehydrated in successive washes of 70%, 90% and 100% ethanol before
embedding using 100% LX-112 resin at 60 °C overnight. Sections were viewed
under a transmission electron microscope (JEOL 1011; JEOL Ltd. Tokyo, Japan),
and electron micrographs were captured with a digital camera (Morada; Olympus)
using AnalySIS software (Olympus).

Imaging and analysis and statistics. The quantification of endocytic uptake
for a population is done by imaging on 20x, 0.75 NA on a Nikon TE300 wide-
field inverted microscope. For the stretch experiments, an upright microscope
(Nikon eclipse Ni-U) was used with a water immersion objective (60x, 1.0 NA).
For endosome size calculation, spinning disk confocal microscope (100%, 1.4 NA)
was used with ANDOR iQ software followed by analysis using 3D object
counter plugin in Fiji®!. The images were analyzed using MetaMorph" or Micro-
Manager software and were processed for presentation using Adobe Illustrator.
All images displayed are equally scaled for intensity unless otherwise mentioned.
The integrated intensities, spread area and thus average uptake per cell were
determined by drawing regions around each cell using the region measurement
option in Fiji®!. For plotting endocytic uptake, all values are normalized to the
mean value of the control and plotted as a box plot using Origin software (Ori-
ginLab, Northampton, MA). Box plot shows uptake per cell (each data point) and it
also shows median (middle line), standard deviation (whiskers), 25th percentile
(lower line of box) and 75th percentile (upper line of box) value. The box plot
contains points pooled from two separate experiments with technical duplicates in
each and normalized to their respective controls. The total number of cells in each
condition (pooled from all experiments) is mentioned in the legends. Statistical
significance was tested using the Mann-Whitney test and p values used to deter-
mine significance are reported in the legends. The scale bar is 10 pm, unless
otherwise mentioned.

Data availability
Data supporting the findings of this manuscript are available from the corresponding
author upon reasonable request.
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