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Abstract

Affect labeling (putting feelings into words) is a form of incidental emotion regulation that could underpin some benefits of
expressive writing (i.e. writing about negative experiences). Here, we show that neural responses during affect labeling
predicted changes in psychological and physical well-being outcome measures 3 months later. Furthermore, neural activity
of specific frontal regions and amygdala predicted those outcomes as a function of expressive writing. Using supervised
learning (support vector machines regression), improvements in four measures of psychological and physical health (physi-
cal symptoms, depression, anxiety and life satisfaction) after an expressive writing intervention were predicted with an
average of 0.85% prediction error [root mean square error (RMSE) %]. The predictions were significantly more accurate with
machine learning than with the conventional generalized linear model method (average RMSE: 1.3%). Consistent with affect
labeling research, right ventrolateral prefrontal cortex (RVLPFC) and amygdalae were top predictors of improvement in the
four outcomes. Moreover, RVLPFC and left amygdala predicted benefits due to expressive writing in satisfaction with life
and depression outcome measures, respectively. This study demonstrates the substantial merit of supervised machine
learning for real-world outcome prediction in social and affective neuroscience.

Key words: affect labeling; expressive writing; supervised learning; support vector machines; functional magnetic resonance
imaging (fMRI)

Introduction

Writing about one’s deepest feelings and thoughts regarding
stressful experiences or trauma can bolster one’s psychological
and physical health (Pennebaker, 1993). Three decades of
research on written expressive disclosure have documented
(Pennebaker and Beall, 1986; Frattaroli, 2006) that two to four
expressive writing sessions, focused on the source of one’s

distress, can produce demonstrable psychological and physical
health benefits over the subsequent months. Health benefits of
expressive writing include improvements in blood pressure
(McGuire et al., 2005), chronic pain (Broderick et al., 2005), symp-
toms and medical appointments for cancer-related morbidities
(Stanton et al., 2002), lung function (Smyth et al., 1999), liver func-
tion (Francis and Pennebaker, 1992) and immune function (Booth
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et al., 1997). Improvements in mental health indicators also are
demonstrated (Park and Blumberg, 2002; Hemenover, 2003). A
meta-analysis confirms these effects are real, though small and
heterogeneous (Frattaroli, 2006). In this article, we aimed to use
neural responses during affect labeling (AL) processed using
machine learning algorithms to predict improvement in four out-
comes in general and associated with expressive writing.

No definitive explanations for the beneficial effects of
expressive disclosure through writing have emerged. Plausible
mechanisms include release from inhibition, altered cognitive
appraisal/discovery of meaning, self-affirmation, narrative cre-
ation and repeated exposure; the relevant data are mixed
(Pennebaker, 1993; Baikie and Wilhelm, 2005; Niles et al., 2016).
At this point, the literature on expressive writing and emotional
disclosure can be summarized as providing clear evidence that
putting feelings into words has psychological and physical
health benefits but not yet establishing mechanisms through
which these effects occur. Specifying these mechanisms would
allow therapists and researchers to tailor the process and con-
tent of expressive writing, and other forms of emotional disclo-
sure, to maximize its benefits.

Among the putative mechanisms of expressive writing,
emotion regulation through AL has received minimal consider-
ation, excepting research on positive and negative emotion
word counts in essays as predictors of effects. The lack of inves-
tigation of emotion regulation as a mechanism of expressive
writing effect makes sense given that most forms of emotion
regulation are intentional and expressive writing does not feel
like intentional emotion regulation. Benefits of expressive writ-
ing appear to be incidental from the perspective of the writer,
rather than outcomes explicitly sought. Research on AL (i.e. the
act of describing in words the emotional aspects of a stimulus
or one’s own emotional reaction to it) reveals that it serves as a
form of incidental emotion regulation consistent with the proc-
esses likely to occur during expressive writing. Affect labeling
produces many of the same effects as other forms of emotion
regulation but appears to do so without intention or awareness
(J. Torre and M.D. Lieberman, under review). Participants
instructed to engage in AL while being exposed to negative
images report less negative affect, despite endorsing a theory
that AL will increase their negative affect (Lieberman et al.,
2011). From a mechanistic perspective, AL reduces negative
affect because (i) negative affect often involves amygdala acti-
vation; (ii) AL reliably recruits right ventrolateral prefrontal cor-
tex (RVLPFC) and (iii) RVLPFC activation reliably diminishes
amygdala activity. In essence, AL reduces negative affect for the
same reason that reappraisal does—they both engage prefrontal
regions capable of downregulating one of the sources of nega-
tive affect (Lieberman et al., 2011; Burklund et al., 2014). Affect
labeling is also associated with long-term reductions in electro-
dermal responses to negative images and feared stimuli
(Tabibnia et al., 2008; Kircanski et al., 2012; Niles et al., 2016).

Neuroimaging research using functional magnetic reso-
nance imaging (fMRI) suggests that AL produces benefit via
increased activity within RVLPFC and corresponding decreases
in amygdala activity (Hariri et al., 2000; Lieberman et al., 2007;
Payer et al., 2012; Torrisi et al., 2013; Burklund et al., 2014). These
studies have demonstrated that the act of naming the emotion-
ally evocative aspect of an image or labeling one’s own reaction
to the image produces increased RVLPFC activity and decreased
amygdala activity relative to a non-emotional form of labeling.
Negative functional connectivity and negative correlations have
also been observed between RVLPFC and amygdala responses
during AL (Hariri et al., 2000; Lieberman et al., 2005, 2007; Foland

et al., 2008; Payer et al., 2012). Consistent with the idea that
RVLPFC activity is producing the relative amygdala activity
reductions, dynamic causal modeling demonstrated that the
best account of AL effects involved inputs to RVLPFC leading to
a dampened response in the amgydala (Torrisi et al., 2013).

Based on these findings, we hypothesized that the implicit
emotion regulation that occurs during AL may predict: (i)
improvements in measures of psychological and physical well-
being in general and (ii) psychological and physical health bene-
fits of expressive writing in particular, as it is analogous to
implicit emotion regulation processes that might occur during
expressive writing. We think that the same mechanism
(increased response of the RVLPFC decreased amygdala response)
underlies both AL and expressive writing, at least in part. If this is
the case, then neural responses during AL should predict the ben-
efits of expressive writing. Therefore, individuals who produce
more robust RVLPFC and dampened amygdala activity during AL
are hypothesized to benefit more from expressive writing than
those with less robust RVLPFC and heightened amygdala
responses during AL. Outcome measures investigated in this
study are changes in self-reported anxiety, depressive symptoms
and negative physical symptoms between the start and end of a
3 month period. Furthermore, these outcome changes were
looked at in relation to expressive writing (controlling for self-
reports prior to expressive writing). In this study, we also added
life satisfaction as an outcome to explore positive adjustment.

We took two approaches to examining the predictive rela-
tionship between AL-related neural responses and the out-
comes. Both procedures used the signal from a set of regions of
interest (ROI) in the brain associated with AL. We identified
ROIs that were more active during AL than during gender label-
ing (GL) of emotionally expressive faces. Parameter estimates of
effect were extracted for each ROI and used to predict outcomes
3 months after expressive writing (controlling for initial values
on the outcomes). We first used generalized linear modeling
(GLM) with parameter estimates of activity from the ROIs serv-
ing as predictors of the four outcomes.

Our second analytic procedure is more novel within social,
affective and clinical neuroscience. Here, we used support vector
machine (SVM) learning algorithms to predict outcomes from the
AL ROIs. The GLM approach is the typical method used when
attempting to predict real-world outcomes from neural activity
(Berkman and Lieberman, 2009; Berns and Moore, 2012; Falk et al.,
2012). If SVM systematically provides greater predictive power
than GLM, it warrants use in future similar research. SVM has
been previously applied to fMRI data to separate different brain
functional activation patterns in different task states such as
motor tasks, e.g. hand movement (Zeng et al., 2008) and finger
tapping (Wang et al., 2007; Wang, 2009), and cognitive tasks, e.g.
picture-sentence matching (Wang et al., 2003), reading in different
languages (Ji et al., 2004), watching visual vs written information
(Ramasangu and Sinha, 2014) and subjective experience during
virtual reality (Grazia et al., 2008). Our findings in this article sug-
gest that the SVM approach may have significant implications in
clinical, social and affective neuroscience as well.

Materials and methods

To investigate whether the neural correlates of AL predict (i)
improvements in measures of psychological and physical well-
being in general and (ii) psychological and physical health bene-
fits of expressive writing in particular, we assessed individual
differences in neurocognitive responses during AL using a var-
iant of a published task (Lieberman et al., 2007). Outcomes were
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assessed prior to the randomly assigned writing procedure and
at a 3 month follow-up. Through supervised machine learning,
we related the neural responses during the AL tasks to level of
improvement on the outcomes.

Subjects

One hundred and thirteen (N¼ 113) participants were recruited
and divided into two groups of expressive writing and control.
Two of the participants in the expressive writing group had cor-
rupt fMRI scans and were excluded from the study, resulting in
58 participants (27 women; age¼ 2163.3). The control group had
53 participants (26 women; age¼ 2162.5). Because the protocol
involved fMRI scanning, subjects were required to be scanner
eligible (i.e. metal-free, right handed, not claustrophobic, not
pregnant).

Protocol

Recruited from undergraduate course announcements and
flyers, interested participants contacted a study coordinator for
telephone screening [for methodological details, see Niles
et al.(2016)]. Eligible participants were between 18 and 40 years
old, fluent in English, had no psychological disorder or serious
disease and had experienced a stressful event within the prior
5 years that they rated as 5 or greater in stressfulness on a
seven-point Likert scale (1¼not at all stressful; 7¼ extremely
stressful).

Participants attended a baseline session during which they
provided written informed consent and underwent fMRI scan-
ning (t1). They also performed AL via an established paradigm
in the fMRI scanner. Four conditions (affect label, gender label,
observe and shape match) were administered over two runs,
with one block per condition per run. Each block was 40 s long
and comprised of eight trials (5 s each). There was a 3 s prompt
before each block indicating what was coming next and a 12 s
crosshair fixation/rest between the conditions. Only the data
from the affect and gender label conditions were used for this
study. Figure 1 shows an overview of the task. During the AL
condition, participants viewed a series of human face images
showing various emotions. For each image, the participant was
asked to choose one of two label options presented on the
screen that best described the facial emotion (e.g. angry, sad

and happy). A non-emotional GL task served as a control condi-
tion indexing simple cognitive responses.

Participants attended four 20 min writing sessions, scheduled
at least 3 days apart and occurring within 8 weeks. At each of the
four writing sessions, participants listened to an audio-recording
of the instructions and completed the task in a private laboratory
room. Participants placed their completed essays in an envelope
and returned it to the experimenter. The expressive writing group
participants were asked to write about past negative experiences
(standard expressive writing protocol), while the other one-half
wrote about non-emotional topics instead (control subjects). For
the expressive writing group, the task involved describing their
deepest thoughts and feelings regarding the ‘most stressful or
traumatic experience during the past 5 years’. Three months after
the final writing session, participants completed the follow-up
questionnaires via the Internet (t2).

Outcome measures

Change scores on the outcomes represent improvement in self-
reported physical and psychological health indicators from the
time of fMRI scanning (pre-intervention¼ t1) to 3 months after
that (t2).

Beck Depression Inventory. The 21-item Beck Depression
Inventory (BDI) (Beck and Steer, 1984) assesses symptoms of
depression such as hopelessness, feelings of guilt and weight
changes. Participants rated the severity of depressive symptoms
from 0 to 4 in the past week. BDI items were summed; higher
scores indicate more severe depressive symptoms. Level of
depressive symptoms based on the BDI score is as follows: 0–13:
minimal depression; 14–19: mild depression; 20–28: moderate
depression; 29–63: severe depression;>63: more severe depres-
sive symptoms. Improvement in this outcome measure was cal-
culated as DBDI(t1 � t2).

Satisfaction with Life Scale. The Satisfaction with Life Scale
(SWLS) is a five-item instrument designed to measure global
cognitive judgments of satisfaction with one’s life (Diener et al.,
1985). Items were summed such that higher scores indicate
higher life satisfaction. SWLS was the only outcome measure
scored in the direction of higher scores being better. Level of sat-
isfaction with life based on the SWLS score sum is as follows:
30–35: highly satisfied; 25–29: like their life; 20–24: generally sat-
isfied; 15–19: slightly dissatisfied; 10–14: substantially dissatis-
fied; 5–9: extremely dissatisfied (Diener et al., 1985). Please note
that SWLS is the only outcome measure, which higher score
indicates better well-being. Therefore, change in SWLS score
was calculated in reverse time order (i.e. SWLSt2 � SWLSt1),
which indicated an improvement when positive.

Pennebaker Inventory of Limbic Languidness. The 54-item
Pennebaker Inventory of Limbic Languidness (PILL)
(Pennebaker, 1982) assesses common physical symptoms.
Participants indicate how often they have experienced each
symptom on a five-point Likert scale (1¼never or almost never,
2¼ less than 3 or 4 times per year, 3¼ every month or so,
4¼ every week or so, 5¼more than once every week). Higher
total scores indicate more frequent physical symptoms, with
classification as follows: 0–21¼below normal range; 22–
66¼well within normal range; 67–84¼ slightly above average;
within normal range; 85 or above¼ top 25% (Pennebaker, 1982).
Improvement in this outcome measure was calculated as
DPILL(t1 � t2).

Fig. 1. Task completed by the subjects in the fMRI scanner. The paradigm for

this study included two conditions: (A) affect label, (B) gender label. During the

affect label condition (A), participants were shown a series of human face

images showing various emotions. For each image, the participant was asked to

choose one of two given label options presented on the screen that best

described the facial emotion in the image (e.g. angry, fearful and happy). A non-

emotional GL task (B) was also included as a control condition indexing simple

cognitive responses. Functional peaks were determined based on group-level

analysis of data, using the affect label–gender label contrast, and 5% significance

level (FDR P<0.05).
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Brief Symptom Inventory, anxiety dimension. The 53-item Brief
Symptom Inventory (BSI) was developed from its longer parent
instrument, the SCL-90-R, to assess psychological symptoms.
The anxiety dimension (ANX) of the BSI subsumes a set of
symptoms usually associated with clinically manifest anxiety.
Restlessness, nervousness and tension are all indicative of anxi-
ety, as are experiences reflecting free-floating anxiety and panic
(Derogatis and Melisaratos, 1983). The higher the value of
BSI_ANX, the more anxious the subject is. Improvement in this
outcome measure was calculated as DBSI(t1 � t2).

Data acquisition

Functional MR images were acquired using a Siemens Allegra 3
Tesla MRI scanner. A 2D spin-echo image (TR¼ 4000 ms,
TE¼ 40 ms, matrix size 256 � 256, 4 mm thick, 1 mm gap) was
acquired in the sagittal plane to allow prescription of the slices
to be obtained in the remaining scans. For each participant, a
high resolution structural T2-weighted echo-planar imaging
volume (spin-echo, TR¼ 4000 ms, TE 54 ms, matrix size 128 �
128, FOV¼ 20 cm, 36 slices, 1.56 mm in-plane resolution, 3 mm
thick) was acquired. Foam padding was used to limit head
movement.

SVM data analysis

Figure 2 shows the overview of the data analysis protocol. The
premise is to train a computer algorithm by giving it features
(pre-outcome data) along with corresponding responses (out-
come scores) for a group of individuals. The computer algorithm
tries to find patterns between features that are exclusively asso-
ciated with the given response. Usually such patterns are not
obvious from manual inspection of data. After the algorithm
learns, it is able to predict a new subject’s outcome based on
his/her pre-intervention features only.

Feature extraction. Twenty-two fMRI features were extracted for
each subject as shown in Table 1. These features represent the
percent signal change in 6 mm radius vicinity of functional peak
coordinates (except amygdala, where due to its small size,

anatomical ROI was used). Functional peaks were determined
based on group-level analysis of data, using an AL–GL contrast
and a false discovery rate (FDR) of P< 0.05. For each feature, par-
ticipants with missing values were replaced with the average of
that feature among all subjects. To find those brain regions with
differential predictiveness as a function of condition (expressive
writing/control), the fMRI predictors were multiplied by a
dummy coded condition effect, i.e.þ1 if they belonged to sub-
jects from the expressive writing group or �1 if they belonged to
the control group subjects.

Feature selection. An algorithm named minimal-redundancy-
maximal-relevance (mRMR) was used to select the 10 most
informative features (predictors). This algorithm was chosen
because of its advantages in terms of both feature selection
complexity and feature classification accuracy (Peng et al.,
2005). In this method, relevant features and redundant fea-
tures are considered simultaneously, i.e. it seeks to maximize
the relevance of a feature set for a specific class and minimize
the redundancy of all features in the feature set. Relevance is
defined by the average value of all mutual information (MI)
values between the individual feature and the specific class.
Redundancy is the average value of all MI values between the
individual feature and every other feature in the set.
Furthermore, the mRMR algorithm is suitable for unprocessed
data, where the features selected in this way will have more or
less correlation with each other. This is because mRMR does
not intend to select features that are independent of each
other. Instead, at each step, it tries to select a feature that min-
imizes the redundancy and maximizes the relevance (Peng
et al., 2005).mRMR has been tested on a number of medical
datasets, namely arrhythmia (Guvenir et al., 1997), cancer cell
lines (Ross et al., 2000; Scherf et al., 2000) and lymphoma
(Alizadeh et al., 2000) and produced promising improvement
on classification accuracy. These studies involved datasets
with a large number of features, combination of discrete and
continuous data and different classifiers. Because the present
dataset had similar attributes, we chose to use the mRMR fea-
ture selection method.

Fig. 2. System overview of the machine learning-based prediction protocol.
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Learning and classification (LOOCV). Training (supervised learn-
ing) and prediction were carried out using a SVM regression
model with radial basis function kernel (SVM-rbf) (Soman et al.,
2009). We chose SVM regression because it allowed us to per-
form predictive modeling with continuous outcome measures
(as opposed to binary or multiple class classification which
requires grouping subjects into a discrete number of classes
based on arbitrary thresholds). Also, SVM is robust to a large
number of variables and small samples, it can learn both simple
and highly complex classification models, and it employs
sophisticated mathematical principles to avoid overfitting.
Previous work that used supervised learning approaches for
outcome prediction in healthcare showed that SVM-based
methods are the most promising based on their high classifica-
tion accuracy using a small number of features. Machine learn-
ing models that achieve similar accuracy by operating on a
selected set of features are preferred in investigative research
over machine learning models that are saturated with input
features (Memarian et al., 2015). A leave-one-out cross valida-
tion (LOOCV) scheme was used to train and test the SVM model.
In other words, the prediction error was computed as the aver-
age of 113 iterations (corresponding to 113 subjects), where at
each iteration one participant was left out as the test subject
and the remaining 57 participants were used for training the
SVM regression model. This procedure was repeated 113 times
until every participant was used as a test subject. It should be
noted that feature selection was performed only on the training
data, i.e. feature selection repeated in each leave-one-out itera-
tion. A more detailed description of the feature selection and
classification algorithms is available (Memarian et al., 2015).

GLM data analysis

To compare the efficacy of SVM-based prediction against con-
ventional univariate approaches, we also used the GLM with

parameter estimates of activity from the ROIs serving as predic-
tors and different measures of well-being serving as the out-
come. GLM is the most commonly used univariate technique in
the social and cognitive neuroscience literature. It has become
the core tool for fMRI data analysis after its introduction into
the neuroimaging community by Friston et al. (1994). From the
perspective of multiple regression analysis, the GLM aims to
‘explain’ or ‘predict’ the variation of one dependent variable
(and hence the title ‘uni’variate) in terms of a linear combina-
tion (weighted sum) of several reference functions. In this
study, the dependent variable is the improvement in measures
of well-being and the reference functions (also known as the
predictors or regressors) corresponds to the mean fMRI percent
signal change in various brain regions. Similar to learning and
classification with SVM-rbf, the top selected features were used
as predictors and a LOOCV scheme was applied to train and test
the GLM.

Results

First, we determined whether and to what extent neural activity
during AL associated with changes in participants’ measures of
psychological and physical well-being over the course of
3 months. Second, we investigated if neural activity during AL
could specifically predict benefits of expressive writing on psy-
chological and physical health outcomes at 3 months. This was
meant to give us an indication of whether AL processes could
provide a mechanism for the observed benefits of expressive
writing. Third, we compared the ability of GLM and SVM
approaches for making this kind of prediction. GLM is the stand-
ard approach used to predict outcomes from the brain
(Berkman and Lieberman, 2009; Berns and Moore, 2012; Falk
et al., 2012), and we were interested in whether the SVM regres-
sion predictive modeling approach would provide more accu-
rate results (less regression error).

Table 1. fMRI features representing regions of peak activity when participants performed an AL task

Feature (Brodmann area) Peak coordinate Cluster size t-value

1 Right inferior frontal gyrus pars triangularis (BA 45) (54 27 18) 1433 8.32
2 Left middle frontal gyrus/frontal inferior triangularis (BA 45) (�54 24 27) 2151 7.25
3 Left inferior frontal gyrus pars triangularis-a (BA 45) (�51 33 12) 2151 8.54
4 Left inferior frontal gyrus pars triangularis-b (BA 45) (�51 30 0) 2151 6.39
5 Right frontal inferior orbitalis (BA 47) (48 30 �3) 1433 5.55
6 Left inferior frontal gyrus pars opercularis (BA 44) (�48 12 18) 2151 6.30
7 Left frontal pole/frontal medial (BA 10) (�36 57 9) 2151 3.86
8 Left insular cortex (�30 24 �3) 2151 5.85
9 Right insular cortex (30 24 �3) 1433 6.40
10 Right frontal pole/superior frontal (BA 10) (15 57 18) 1136 4.03
11 Right paracingulate gyrus (BA 32) (15 33 27) 1136 3.71
12 Left extra nuclear (BA 11) (�15 12 3) 2151 3.21
13 Left paracingulate gyrus (BA 32) (�12 27 27) 1136 3.60
14 Right cingulate gyrus anterior division (BA 32) (12 27 21) 1136 3.52
15 Right frontal pole/frontal superior medial (BA 10) (9 57 24) 1136 3.85
16 Right paracingulate gyrus/medial frontal gyrus (BA 32) (9 18 48) 1136 6.98
17 Right ventral striatum (9 3 �3) 2151 3.02
18 Right superior frontal gyrus/medial frontal gyrus (BA 9) (6 48 39) 1136 4.30
19 Right superior frontal gyrus/frontal superior medial (BA 8) (3 33 48) 1136 5.58
20 Left superior frontal gyrus/superior motor (BA 8) (0 18 51) 1136 6.74
21 Right amygdala N/A (anatomical ROI) N/A N/A
22 Left amygdala N/A (anatomical ROI) N/A N/A

Peaks were determined based on group-level analysis of data, using an AL–GL contrast, and 5% significance level (FDR P<0.05) in the scanner. Peak coordinate is the

X Y Z coordinate of the peak voxel in MNI space. Cluster size is the size of the cluster in contiguous voxels in which the peak belongs.
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Pairwise correlation coefficients of the four outcomes (raw
scores) are shown in Table 2. Except for the BDI and BSI_ANX
(rDBDI, DBSI_ANX¼ 0.26, P< 0.05), and the BDI and SWLS (rDBDI,
DSWLS¼ 0.32, P< 0.05), outcome measures were not signifi-
cantly correlated and none shared >10% of their variance.

Expressive writing was associated with better outcome as
compared with the control group, in all of the four outcome
measures. For DBDI(t1 � t2), average improvement in the
expressive writing group¼ 4.6, vs average improvement in the
control group¼ 4.3. For DPILL(t1 � t2), average improvement in
the expressive writing group¼ 13.5, vs average improvement in
the control group¼ 13. For DBSI(t1 � t2), average improvement
in the expressive writing group¼ 3.8, vs average improvement
in the control group¼ 3.3. Finally, for DSWLS(t2 � t1), average
improvement in the expressive writing group¼ 5.5, vs average
improvement in the control group¼ 4.8.

The average prediction error (root mean square error: RMSE)
of predicting the four outcomes using SVM-rbf regression model
is shown in Table 3. In every section of the table, the leftmost
data column lists the group of top 10 selected features that
resulted in the reported average RMSE (specified in the second
data column). The percentage of average prediction error (RMSE

%) calculated from jActual outcome value � predicted outcome valuej
Actual outcome value�100 is

presented in column three. Data column four shows the correla-
tion sign for each of those features and the outcome measure. A
positive sign of the correlation between the predictor and out-
come of interest indicates that higher activity in a specific brain
region correlated with improvement in the outcome measure
(i.e. an increase in satisfaction with life and a decline in depres-
sive symptoms, anxiety and physical symptoms) from t1 to t2.

In a similar fashion, the average prediction error (RMSE) and
the percentage of average prediction error (RMSE %) of predict-
ing the four outcomes were computed using the GLM model.
With the same selected features, the GLM model resulted in pre-
diction RMSE¼ 7.04 (RMSE %¼ 1.39) for the BDI outcome; predic-
tion RMSE¼ 18.12 (RMSE %¼ 1.27) for the PILL outcome;
prediction RMSE¼ 6.08 (RMSE %¼ 1.18) for the SWLS outcome
and prediction RMSE¼ 4.72 (RMSE %¼ 1.34) for the BSI_ANX
outcome.fMRI predictors that showed significant differential
predictiveness as a function of condition (expressive writing or
control) are shown in Table 4. Specifically, greater activity in
right inferior frontal gyrus (IFG), a region associated with emo-
tion regulation, predicts greater improvement in SWLS for those
who engaged in expressive writing, relative to controls. In con-
trols, activity in amygdala and subgenual cingulate, regions
involved in affect generation, predict worse outcomes in
depression and anxiety, respectively, for those who engaged in
expressive writing, relative to controls. Using only the three pre-
dictors shown in Table 4 and Figure 3 [i.e. left amygdala, right

inferior frontal gyrus pars triangularis (BA 45) and right ventral
striatum], the percentage of average prediction error of SVM-rbf
for each outcome measure was 0.90% (PILL), 0.90% (SWLS),
0.87% (BDI) and 0.87% (BSI_ANX).

The SVM approach, using 10 ROIs (top 10 features as deter-
mined by the mRMR feature selection stage) per analysis, was
able to predict changes in psychological and physical health
outcomes with significantly lower regression error compared
with GLM. A Mann–Whitney U-test between regression RMSE
samples (113 samples for 113 subjects) was used to compare the
performance of SVM-rbf regression predictive modeling with
the GLM method and compute the Z statistic. The reported
RMSE values are averages calculated based on a LOOCV scheme
(Figure 4). For the BDI, average RMSE for the SVM-rbf regression
model (4.29 or 0.85%) was less than for GLM (7.04 or 1.39%),
Z¼�3.7418, P< 0.001. For the SWLS, average RMSE for the SVM-
rbf regression model (4.31 or 0.84%) was less than for GLM (6.08
or 1.18%), Z¼�3.7433, P< 0.001. For the PILL, average RMSE for
the SVM-rbf regression model (12.18 or 0.85%) was less than for
GLM (18.12 or 1.27%), Z¼�3.7418, P< 0.001. For BSI_ANX, aver-
age RMSE for the SVM-rbf regression model (3.05 or 0.87%) was
less than for GLM (4.72 or 1.34%), Z¼�3.7433, P< 0.001. The
mean prediction error across the four outcomes was 5.95
(0.853%) for SVM and 8.99 (1.295%) for GLM.

Figure 5a–d show the GLM and SVM-rbf percentage of aver-
age prediction error trend, which is the RMSE % of models based
on inclusion of each feature and its higher ranking features (as
listed in Table 3) for each outcome measure. It can be seen that
the SVM-rbf regression consistently yielded smaller regression
error than GLM in all of the four plots.

Finally, the combination of feature selection and the SVM
approach also allows us to determine which brain regions con-
tribute most reliably across the four outcomes. For example,
Figure 6 shows the contribution of the neural predictors as
selected by the feature selection algorithm in predicting the
four outcomes. Theþ (positive) sign represents a significant
positive correlation between the feature and outcome, whereas
the � (negative) sign represents a significant negative feature-
outcome correlation. Again, it is evident that RVLPFC (BA 45)
and amygdalae were among the primary predictors for each
outcome. In particular, despite the four outcome measures
being only modestly intercorrelated, RVLPFC was the only ROI
that was a positive predictor of improvement on all four
outcomes.

Discussion

There were two major goals of this investigation. First, we
wanted to examine whether neural activity during an implicit
emotion regulation task (AL) predicts long-term consequences
(i.e. 3 months) of expressive writing for psychological and physi-
cal well-being. Second, we wanted to determine whether SVM
prediction methods would be more successful than the tradi-
tional GLM approach to ‘brain-as-predictor’ (Berkman and Falk,
2013).

When looking at the relationship between expressive writing
and well-being we did find evidence linking to neural activity
during AL for three of the four outcome measures of interest.
For subjective well-being, greater right IFG activity during AL
predicted greater improvements over time for those who
engaged in expressive writing, compared with those who did
not. For depression and anxiety, reduced amygdala and subge-
nual cingulate activity, respectively, predicted greater improve-
ments over time for those who engaged in expressive writing,

Table 2. Pairwise correlation coefficients of the four outcome
measures

rDBDI rDSWLS rDPILL rDBSI_ANX

rDBDI
rDSWLS 0.32*
rDPILL 0.08 0.06
rDBSI_ANX 0.26* �0.04 0.06

BDI, Beck Depression Index; SWLS, Satisfaction with Life Scale; PILL, Pennebaker

Inventory of Limbic Languidness; BSI_ANX, Brief Symptom Inventory_Anxiety.

Statistically significant correlations (P< 0.05) are marked with asterisk.
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compared with those who did not. Differences in physical
symptoms for the expressive writers compared with controls
was not predicted by neural activity during AL in these
analyses.

Given that right IFG and amygdala are the two regions reli-
ably activated, inversely, during numerous AL studies, it is strik-
ing that these were the two of the three regions that also
predicted effects of expressive writing on well-being 3 months
later. The results are consistent with the hypothesis that those
who are able to recruit right IFG more effectively when AL are

those who are most likely to benefit from an expressive writing
intervention. It suggests further investigations into implicit
emotion regulation as the basis for expressive writing benefits
are warranted. In future work, to further examine the contribu-
tion of AL to expressive writing, it would be interesting to ana-
lyze the writing of the participants and see if the use of labels
predicts the outcome of expressive writing.

In addition to this primary objective, we also examined neu-
ral activity during AL that predicted improvements in well-
being over the 3 months following scanning, regardless of

Table 3. RMSE of predicting the outcome measures (i.e. BDI, SWLS, PILL and BSI_ANX) using SVMs regression model with a radial basis function
(SVM-rbf)

Selected features Average SVM regression
error (RMSE)

Percentage of
error (RMSE %)

Correlation with
outcome

BDI 4.29 0.85
L middle frontal gyrus (BA 45) þ
L amygdala �
R frontal pole/superior frontal (BA 10)
R inferior frontal gyrus pars triangularis (BA 45)

�
þ

L paracingulate gyrus (BA 32) �
L frontal pole/frontal medial (BA 10) �
R superior frontal gyrus/medial frontal gyrus (BA 9) �
R amygdala þ
L inferior frontal gyrus pars triangularis-a (BA 45) þ
R frontal inferior orbitalis (BA 47) þ

SWLS 4.31 0.84
L superior frontal gyrus/superior motor (BA 8) �
R frontal pole/frontal superior medial (BA 10) �
L paracingulate gyrus (BA 32) �
L inferior frontal gyrus pars triangularis-b (BA 45) �
L amygdala �
R superior frontal gyrus/medial frontal gyrus (BA 9) þ
L frontal pole (BA 10) �
R inferior frontal gyrus pars triangularis (BA 45) þ
R frontal pole/superior frontal (BA 10) �
R frontal inferior orbitalis (BA 47) þ

PILL 12.18 0.85
L middle frontal gyrus (BA 45) þ
L amygdala þ
R inferior frontal gyrus pars triangularis (BA 45) þ
R frontal pole/superior frontal (BA 10) �
R frontal inferior orbitalis (BA 47) �
L frontal pole/frontal medial (BA 10) �
R insular cortex (BA 47) �
L inferior frontal gyrus pars triangularis-a (BA 45) þ
L superior frontal gyrus/superior motor (BA 8) þ
R amygdala þ

BSI_ANX 3.05 0.87
L superior frontal gyrus/superior motor (BA 8) þ
R frontal pole/frontal superior medial (BA 10) �
L amygdala þ
R superior frontal gyrus/medial frontal gyrus (BA 9) �
R inferior frontal gyrus pars triangularis (BA 45) þ
L middle frontal gyrus (BA 45) þ
R amygdala þ
L inferior frontal gyrus pars triangularis-a (BA 45) þ
R ventral striatum �
R insular cortex (BA 47) þ

The leftmost column lists the top 10 features that resulted in the reported RMSE (specified in the second column). The percentage of average prediction error (RMSE %)

calculated from jActual outcome value � predicted outcome valuej
Actual outcome value�100 is presented in column three. The fourth column shows the correlation sign for each of those features and the

outcome measure. A positive sign of correlation between the predictor and outcome indicates that higher activity in a specific brain region was correlated with

improvement in the outcome measure from baseline to 3 month follow-up. L, left; R, right.
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expressive writing condition. Here again, right IFG was the only
region that was consistently associated with improvements
across all four measures of psychological and physical well-
being. Although our results show a clear link between right IFG
responses during AL and subsequent well-being, it is unclear
whether the measured IFG response reflects somewhat tempo-
rary state or a true dispositional state. If the latter was true,
then our results would suggest that those with high IFG
responses would continually show improvement in well-being.
We consider this rather unlikely. Instead, it is more likely that
the IFG response represents a tendency that might last weeks or
months, long enough to influence the follow-up well-being
measures, but that is also likely to fluctuate over longer periods
of time.

Our second major goal was to investigate whether neural
data analyzed with SVM produces more accurate predictions of
well-being than the same neural data analyzed using a tradi-
tional GLM approach. SVM-based outcome prediction error was
in all cases significantly lower than GLM-based prediction
(Figure 4). With fMRI features alone, SVM achieved average pre-
diction error of 0.87% or lower in all cases. This result highlights
the superiority of machine learning-based approaches in mak-
ing useful inferences from information encompassed in large
datasets. GLM tries to separate the outcome responses using a
linear regression model but the data are not always linearly sep-
arable. Methods such as SVM that part the data with non-linear
hyperplanes show superior performance in such cases.

In addition to yielding higher predictive accuracy, the pro-
posed SVM-based method has additional advantages over con-
ventional univariate data analysis methods. GLM tends to be
overly sensitive to outliers in the training sample. In contrast,
SVM is robust to outliers and because it can use non-linear cate-
gory boundaries, its prediction success is superior to multiple
regression approaches (Soman et al., 2009). Furthermore, GLM
relates fMRI data to outcomes using the data from a single fMRI
task. The SVM approach allows one to pool the predictive value
of multiple tasks (along with other data modalities), into a sin-
gle robust prediction analysis (Meyer et al., 2003; Durrant et al.,
2009). This capability of inferring hidden patterns in ‘multimo-
dal’ data represents a substantial strength of supervised
machine learning-based outcome prediction approaches.

The SVM-based approach is an important complement to
other recent popular methods in fMRI studies, such as multi-
voxel pattern analysis (MVPA), because it allows for the predic-
tion of real-world outcomes. MVPA can predict whether an
individual is currently viewing a picture of a house or face while
in an MRI scanner but cannot predict anything outside of the
scanner. Unlike MVPA, the proposed SVM-based approach is
perfectly suited for prediction of outcome measures that are

Fig. 3. RVLPFC (shown in green) and left amygdala (shown in brown) were top

predictors of the four outcome measures of psychological and physical health,

i.e. BDI, SWLS, PILL and BSI_ANX (axial view). Moreover, right ventral striatum

(shown in purple), as well as right interior frontal gyrus pars triangularis, and

left amygdala showed significant differential predictiveness as a function of

condition (expressive writing or control).

Table 4. fMRI predictors that showed significant differential predictiveness as a function of condition (expressive writing or control), using a
two-tailed test, significance level¼ 0.05

Outcome measure Feature (fMRI predictor) Correlation with outcome t-statistics P-value

BDI L amygdala � �2.097 0.038
SWLS R inferior frontal gyrus pars triangularis (BA 45) þ 2.338 0.021
PILL N/A
BSI_ANX R ventral striatum � �2.017 0.046

Fig. 4. Performance comparison between the conventional GLM method and the SVM approach. The reported values are percentage of average prediction errors

(RMSE %) calculated based on a LOOCV scheme. A Mann–Whitney U-test between prediction error samples (113 samples for 113 subjects) showed significantly lower

error (superior performance) for the SVM method compared with the GLM method, in all cases (P<0.05).
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collected outside of the scanner. SVMs construct a non-linear
parametric model that can predict a real-world outcome for a
participant based on multimodal data gathered prior to the
intervention. Parameters of this model are learned from a vet-
ted set of data based on outcomes given by other participants
who have undergone the same intervention, meaning that the
approach employs true supervised learning.

By using SVM-regression for prediction, there is no need to
discretize the outcome measure scores into two or more classes
and it is possible to predict the level of improvement in continu-
ous outcome measures of interest, like the four studied in this

article. This attribute renders this technique much more clini-
cally useful.

A limitation of the current version is that it requires having a
priori ROIs. We are currently working on using tools that take a
searchlight approach (Kriegeskorte et al., 2006) to perform fea-
ture selection across the entire brain, which should provide
even more robust effects. In future work, we aim to extend this
approach to prediction with multimodal data (e.g. neural, self-
report, medical history, genetics, etc.) to take advantage of the
full potential of supervised learning for robust outcome
prediction.

Fig. 5. Percentage of average prediction error (RMSE %) for GLM and SVM-rbf predictive models based on inclusion of each feature and its higher ranking features (as

listed in Table 3) for (a) BDI, (b) SWLS, (c) PILL and (d) BSI_ANX.

Fig. 6. Contribution of the neural predictors as selected by the feature selection algorithm in predicting the four outcomes (BDI, Beck Depression Inventory score;

SWLS, Satisfaction with Life Scale; PILL, Pennebaker Inventory of Limbic Languidness score) BSI_ANX, Brief Symptom Inventory Anxiety score. Plus sign represents pos-

itive correlations between the activity of the brain region and improvement on the outcome, whereas a minus sign represents a negative correlation between the fea-

ture and the outcome improvement.
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Conclusion

In this study, we showed that neural responses during AL can
predict changes in psychological and physical health measures,
in particular the subsequent benefits of expressive disclosure.
In our study of 113 patients, using fMRI data, SVM regression
predicted improvements in participants’ self-reported physical
and psychological health with�0.87% prediction error. SVM was
significantly more accurate than the classic GLM method for
outcome prediction. Greater improvements in the outcomes
due to the expressive writing intervention were associated with
higher activity in the RVLPFC and lower activity in L amygdala.
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