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Abstract Mesenchymal stromal cells (MSC) isolated from
human term placental tissues possess unique characteristics,
including their peculiar immunomodulatory properties and
their multilineage differentiation potential. The osteogenic
differentiation capacity of placental MSC has been widely
disputed, and continues to be an issue of debate. This review
will briefly discuss the different MSC populations which can
be obtained from different regions of human term placenta,
along with their unique properties, focusing specifically on
their osteogenic differentiation potential. We will present the
strategies used to enhance osteogenic differentiation potential
in vitro, such as through the selection of subpopulations more
prone to differentiate, the modification of the components of
osteo-inductive medium, and even mechanical stimulation.
Accordingly, the applications of three-dimensional environ-
ments in vitro and in vivo, such as non-synthetic, polymer-
based, and ceramic scaffolds, will also be discussed, along
with results obtained from pre-clinical studies of placental
MSC for the regeneration of bone defects and treatment of
bone-related diseases.

Keywords Human placenta . Mesenchymal stromal cells
(MSC) . Amniotic membrane . Chorionicmembrane .
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Osteogenesis

Mesenchymal stromal cells (MSC) were described within the
bone marrow (BM) in 1968 by Friedenstein and colleagues

[1]. Since then, many other sources have been identified such
as adipose tissue [reviewed in [2, 3]], cord blood [reviewed in
[4]], and one which has recently attracted much attention is
human term placenta [reviewed in [5]], mainly for its easy,
non-invasive procurement and abundant tissue, and also for
the remarkable immunomodulatory capabilities of MSC iso-
lated from placental tissues. It is well known that the different
sources of MSC present different capabilities to differentiate
toward mature lineages [6]. This review will focus on data
reported thus far regarding the osteogenic differentiation po-
tential of mesenchymal stromal cells deriving from placental
tissues.

MSC Derived from Different Placental Regions

Human placenta is composed of a fetal part, including the
amnion, chorion, umbilical cord, and a maternal part, termed
decidua. Within these components different cell subpopula-
tions with mesenchymal characteristics may be isolated, and
as established by the consensus of the First International
Workshop on Placenta-Derived Stem Cells, they are referred
to amniotic mesenchymal stromal cells (hAMSC) and chorion
mesenchymal stromal cells (hCMSC) [5]. MSC can also be
isolated from umbilical cord (UC) and have been referred
to as either hUC-MSC or Wharton’s jelly (hWJ)-MSC [7],
and from the maternal decidua (hDMSC) [8]. Commonly
used methods for MSC isolation are enzymatic digestion
employing collagenase and DNase, dispase, trypsin, or
explant culture [5, 9]. In general, placental tissues-derived
mesenchymal stromal cells as MSC from other sources
present spindle-shape, elongated morphology, adherence to
plastic and CFU capacity [10].
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MSC derived from different regions of human placenta,
similar to BM-MSC, express typical mesenchymal antigens
such as CD90, CD73, CD105, CD13, CD44, CD29, CD166,
CD117, HLA-A, −B, −C, and lack hematopoietic markers
CD34, CD45, CD14, endothelial marker CD31, co-
stimulatory molecules CD80, CD86, CD40, CD40L, and
HLA-DR [11–14]. Some reports have suggested the presence
of pluripotent markers Sox-2, OCT-4, Nanog, and SSEA-4 in
placental MSC [8, 15–17]. Differentiation potential toward
the mesodermal lineage, and specifically toward the
adipogenic, chondrogenic, and osteogenic lineages, has been
reported for Wharton’s jelly, decidua, and fetal membrane
(FM)-derived MSC [5, 8, 9]. Others have also reported in vitro
differentiation potential toward ectodermal (neurogenic), as well
as endodermal (hepatogenic) lineage of FM-derived MSC and
hWJ-MSC [18–20].

Placental tissue MSC also present low expression of MHC
class II and (as mentioned above) classical co-stimulatory
molecules, features that have made them to be considered as
poor antigen presenting cells [21]. However, caution is war-
ranted considering that the same interpretation has been used
for BM-MSC, but previous reports have shown the capability
of these cells to induce an immune response [22, 23]. More-
over, it has been reported that MSC derived from different
placental tissues can interact with and modulate a variety of
immune cells [24]. The ability to suppress lymphocyte prolif-
eration induced by mitogens or alloantigens [25, 26], and the
capacity to block maturation of monocytes into dendritic cells
[27, 28], are examples of their immunomodulatory effects.
Furthermore, immunomodulatory molecules, such as HLA-G,
B7-H1 and B7-H3, and prostaglandins, secreted from early
and term placenta, which have important implications in the
fetal maternal tolerance mechanisms, have been reported to be
expressed not only in the trophoblast but also in the FM-
derived cells, hWJ-MSC and hDMSC [[29–32] and reviewed
in [14]] and therefore, very likely play a role in the immuno-
modulatory capacities of these cells [33].

In Vitro Osteogenic Potential

As previously stated, mesenchymal cells derived from different
placental tissues differentiate toward “classical” mesodermal
lineages [5, 9]. Herein, we summarize the results obtained from
approximately 150 published papers which investigate the oste-
ogenic differentiation of mesenchymal cells derived from am-
nion, chorion, umbilical cord, and decidua (Tables 1, 2, and 3).
We will use hAMSC, hCMSC, hUC-MSC (or hWJ-MSC), and
hDMSC to describe the MSC from specified placental tissues,
according to the information provided by the authors, while we
will use hPD-MSC to refer to placenta derived-mesenchymal
stromal cells in general, andwhen the specific region of placenta
used was not indicated. Since it was not possible to be fully

comprehensive in the limited space available, we apologize in
advance to authors whose work was not cited in this review.

In Vitro Two-Dimensional Osteogenic Differentiation

In this section we will focus on data describing in vitro two-
dimensional osteogenic differentiation, and approaches to im-
prove the outcomes, such as selection of subpopulations and
modification of culture conditions, and the results obtained.

Selection of Subpopulations

Considering the heterogeneity of the mesenchymal stromal
population within the placental regions, some authors
attempted to select for subpopulations more prone to dif-
ferentiate towards the osteogenic lineage (Table 1). For
example, positive selection using Frizzled-9 (FDZ9), as
based on information available on BM-MSC [34], together
with CD10 and CD26 resulted in a subpopulation of
hAMSC with elevated expression levels of osteocalcin
(OC), increased number of cells with positive alkaline
phosphatase (ALP) activity, and higher number of
calcium-rich nodules in comparison with unselected cells,
altogether suggesting increased differentiation potential of
the selected cells [35]. On the other hand, decreased
osteogenic differentiation was observed when hAMSC
and hCMSC were selected based upon CD105 positivity
[36]. Moreover, a CD44+/CD73+/CD105− subpopulation of
hAMSC showed higher bone matrix mineralization and
stronger expression of secreted protein acidic and rich in
cysteine (SPARC) and osteopontin (OPN), two markers
commonly associated to mineralization, than CD44+/
CD73+/CD105+ cells, while no significant differences were
observed for collagen type I-alpha 1 (COLIA1) and OC
expression [15]. CD271 has also been investigated as a
potential selection marker for MSC selection. Previously,
selection for CD271 positivity was shown to identify a
BM-MSC subpopulation more prone to differentiate into
the osteogenic lineage [37]. More recently, our group
applied this same selection in hAMSC and hCMSC pop-
ulations, where clearly enhanced osteogenic differentiation
in the CD271-enriched fractions were observed [10]. It
was also reported that side-population derived from
hAMSC showed osteogenic differentiation potential [38],
and that both CD106+ and CD106− fractions from
hCMSC demonstrated similar ability to differentiate into
the osteogenic lineage [39].

As previously mentioned, hPD-MSC share the majority of
features with BM-MSC, however some differences have been
reported. For example, increased expression of CD146 on
BM-MSC in comparison to hPD-MSC, together with that of
ALP assessed before differentiation, has been shown to cor-
relate with improved osteogenic differentiation capacity [40].
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Transcriptomic analysis of hPD-MSC showed differential
expression of osteogenesis related genes, assessed either prior
to (Runx2, Twist2), or after (BMP2, osteomodulin, SFRP1,
SFRP4) osteoinduction and differentiation [41].

Composition of Differentiation Media

Attempts to enhance osteogenic differentiation have been
made by modifying the composition of the osteogenic-
inductive medium (i.e. different supplements) [reviewed
in [42, 43]]. Osteogenic differentiation medium is gener-
ally composed of basal medium (e.g. DMEM) supple-
mented with 10 % FBS, dexamethasone, β-glycerol
phosphate, ascorbic acid, 1α,25-dihydroxyvitamin D3
[18, 44–46]. Osteogenic differentiation of hWJ-MSC
was observed at early and late passages (15–20) after
culturing in either DMEM low glucose, DMEM high
glucose, DMEM/F12 or DMEM-KO as a basal media,
with the latter inducing even higher calcification [47].
FBS has been investigated as a factor which could influ-
ence osteogenic potential. FBS removal from the culture
media was found to result in the absence of mineraliza-
tion in hAMSC, hCMSC, BM-MSC, and adipose tissue-
derived stromal cells (ASC) [48]. Accordingly, the pres-
ence of FBS has been shown to enhance osteogenic-
associated marker ALP and bone sialoprotein (BSP) ex-
pression in BM-MSC and ASC, while low or no expres-
sion was found in fetal-derived MSC in both culture
conditions [48]. Regarding the use of xenobiotic-free
medium for a more clinically-relevant approach, some
studies have also investigated the use of platelet-rich
plasma (PRP) [49], platelet lysate [50–54] or platelet
concentrate [40] as a culture media supplement. UCB-
derived PRP has also been used as a growth factor to assist
in vivo osteogenic differentiation [55, 56].

Other supplements have been used in the attempt to
boost osteogenic differentiation, such as osteogenic pro-
teins (rhBMP-2) [57], osteoactivin [58], and chemical
entities such as bortezomib [59] and 5-aminoimidazole-
4-carboxamide-1-β-riboside (AICAR) [60]. Moreover,
the inflammatory microenvironment, common to degen-
erative diseases in which MSC are used as cell-therapy,
has also been investigated for its impact on osteogenic
differentiation. For instance, pretreatment of hWJ-MSC
with an inflammatory cytokine cocktail (IL-1β, IFN-γ,
TNF-α and IFN-α) increased differentiation into osteo-
blasts similarly to BM-MSC and ASC, although in ab-
sence of stimulation with inflammatory cytokines, the
osteogenic differentiation capability of hWJ-MSC was
lower than that of BM-MSC and ASC [61]. Moreover,
TLR3 and TLR4 ligation did not affect hWJ-MSC, while
it enhanced ASC osteogenic potential [61].

Mechanical Stimulation

Mechanical stimulation mimicking the movement pre-
sented in in vivo settings has been reported as another
approach to enhance in vitro MSC osteogenic differen-
tiation. Cyclic uniaxial stimulation, one of the most
widely used mechanical stimulations in vitro, was
shown to accelerate osteogenic differentiation of BM-
MSC [62]. Mechanical stimulation provided by the
Flexcell system, potentiated the osteogenic differentia-
tion of hUC-MSC (in the presence of osteogenic sup-
plements), as indicated by an increase of the osteogenic
gene (osteoprotegerin, OC, OPN, osteonectin, collagen I
(Coll I), Coll III and vimentin), and protein (BSP and
vimentin) expression [63].

In conclusion, differentiation toward the osteogenic lineage
is evident in the majority of in vitro studies, however there are
reports showing weak [36, 40, 41, 48, 61] or even lack of
osteogenic differentiation [64, 65].

In Vitro Three-Dimensional Osteogenic Differentiation

The number of studies investigating three-dimensional envi-
ronment for bone tissue formation is constantly increasing. So
far, most of the studies present in literature investigate hWJ-
MSC rather than fetal-membrane derived MSC, suggesting a
growing interest in this specific placental cell population. In
this section, we will present data describing the osteogenic
differentiation on different types of three-dimensional con-
structs, namely non-synthetic, polymer-based, and ceramic
scaffolds (see also Tables 1 and 2).

Osteogenic Differentiation on Non-Synthetic Scaffolds

Generally, synthetic biomaterials are employed for the prepa-
ration of scaffolds to support osteogenic differentiation, al-
though some groups have attempted to use non-synthetic
biomaterials in order to enhance biocompatibility and biode-
gradability. For example, commonly used non-synthetic scaf-
folds are collagens, which are abundant in the osteocyte
environment, have high mechanical strength, and have been
shown to stimulate MSC to differentiate into osteoblast-like
cells, altogether initiating new bone formation [66, 67]. Cul-
tivation of hUC-MSC, and BM-MSC, on a collagen I/III gel
has been shown to lead to deposition of hydroxyapatite (HA)/
calcium crystals and to an active shift of the collagen I/III ratio
in favor of collagen I, the main component of bone extracel-
lular matrix (ECM). Moreover, production of other ECM
proteins like collagen IV, laminin and glycosaminoglycans
(GAGs), was also observed in a manner comparable to func-
tional osteocytes and osteoblasts [68].

Natural biomaterials have also been shown to be able to
support proliferation and osteogenic differentiation of
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Table 2 Summary of studies describing in vitro osteogenic differentiation of term hUC-MSC and hWJ-MSC at passages

MSC lineages used Growth support Readout References

Bulk population Plastic Cytochemical staining [17, 20, 47, 52, 55, 57, 61, 64, 76,
92, 96, 98, 155–179]*

Immunostaining [52, 57, 96, 156, 175, 180]

Enzymatic evaluation [17, 52, 57, 61, 76, 96, 98, 157–159,
162, 173, 177, 180–183]**

Gene evaluation [17, 20, 57, 61, 64, 92, 98, 155,
158–160, 162, 164, 165, 167,
171, 173, 175, 177, 180, 184]*

Protein evaluation [57, 98, 184]

Biochemical assay [17, 76, 170, 173]

Rod-like-nHA and flake-like-micro-HA
coatings onMg-Zn-Ca alloy substrates

Cytochemical and immunostaining,
enzymatic and gene evaluation

[185]

Type I atelocollagen-coated Bioflex®
plate stimulated with Flexcell system

Gene and protein evaluation [63]

Fibronectin coating Cytochemical and immunostaining,
enzymatic, gene and protein evaluation

[186]

Cytochemical and immunostaining,
electron microscopy

[187]

Collagen I coating Cytochemical staining, protein evaluation [65]

PAAM substrates Cytochemical staining, gene evaluation [188]

Porcine urinary bladder matrix scaffold Cytochemical and immunostaining,
enzymatic and gene evaluation,
electron microscopy, spectroscopy

[69]

Collagen scaffold Cytochemical staining, enzymatic
evaluation

[189]

Cytochemical and immunostaining, gene
evaluation and electron microscopy

[68]

PGA and derivatives scaffold Cytochemical staining, enzymatic and
gene evaluation

[79, 81]

Protein evaluation [81]

Biochemical assay [78, 79]

Electron microscopy [79]

PCL and derivatives scaffold Cytochemical staining, enzymatic and
gene evaluation, electron microscopy

[75, 76]

Immunostaining [75]

Spectroscopy [76]

PLLA scaffold Cytochemical staining, protein and gene
evaluation

[82, 83]

Immunostaining [82]

Nano-biphasic calcium phosphate
ceramics

Cytochemical staining, gene evaluation [105]

45S5 Bioglass-based scaffold Cytochemical staining, protein evaluation [190]

CPC scaffold and derivatives Cytochemical staining [45, 46, 84, 85, 87, 89–91, 93–95,
109]

Enzymatic evaluation [45, 46, 88–91]

Gene evaluation [45, 46, 85–89, 91, 93–95, 109]

Electron microscopy [86, 88, 89]

Spectroscopy [88, 89]

Bulk population andHSP90β
transfected cells

Plastic Cytochemical staining, enzymatic and
gene evaluation

[108]

Lentiviral-transduced cells Plastic Enzymatic and gene evaluation [191]

Osx-transfected MSC Plastic Enzymatic and gene evaluation [97]

PCL polycaprolactone;PAAM polyacrylamide hydrogel; PGA polyglycolic acid; PLLA poly(L-Lactic acid);CPC calcium phosphate cement; nHA nano-
hydroxyapatite; Osx osterix

* Reference 92: hUC-MSC were encapsulated within alginate microbeads, oxidized alginate microbeads, and oxidized alginate-fibrin microbeads

** Reference 182: UCX® cells: human stem cells derived from the umbilical cord tissue (Wharton’s jelly)
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hPD-MSC [69, 70]. Evidence of osteogenic differentia-
tion, as suggested by higher gene expression of Runx2,
OPN, Coll I, ALP activity and mineralized matrix deposi-
tion, were provided when hWJ-MSC were seeded on an
extracellular matrix scaffold (porcine urinary bladder de-
rived matrix) in the presence of differentiation medium
[69]. Moreover, osteoinductive effects of Nukbone® (NBK),
a human bone biomimetic material from bovine bone matrix,
were observed in hAMSC without the application of differen-
tiation medium, as demonstrated by OC and Runx2 gene
expression [70]. Interestingly, human chorionic membrane
has also been used as cell-free extracellular matrix scaffold
for osteogenic differentiation. Up-regulation of OC and OPN
gene expression, and positive immunohistochemical staining
for OC, OPN and Runx2, but not Coll I, together with in-
creased Ca2+ concentrations, characteristic for advanced min-
eralization, have been documented [71]. The amniotic mem-
brane, which has been largely used in the field of tissue
engineering as a biological scaffold [reviewed in [72] and
[73]], has been recently demonstrated to act as a natural cell
substrate for the osteogenic differentiation of amniotic
membrane-derived cells without cell isolation, leaving cells
residing within their natural environment [74].

Osteogenic Differentiation on Polymer-Based Scaffolds

Osteogenic differentiation of hPD-MSC has been widely
assessed on scaffolds containing polycaprolactone (PCL)
and/or its derivatives [75–77]. Mineralization and up-
regulation of osteogenic genes were observed in MSC
derived from umbilical cord when collagen and HA [75]
or β-tricalcium phosphate (TCP) [76] were added to PCL
scaffold, even though hUC-MSC demonstrated lower os-
teogenic differentiation potential than fetal BM-MSC [76].
Culture of hPD-MSC on PCEC (PCL-poly(ethylene
glycol)(PEG)-PCL) copolymer revealed osteoblast differ-
entiation as demonstrated by mineral deposition, expres-
sion of OPN and OC, and increased ALP activity com-
pared to hPD-MSC differentiated on plastic plates [77].
Mineralization and osteogenic gene expression were also
observed on hUC-MSC seeded on polyglycolic acid
(PGA) and derivatives (poly(lactide-co-glycolide), PLGA)
scaffolds [78, 79]. Greater ALP and OC expression, to-
gether with higher ALP activity and OC content of hUC-
MSC cultured on nanoHA/chitosan(CS)/PLGA scaffold
was observed, as compared to PLGA, nanoHA/PLGA
and CS/PLGA [79]. Polyurethanes (PU) are another ex-
ample of polymers applied for supporting osteogenic dif-
ferentiation, however, only a small amount of calcium
deposition has been observed when chorion-MSC were
cultured on PU foam with induction medium [80].

Some strategies have been designed for osteochondral
tissue engineering in order to simultaneously obtain osteo-

and chondrogenic differentiation on the same construct
[81, 82]. For example, recently, an in vitro study reported
that microsphere-based scaffolds constructed to release
TGF-β1 and BMP-2 (factors known for inducing chon-
drogenesis and osteogenesis, respectively), with a gradual
and continuous transition in the release of TGF-β1 and
BMP-2 from one side of the scaffold to the other, was able
to promote osteogenic differentiation of hUC-MSC and
BM-MSC [81]. A significant increase was observed in
cell number, GAGs and collagen content, and ALP activ-
ity in the gradient scaffold [81]. The ability of poly(L-
Lactic acid) (PLLA) scaffolds to support osteogenic dif-
ferentiation of hUC-MSC has been previously demonstrat-
ed [83]. In a follow-up study by the same group, a further
strategy was implemented by sandwiching hUC-MSC be-
tween chondrogenic and osteogenic PLLA scaffolds and
then suturing them together [82]. Osteochondral compos-
ites with hUC-MSC exhibited the best integration and
transition of ECM between the layers, while composites
without cells presented better distribution and stronger
staining of calcium, Coll II and aggrecan [82].

Osteogenic Differentiation on Ceramic Scaffolds

The use of ceramic scaffolds as support for osteogenic dif-
ferentiation is widely recognized. For the most part, hPD-
MSC have been investigated with calcium phosphate cement
(CPC)-based scaffolds, since this type of scaffold has been
shown to be an injectable and resorbable bioceramic. Using
hWJ-MSC, efforts have been made to enhance physical and
mechanical properties [45, 84–87], cell distribution within
the scaffold [46, 88–92], cell adhesion to the scaffold surface
[46, 84, 93–95], and in vitro osteogenic differentiation.

hUC-MSC have been seeded on traditional CPC, and
attachment, proliferation and differentiation toward the oste-
ogenic lineage have been demonstrated [86], and even im-
proved differentiation when CPC was supplemented with
different biofunctional agents (fibronectin, fibronectin-like
engineered polymer protein (FEPP), arginylglycyl-aspartic
acid (RGD), Geltrex, platelet concentrate), fibers (collagen,
PLGA fibers) [84, 93, 94], or mannitol [45]. In addition,
alginate hydrogel beads have been used to protect hUC-MSC
against mixing and injection forces and to favor the distri-
bution within the scaffold, while maintaining the osteogenic
differentiation capabilities of cells [86, 88, 89, 91]. More-
over, as the cells are encapsulated within the microbeads,
rapid microbead degradation followed by cell release is
required. Improvement of the rate of microbead degradation,
in accordance with the release of hUC-MSC, has been de-
veloped maintaining cell differentiation potential toward the
osteogenic lineage [46, 92, 95]. Indeed, released hUC-MSC
underwent osteogenic differentiation as indicated by up-
regulation of osteogenic gene expression (ALP, OC, Coll

576 Stem Cell Rev and Rep (2015) 11:570–585



I), ALP activity and mineral synthesis [46, 95]. Interestingly,
improvement of osteogenic differentiation was achieved by
encapsulation of pre-differentiated hUC-MSC, or by delivery
of osteogenic medium, instead of BMP-2, into the
microbeads together with hUC-MSC. The results showed
that each of these approaches allowed hUC-MSC to be
successfully differentiated into the osteogenic lineage [90].

In Vivo Osteogenic Potential

Currently, the number of studies describing in vivo ap-
plications of hPD-MSC for bone defect restoration is
increasing (Table 3). Proof of principle studies of the
in vivo osteogenic potential of hPD-MSC may be
achieved using subcutaneous injection of experimental
constructs to induce ectopic bone formation and to
assess the feasibility of different biomaterials. For ex-
ample, different types of constructs supporting osteogen-
ic differentiation, such as nano-HA/CS/poly(lactide-co-
glycolide) (nHA/CS/PLGA), have been investigated
using hUC-MSC. The application of nHA/collagen/
PLA, nHA/PLGA, CS/PLGA, or nHA/CS/PLGA seeded
with hUC-MSC indicated immature bone tissue forma-
tion after subcutaneous implantation into nude mice [55,
79, 96]. Enhanced bone formation was observed on
PLGA scaffolds also when osterix-transfected hUC-
MSC were used, a transcription factor known for its
role in osteoblast differentiation and bone formation,
together with up-regulated mRNA expression of ALP,
OC, OPN and Coll I when compared to non-transfected
hUC-MSC/PLGA and mock-hUC-MSC/PLGA controls
[97]. In vivo subcutaneous implantation of MSC from
different sources on PCL-TCP scaffolds has been shown
to result in superior osteogenic potential of fetal BM-
MSC, when compared to adult BM-MSC, perinatal
hUC-MSC, and ASC [76].

In addition, considering the clinical application of MSC,
the use of autologous tissues to avoid/minimize the probabil-
ity of infections and immune response to biomaterials has
been investigated. Recently, umbilical cord blood (UCB)-
derived fibrin as a scaffold for hUC-MSC, UCB-derived
platelet-rich-plasma (UCB-PRP) as a source of growth fac-
tors, and UCB-derived serum for hUC-MSC culture were
studied in vivo after subcutaneous implantation. Although no
defined bone tissue in vivo was seen, ectopic calcification was
observed [56]. Application of hUC-MSC have also been stud-
ied in dental regeneration in terms of periodontal tissue healing,
important to increase success rate of autotransplantation of
teeth. In vivo osteogenic differentiation of hUC-MSC on den-
tine disc showed the ability to form cementum-like deposits
after subcutaneous implantation suggesting that hUC-MSC
may be useful in this field [98].

hPD-MSC for Regeneration of Bone Defects

Most of the studies regarding in vivo bone regeneration in-
vestigate femur or cranial fractures. Critical-size calvarial
defects are widely employed to study bone healing in animal
models, mostly rodents, because the calvaria are large plates
that facilitate the creation of defects, implantation of grafts and
the analysis (histology, imaging) of reconstruction [99, 100].
Segmental defects in long bones are also widely used as
clinically relevant models [101–104].

The number of studies investigating hPD-MSC in femur
fractures is increasing. Femur defects have been treated with
hPD-MSC used in combination with nanosized biphasic Ca/P
ceramics and led to complete recovery of the defect with no
graft rejection or inflammation process [105]. Good integra-
tion of the material with surrounding host tissues and newly
formed bone was observed, together with expression of hu-
man Runx2 mRNA, indicating that implanted MSC were able
to survive and promote in vivo osteogenesis [105].

In vitro attempts have been made to select for a subpopu-
lation more prone to differentiate into osteogenic lineage in
in vivo models. Using a method based on time-gradient at-
tachment, hDMSC seeded into PLGA scaffolds have shown
significant bone formation 20 weeks after transplantation into
full-thickness calvaria defects, as confirmed by histological
and immunohistochemical assays [106]. Transplantation of
both FZD9 (CD349)-positive and -negative hCMSC in femur
defects in mice resulted in facilitating new bone calcification
in fractured femurs [107].

In vitro knock down of HSP90β (a cell proliferation related
protein) on hWJ-MSC revealed enhanced osteogenic differ-
entiation. Following experiments in in vivo segmental bone
defects resulted in more prominent bone tissue in comparison
to hWJ-MSC without HSP90β knockdown [108].

The in vivo osteogenic potential of hUC-MSC has been
compared to adult MSC from BM [109] and adipose tissue,
and perinatal UCB [102] using critical-sized cranial [109] and
femoral defect models in rat [102]. Based on quantitative
assessment, the authors concluded that there were no signifi-
cant differences between fetal and adult MSC [102, 109].

Treatment of non-union fractures has rarely been investi-
gated. Transplantation for non-union fractures in a rat model
using hUC-MSC in presence of blood plasma resulted in new
bone formation and disappearing cortical gaps, suggesting a
possible role of hUC-MSC in bone healing [110].

hPD-MSC for the Treatment of Bone-Related Diseases

hPD-MSC have also been investigated in vivo in other bone-
related diseases, such as osteogenesis imperfecta (OI) and
multiple myeloma (MM).

In a comparison study investigating the characteristics of
hCMSC obtained from first trimester with those obtained from
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term placenta, intraperitoneal injection of early (first trimester)
hCMSC in a murine model of OI (oim) was more efficient in
improving overall bone quality, as shown by a reduction of
fractures, increased bone volume and bone plasticity, when
compared to term hCMSC [111]. Moreover, transplanted first
trimester hCMSC underwent differentiation into functional
osteoblasts as confirmed by COL1A2 protein expression in
the femoral bones of oim [112].

Multiple myeloma is a malignancy giving rise to osteolytic
bone disease and increased fractures. An interesting study has
shown that hPD-MSC were able to suppress MM-induced
bone lesions, and also tumor growth in bone, through osteo-
clast formation and stimulation of endogenous osteoblastogen-
esis when injected into myelomatous osteolytic lesions [113].

Conclusions

In conclusion, the majority of in vitro studies support the
potential of hPD-MSC to differentiate into the osteogenic
lineage, suggesting their possible use in regenerative medicine
to repair osteo-related defects. A large amount of evidence has
been provided based on in vitro calcium deposition and/or
gene expression, each of which point toward different stages
of differentiation potential. In vivo studies, even if in some
cases are very encouraging, are still somewhat preliminary
and are mostly based on the use of one region of placenta,
namely Wharton’s jelly.

Hence, in order to apply hPD-MSC for bone regeneration,
further investigations should be focused on the selection of the
most prone subpopulation, pre-committing hPD-MSC prior to
in vivo use, and selection of the most appropriate support for
differentiation.
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