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Abstract: This work represents a novel combination between Acacia nilotica pods’ extract and the
hydrothermal method to prepare nanoparticles of pure zinc oxide and pure copper oxide and
nanocomposites of both oxides in different ratios. Five samples were prepared with different ratios
of zinc oxide and copper oxide; 100% ZnO (ZC0), 75% ZnO: 25% CuO (ZC25), 50% ZnO: 50% CuO
(ZC50), 25% ZnO: 75% CuO (ZC75), and 100% CuO (ZC100). Several techniques have been applied
to characterize the prepared powders as FTIR, XRD, SEM, and TEM. The XRD results confirm the
formation of the hexagonal wurtzite phase of zinc oxide and the monoclinic tenorite phase of copper
oxide. The microscopy results show the formation of a heterostructure of nanocomposites with an
average particle size of 13–27 nm.

Keywords: Acacia nilotica; wurtzite ZnO; tenorite CuO; nanocomposite; microstructure

1. Introduction

Zinc oxide has been widely applied as photocatalysts [1–4], antimicrobial agents [5–7],
supercapacitors [8,9], sensors [6,10], varistor [11], biosensors [10], in solar cells [12–14],
transparent electrodes [15], and fuel cells [9,16]. This wide range of applications is based
on the characteristics of ZnO as an n-type semiconductor, low-cost, chemical, and thermal
stability, a direct band gap (~3.3 eV), and binding energy of 60 meV [17,18]. Despite all
these characteristics, there are two limitations to commercializing zinc oxide applications.
First, its light absorption falls in the UV region, which deprived zinc oxide of the visible
light absorption. Second, its high rate of charge recombination collapses its photocatalytic
activity. To overcome these drawbacks, a doping zinc oxide or forming composite is
applied [6].

Q. Zeng et al. reported enhanced gas sensing properties of NiO-ZnO nanocomposites,
which they attributed to the formation of a p-n heterojunction [19]. The same observation
was reported by the Yang group regarding the fast response of the Co3O4-ZnO gas sensor
towards triethylamine [20]. Y. Wang et al. successfully enhanced the absorption of zinc
oxide to be in the visible region through forming ZnO-MnO with a bandgap = 2.2 eV with
Mn2+ = 50 at.% [21]. M. Toe et al. tuned the bandgap of ZnO through compositing it
with CuO, NiO, and Al2O3, which changed the bandgap to 3.17 eV, 3.28 eV and 3.16 eV,
respectively [22]. Copper oxide is a p-type semiconductor with a bandgap in the range of
1.2–2 eV. CuO is characterized by a low-cost and non-toxic material which makes it a good
component to form a composite with ZnO.

Various methods are applied to prepare metal oxide nanoparticles and nanocom-
posites as simple precipitation [23], electrochemical method [24], mechanical milling [1],
sol-gel method [2,25], biocombustion [26], co-precipitation [27], green synthesis [28,29],
sonochemical synthesis [30] and hydrothermal method [31,32]. The hydrothermal method
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has many advantages as being simple, low-cost, and low-temperature. Green synthesis
involves the use of plant extracts as capping agents and/or reducing agents instead of
using synthetic surface directing agents as surfactants or polymers which may harm the
environment [18,33,34].

R. Mohamed et al. prepared CuO-ZnO heterojunction photocatalyst through a simple
wet method in the presence of F-127 surfactant [35]. A. Prajapati et al. prepared CuO-
ZnO-C nanocomposites by using extract of Tagetes spp. petals in the presence of CTAB
surfactant [36]. Moreover, the vapor deposition technique was used to prepare CuO-ZnO
and applied in optoelectronics [37]. ZnO-CuO has been prepared by green synthesis using
Sambucus nigra L. extract [28].

Acacia nilotica, also known as gum arabic tree, belongs to the Fabaceae family. It is
popular in Africa and Asia and the tree has roots, pods, stems, and leaves. The extract has
many phytochemical components as flavonoids, phenols, and tannins [38,39]. The pods
have been applied in the synthesis of copper oxide nanoparticles [40], the leaves have been
used in the preparation of silver nanoparticles [38], the aerial parts of Acacia nilotica have
been used to prepare Ag-TiO2 nanocomposites [41].

The recent work reports for the first time the combination between a green synthesis
that employs Acacia nilotica Pods’ extract and the hydrothermal method. Pristine zinc
oxide and copper oxide nanoparticles were synthesized in addition to copper oxide-zinc
oxide nanocomposites with different ratios. The functional groups and the formed phases
were determined by Fourier Transform Infrared spectroscopy (FTIR) and X-ray diffraction
(XRD), respectively. The morphology and particle size were followed by scanning electron
microscopy (SEM) and transmission electron microscopy (TEM).

2. Materials and Methods
2.1. Materials and Instruments

Copper chloride hexahydrate (CuCl2.6H2O), zinc chloride (ZnCl2), potassium hydrox-
ide (KOH) were bought from Sigma-Aldrich. All the primary chemicals used in this work
were of analytical grade. All solutions were prepared with double-distilled water. The
Acacia nilotica pods were bought from a local store, Al-Ahsa, Saudi Arabia.

The FTIR analysis of the copper oxide and zinc oxide nanoparticles and nanocom-
posites was analyzed on Cary 630 FT-IR spectrophotometer. The XRD analysis was per-
formed on Bruker D8 X-ray Diffractometer with Ni-filtered Cu-Kα radiation and a graphite
monochromator to produce X-rays with a wavelength of 1.5418 Å at 35 kV and 25 mA,
using glancing-angle from 10◦ to 60◦ at scan steps of 0.02◦ with an accuracy ≤ 0.001◦. For
further surface morphology, Scanning Electron Microscope (SEM) (Philips XL30) was used,
accelerating voltage of 30 kV and the magnification up to 400,000×. A high-resolution,
JEOL JEM-1011 Transmission Electron Microscope was used for TEM imaging.

2.2. Acacia nilotica Extraction

The Acacia nilotica pods were rinsed with tap water three times and with distilled
water for the last time. To prepare the extract, 10 g of dried pods were boiled with 100 mL
of distilled water at 60 ◦C for 15 min under magnetic stirring. The prepared extract was
centrifuged at 8000 rpm for 5 min and then filtered via Whatman No. 1 filter paper, to
remove all fine plant debris and stored at 4 ◦C [42]. The pH of the extract is 5.71.

2.3. Green Synthesis

A 0.2 M solution of copper chloride hexahydrate (CuCl2.6H2O) and a 0.2 M solution
of zinc chloride (ZnCl2) were prepared in two different containers. The compositions of
samples are mentioned in Table 1. As an example, 20 mL of the Acacia nilotica extract is
added to a 100 mL of 0.2 M zinc chloride salt solution to prepare sample ZC0. A 1 M KOH
was added to the previous mixture while under continuous stirring until the pH reaches 10.
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Table 1. Sample codes and corresponding volumes of precursors (mL).

Sample Code ZC0 ZC25 ZC50 ZC75 ZC100

ZnCl2 100 75 50 25 0

CuCl2.6H2O - 25 50 75 100

2.4. Hydrothermal Synthesis

The prepared precipitate was transferred to a Teflon-lined autoclave, which was placed
in an oven at 250 ◦C for 2.5 h. After the completion of hydrothermal treatment, the solution
is subjected to sonication for an hour in 100 mL distilled water. The sample was then left to
settle down and the liquor was disposed of. The sonication and settling down steps were
repeated three times with water and one time with ethanol. The sonication was executed
by using Power sonic405 ultrasonic bath to cleanse the samples. The samples were dried in
an oven overnight at 75 ◦C. In the end, the samples were calcined at 300 ◦C for 2 h to get
rid of the extract residuals. Scheme 1 represents the synthesis steps.
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Scheme 1. The synthesis steps for samples prepared by green assisted-hydrothermal method.

3. Results
3.1. FTIR Characterization

Figure 1 represents the FTIR of ZC0, ZC25, ZC50, ZC75 and ZC100 samples after
calcination at 300 ◦C for 2 h. In some samples, a shallow broad peak around 3200 cm−1 is
assigned for the OH group. The peak at 1600 cm−1 is assigned for absorbed water molecules
from the surrounding [43]. The peaks below 700 cm−1 can be assigned to metal–oxygen
bonds in both zinc oxide and copper oxide [44]. In sample ZC0, which is pristine zinc
oxide, the deep peak below 700 cm−1 is assigned for the Zn-O bond [32]. The depth of
this peak decreases as the content of ZnO decreases in samples ZC25, ZC50 and ZC75,
respectively. In sample ZC100, which is pristine copper oxide, the less deep peak below
600 cm−1 indicates the presence of Cu-O. Going from sample ZC75, ZC50 to ZC25, the
depth of this band increases as the content of copper oxide decreases and the content of
zinc oxide increases [26]. The FTIR results confirm the formation of pristine zinc oxide,
zinc oxide-copper oxide nanocomposites and pristine copper oxide in samples ZC0, ZC25,
ZC50, ZC75, and ZC100, respectively.
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Figure 1. FTIR spectra of the ZC0, ZC25, ZC50, ZC75, and ZC100 samples.

Figure 2a represents the FTIR of Acacia nilotica pods’ extract, sample ZC50 (b) after
precipitation, (c) after hydrothermal treatment and drying and (d) after calcination. The
FTIR of Acacia nilotica pods’ extract shows a very broad band between 2800–3600 cm−1

which may correspond to the stretching vibration of aromatic and aliphatic OH groups
(3200–3500 cm−1) or stretching of aromatic and aliphatic C-H (3000–3100 cm−1). A sharp
finger-like peak around 1500–1700 cm−1 stands for carbonyl groups or bending of aromatic
C=C. A very broad band below 1000 cm−1 may refer to the bending of aromatic C-H or
C-O-C groups. According to the literature, the FTIR results of Acacia nilotica pods’ extract
confirm the presence of flavonoids, tannins and terpenoids in the extract [38,39]. The FTIR
spectrum of sample ZC50 after adding KOH is shown in Figure 2b where all the peaks
of the extract can be seen. Figure 2c shows the FTIR spectrum of the sample after the
hydrothermal treatment and drying which results in the disappearance of the peaks related
to the extract. Figure 2d shows the FTIR of the sample after calcination at 300 ◦C for 2 h,
which results in the sharpness of peaks related to M-O bonds between 400–600 cm−1 [26].Materials 2022, 15, x FOR PEER REVIEW 5 of 13 
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3.2. XRD Characterization

Figure 3 represents the XRD patterns of the samples ZC0, ZC25, ZC50, ZC75, and
ZC100 prepared by the green-hydrothermal technique (pH = 10, T = 250 ◦C, t = 2.5 h)
and calcined at 300 ◦C for 2 h. The ZC0 sample shows peaks at 2θ~31.96◦, 34.61◦, 36.44◦,
47.74◦, and 56.73◦ corresponding to the diffraction planes (1 0 0), (0 0 2), (1 0 1), (0 1 2),
and (1 1 0) of a wurtzite hexagonal structure according to Card no. 96-900-4179 [36]. The
XRD results confirm that sample ZC0 is formed completely of zincite, which is pure zinc
oxide with a hexagonal phase. For the sample ZC100, the peaks appear at 2θ~32.47◦, 35.60◦,
38.90◦, 48.96◦, and 53.576◦ for (1 1 0), (11-1), (1 1 1), (2 0-2), and (0 2 0) according to Card
no. 96-721-2243, which represents the monoclinic phase of copper oxide. The XRD results
confirm that sample ZC100 is formed completely of tenorite, which is pure copper oxide
with a monoclinic phase [36,45–47].
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Figure 3. The XRD patterns of the ZC0, ZC25, ZC50, ZC75, and ZC100 samples.

Samples ZC25, ZC50, and ZC75 show the peaks corresponding to wurtzite hexagonal
zinc oxide and tenorite monoclinic copper oxide with different intensities. However, the
intensity of peaks corresponding to wurtzite zinc oxide is decreasing gradually in the
samples ZC25, ZC50, and ZC75 with decreasing the amount of zinc precursor in the
starting materials. The same can be observed in an opposite way for the monoclinic tenorite
and the intensity of copper oxide peaks increases gradually in samples ZC25, ZC50, ZC75
with an increasing copper precursor in the initial compositions (Table 1) [2,26,48]. There are
no peaks detected by XRD for Zn metal, Cu metal, or any other compounds which indicates
the high purity of formed ZnO-CuO nanocomposites. In addition, there is no observed
shift in the corresponding peaks of either ZnO or CuO, which indicates the heterostructure
formation of ZnO-CuO and no incorporation [49].

The crystallite size of zinc oxide and copper oxide is estimated using the Debye–Scherrer
formula and presented in Figure 4 [50]. The crystallite size of zinc oxide is calculated based
on the main peak corresponding to plane (101) and based on the main peak corresponding
to plane (111) of tenorite copper oxide. The crystallite size of pristine zinc oxide is 26 nm,
and the crystallite size of pristine copper oxide is 29 nm. It seems that adding copper oxide
(25%) to zinc oxide derives a rise in the crystallite size of zinc oxide to 30 nm compared
to pristine zinc oxide (26 nm). Further increase of copper oxide (50% and 75%) develops
a decrease in the crystallite size of zinc oxide to 21 nm and 17 nm, respectively. On the
other hand, adding zinc oxide to copper oxide produces a decrease in the crystallite size of
copper oxide to 15 nm, 21 nm, and 27 nm in samples (ZC 75, ZC50, and ZC25) compared
to 29 nm of pristine copper oxide. A. Lavin et al. prepared ZnO-CuO nanocomposites
through the sol-gel method and found that the crystallite size of zinc oxide and copper
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oxide varied with composition [47]. It is worth noting that in their results when a sample
has equal amounts of zinc oxide and copper oxide; the crystallite size is about 48 nm for
both oxides. In another study, the average crystallite size of ZnO/CuO nanocomposite
powders was 30 nm when the solvent was water and it decreased to 25 nm when the
solvent changed to water/ethanol [44]. While in this work, sample ZC50 has a crystallite
size of 21 nm for both oxides. This may be related to the effect of capping agents found in
Acacia nilotica extract, which seems to be more effective as a capping agent than ethanol
as a solvent in decreasing the crystallite size [47]. C. Kumar et al. prepared ZnO-CuO by
combustion method assisted with extract of Calotropis gigantea, and the average crystallite
size was about 35 nm [29]. M. Mansourina et al. reported that the average crystallite size
of hydrothermally synthesized ZnO and CuO are 26 and 21 nm, respectively. It is worth
noting that the mentioned crystallite size is for the as-prepared samples, which are smaller
than the crystallite size of the calcined samples [51]. Again, the integration of hydrothermal
with green synthesis resulted in a less average crystallite size. Ultimately, the XRD results
show that the green assisted-hydrothermal method successfully synthesizes zinc oxide
nanoparticles, copper oxide nanoparticles, and zinc oxide–copper oxide nanocomposites
with no other alloys or intermediate compounds with crystallite size 15–29 nm.
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3.3. Morphology

Figure 5 represents the surface morphology of the different samples as investigated by
SEM. Sample ZC0 is shown in Figure 5a,b and its morphology is composed of agglomerated
particles along with stacked layers. In our previous work on hydrothermally prepared pris-
tine ZnO without capping agents, ZnO had a morphology of short nanorods or nanoflakes
depending on the synthesis conditions [52]. Sample ZC100 is presented in Figure 5i,j and it
is formed of bipyramidal morphology. M. Quirino et al. prepared CuO with a microwave
hydrothermal method without any surfactants, and it resulted in a plate-like shape [53].
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P. Gao et al. prepared CuO with a hydrothermal method without any surfactants, and it
resulted in a dumbbell-like morphology [54]. H. Chen et al. prepared CuO with a hydrother-
mal method in the presence of sodium dodecyl benzenesulfonate as a soft template, which
resulted in the formation of 3D nanobundles consisted of nanorods [55]. Acacia nilotica
phytoexctract acted as capping agents which enhances the growth of CuO bipyramid.
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Adding 25% copper oxide into zinc oxide resulted in changing the morphology from
stacked layers/aggolmerated particles into homogenous elongated particles, as can be
depicted in Figure 5c,d. Increasing copper oxide to 50% resulted in intermeshed flakes of
ZnO along with CuO particles, Figure 5e,f. In sample ZC75, Figure 5g,h, the zinc oxide
is represented by rosette shape and copper oxide has a smaller particle size compared to
sample ZC50. H. Ullah et al. prepared ZnO-CuO nanocomposites with vegetable waste
extract of cauliflowers, potatoes, and peas, and they found that the extract type has an
impact on the morphology. The morphology of ZnO-CuO prepared with cauliflowers, pota-
toes, and peas were rods, a mixture of rods/spindles, and nanoparticles, respectively [56].
V. Kumari et al. prepared ZnO-CuO with a hydrothermal synthesis without any surfac-
tants with a Zn/Cu molar ratio = 8:1, which resulted in a bittergourd morphology [57].
M. Mansournia et al. reported that CuO did not form individual morphology of CuO
when CuO = 0.4, 2 and 10% CuO. However, CuO nanoplates were formed when the CuO
increased to 50% along with ZnO-CuO nanoparticles [51]. P. Lu et al. prepared CuO-ZnO
nanocomposites via hydrothermal method and reported that pristine CuO and pristine
ZnO have nanosheets that collapsed into smaller sheets with increasing CuO [58]. T. Chang
et al. prepared CuO-ZnO nanocomposites via hydrothermal method and reported that
the morphology of pristine ZnO is nanoplates and the morphology of CuO in ZnO-CuO
nanocomposites is nanoparticles well-distributed with ZnO [59].

Figure 6 represents the TEM photos for the samples after calcination. The SAED
images of all the samples approve the formation of crystalline materials, which is reflected
through concentric rings which have been discussed in the XRD results. The average
particle size drawn from TEM is about 13 nm, 14 nm, 15 nm, 26 nm, and 27 nm for samples
ZC0, ZC25, ZC50, ZC75, and ZC100, respectively. Figure 6a,b represents sample ZC0
and its images show spherical particles and polygonal shapes. Figure 6c,d, sample ZC25,
shows a ZnO elongated shape on the bottom left corner with small spherical particles on its
surface, which may be referred to as CuO. Sample ZC50, in Figure 6e,f, and Sample ZC75,
in Figure 6g,h, show spherical particles of CuO along with flake of ZnO, which highlights
the efficiency of the extract in heterojunction formation [60]. The same observation was
reported by J. Singh et al., who prepared CuO decorated ZnO nanoflakes by a hydrothermal
method assisted with cetyltetra amine bromide (CTAB). Sample ZC100 shows spherical
particles of CuO, as shown in Figure 6. The TEM results are in agreement with SEM results.

In the present study, ZnO NPs, ZnO-CuO NCs, and CuO NPs have been prepared by
an inexpensive and environmentally friendly method; the green-hydrothermal method.
The proposed mechanism is presented in the following equations;

CuCl2.6H2O (aq) + 2KOH + phytoconstituents of extract→ Cu(OH)2 capped with phytoconstituents + 2KCl

ZnCl2 (aq) + 2KOH + phytoconstituents of extract→ Zn(OH)2 capped with phytoconstituents + 2KCl

Cu(OH)2/Zn(OH)2 (hydrothermal treatment)→ CuO/ZnO

The presence of phytoconstituents, i.e., flavonoids, tannins, and terpenoids; in the Aca-
cia nilotica pods’ extract act as capping agents. The capping agents play an important role in
decreasing the agglomeration and in controlling the growth during the hydrothermal step.
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4. Conclusions

In the recent work, successful combination of Acacia nilotica pods’ extract with the
hydrothermal method resulted in the synthesis of ZnO NPs, ZnO-CuO NCs, and CuO
NPs. The prepared ZnO NPs have a hexagonal wurtzite phase and the CuO NPs have a
monoclinic tenorite phase. Interestingly, ZnO-CuO NCs have a hexagonal phase for ZnO
and a monoclinic phase for CuO with no secondary phases. The average crystallite size of
NPs and NCs is in the range of 17–30 nm. The morphology of the particles depend on the
ratio ZnO-CuO and the prepared particles showed different morphologies as agglomerated
particles, nanorods, intermeshed flakes together with irregularly shaped particles.
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