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Abstract
Background  Dysbiosis, an imbalance in the bacterial composition of the human gut microbiota, is linked to 
inflammatory bowel disease (IBD). Advances in biological techniques have generated vast microbiota datasets, 
presenting both opportunities and challenges for clinical research in that field. Network theory offers powerful tools 
to analyze these complex datasets.

Methods  Utilizing genetically unrelated individuals from the Kiel IBD-KC cohort, we compared network properties 
of the gut microbiota between patients with inflammatory bowel disease (IBD, n = 522) and healthy controls (n = 365), 
and between Crohn's disease (CD, n = 230) and Ulcerative Colitis (UC, n = 280). Correlation-based microbial networks 
were constructed, with genera as nodes and significant pairwise correlations as edges. We used centrality measures to 
identify key microbial constituents, called hubs, and suggest a network-based definition for a core microbiota. Using 
Graphlet theoretical approaches, we analyzed network topology and individual node roles.

Results  Global network properties differed between cases and controls, with controls showing a potentially more 
robust network structure characterized by e.g., a greater number of components and a lower edge density. Local 
network properties varied across all groups. For cases and both UC and CD, Faecalibacterium and Veillonella, and 
for unaffected controls Bacteroides, Blautia, Clostridium XIVa, and Clostridium XVIII emerged as unique hubs in the 
respective networks. Graphlet analysis revealed significant differences in terminal node orbits among all groups. Four 
genera which act as hubs in one state, were found to be terminal nodes in the opposite disease state: Bacteroides, 
Clostridium XIVa, Faecalibacterium, and Subdoligranulum. Comparing our network-based core microbiota definition 
with a conventional one showed an overlap in approximately half of the core taxa, while core taxa identified through 
our new definition maintained high abundance.

Conclusion  The network-based approach complements previous investigations of alteration of the human 
gut microbiota in IBD by offering a different perspective that extends beyond a focus solely on highly abundant 
taxa. Future studies should further investigate functional roles of hubs and terminal nodes as potential targets for 
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Introduction
Inflammatory Bowel Diseases (IBD), encompassing mainly 
Crohn's disease (CD) [1] and Ulcerative Colitis (UC) [2] 
are chronic inflammatory disorders that are associated 
with significant morbidity. Despite overlapping symptoms, 
CD and UC exhibit distinct characteristics. UC primarily 
affects the colon and rectum, in contrast CD most com-
monly involves the terminal ileum and large intestine [3]. 
In CD inflammation typically affects all layers, whereas in 
UC it is confined to the mucosa [4]. While both conditions 
impact patient's quality of life, CD is often perceived as 
more severe by patients [5]. The global prevalence almost 
doubled between 1990 (3.7 million) and 2017 (6.8 million) 
[6]. IBD is a multifactorial disease and part of its develop-
ment and progression can be linked to a dysbiosis of the 
gut microbiome, an alteration of the microbiome composi-
tion [7]. Other risk factors include genetic predisposition 
[8], smoking, environmental factors [9], and dietary fac-
tors [10]. The gut microbiome is a complex and dynamic 
ecosystem consisting of trillions of microorganisms that 
interact with each other and with the host in complex 
ways. It also plays a crucial role in maintaining host health, 
including regulating metabolism, immune function, and 
even brain function [11]. Identifying important compo-
nents of the gut microbiota in IBD is of great interest, as it 
may unveil potential avenues for preventive measures and 
therapeutic interventions. Studies have shown that the gut 
microbiome in IBD patients differs significantly from that 
of healthy individuals, with notable reductions in micro-
bial diversity and richness [12, 13]. These changes extend 
to the overall composition, where some bacterial taxa are 
observed to be either depleted or enriched in IBD patients 
[7]. These compositional and functional alterations in the 
microbiome are not only linked to disease mechanisms, 
but also hold promise for clinical applications. In particu-
lar, the gut microbiome represents a promising non-inva-
sive diagnostic tool for IBD [14], as well as a therapeutic 
target [15].

The collection of vast microbiome data sets in recent 
years presents a unique opportunity for comprehending 
the complex microbial communities within the human 
body. But it also presents a significant challenge for 
researchers to handle and analyze such complex data. 
Network theory has emerged as a potent tool to better 
understand the complexities of biological systems, for 
example when analyzing protein–protein interaction net-
works [16]. Network theory can complement other sta-
tistical methods by providing researchers with the means 

to investigate the relationships between individual com-
ponents within a system and their interaction as a whole. 
Two types of networks can be distinguished: data-driven 
networks, which are statistical networks based on data, 
and knowledge-driven networks, which utilize prior bio-
logical knowledge. For instance, co-occurrence and cor-
relation-based networks represent the former, whereas 
metabolic networks constructed using pathways exem-
plify the latter.

When constructing microbial correlation-based net-
works, taxa serve as nodes which are connected through 
edges based on measures of association. Edges exist 
between pairs of taxa that exhibit significant co-occur-
rence patterns across samples. For instance, Faust et al. 
[9] employed network-based methods to analyze the 
microbial communities and found that such networks 
can reveal complex interactions that are not immediately 
obvious through traditional methods. However, there are 
several difficulties in construction and interpretation, 
such as data normalization. A study by Abbas et al. [17] 
highlighted how microbial network-based feature selec-
tion could be used for identifying IBD biomarkers, partic-
ularly in distinguishing disease phenotypes from healthy 
controls. Their approach integrated network-wide and 
node-level measures, such as centrality and resilience, 
to refine biomarker discovery. Identifying which are the 
most important taxa remains a challenge; however, it is 
of great interest in the study of IBD to understand their 
function. A set of taxa that is characteristic for a host 
or environment oftentimes is called the core, typically 
defined based on thresholds of abundance and preva-
lence, see for example [18]. However, abundance and 
prevalence alone do not necessarily denote importance, 
and establishing cut-off values is arbitrary. For instance, 
thresholds for relative abundance range from 0.001 to 
4.5%, while prevalence cut-offs range from 50 to 100% 
[18]. These criteria might overlook other crucial factors, 
such as the role of specific taxa in maintaining over-
all community structure [19], potentially leading to an 
incomplete understanding of the core microbiota's com-
position and stability. Furthermore, with differences in 
clinical factors and the microbiota observed across sub-
types of IBD, more analyses to unravel the nuanced differ-
ences in CD and UC are needed [20]. A different method 
to characterize important nodes are centrality concepts. 
Since centrality is inherently a rank-based metric, it 
does not require the application of an explicit threshold. 
Thresholds are only necessary when identifying specific 

interventions and preventions. Additionally, the advantages of the newly proposed network-based core microbiota 
definition, should be investigated more systematically.
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subsets, to define and distinguish nodes of interest within 
the network. The concept of centrality in co-occurrence 
networks as a proxy for importance has been supported 
in various microbiome studies, like protein–protein net-
works [21], co-occurrence networks for soil microbiota 
[22] and in the microbial community [23]. Nodes with 
high centrality often represent"keystone"taxa that can 
exert significant influence over microbial community 
structure and stability [24].

As outlined above, network analysis has been applied 
in several studies investigating the human gut microbi-
ome in the context of IBD. However, defining important 
nodes or taxa remains challenging and even network-based 
approaches often rely on abundance or prevalence, assum-
ing that highly abundant taxa are also the most influential. 
Moreover, nuanced differences between CD and UC have 
not yet been investigated very much within network-based 
frameworks. Additionally, existing studies report heteroge-
neous findings regarding differences in local and global net-
work properties. Most network analyses focus on describing 
these properties but often cannot provide detailed insights 
into the role of individual nodes, due to limitations inherent 
in the network construction process.

In this study, we employed data from the IBD Kin-
dred cohort (IBD-KC) [25], comprising a collective sam-
ple size of over 887 subjects from Northern Germany, 
including 522 IBD patients (in the following referred 
to as cases) and 365 healthy controls (in the following 
referred to as controls). Our goal was to employ network-
based approaches to characterize the gut microbiota in 
both health and disease. We constructed microbiota net-
works, using 16S rRNA gene abundance data separately 
for cases and controls, as well as for CD and UC patients. 
These networks were analyzed to assess global and local 
properties, providing insights into structural differences 
between healthy and dysbiotic microbiomes. By assess-
ing the centrality of nodes, we described the impor-
tance of genera and identified hubs, genera which could 
potentially be serving as critical players in the difference 
between a healthy and a dysbiotic state of the microbiota. 
Furthermore we used those hubs to provide a different 
definition for the core microbiota. Additionally, we uti-
lized graphlet theoretical approaches [26, 27] to analyze 
the network's topology and discern the roles of individual 
nodes. This enabled us to unravel patterns of connectiv-
ity and uncover distinct patterns within the microbiota 
network.

Methods
Study design and population
The Kindred cohort (IBD-KC) is a family-based IBD 
cohort, where families were recruited based on at least 
one patient with IBD. Briefly, the IBD-KC is a prospec-
tive study initiated in 2013 in Kiel, Germany, and ongoing 

since then, currently including 1715 study participants. 
We used the cohort as a case–control study design, 
including index patients (with IBD) as cases and unaf-
fected family members as controls. Recruitment of IBD 
patients was carried out through treating physicians, 
clinics, study flyers, letters, and information disseminated 
by patient organizations like the German Crohn's Dis-
ease/Ulcerative Colitis Association. Biomaterial examples 
including stool are available, see supplement for details 
of gut microbiome data generation and preprocessing. 
Questionnaires were filled out in a self-reported manner 
and for cases in addition by their treating physician, from 
which IBD diagnoses were curated to be grouped into the 
correct subtype.

Using only genetically unrelated individuals (R package 
kinship2 version 1.9.6.1, function pedigree.unrelated) as 
cases and controls, at baseline, a total of 887 participants 
were used for the current analysis, including 365 healthy 
controls and 522 cases (230 with ulcerative colitis (UC), 
280 with Crohn's disease (CD), and 12 with undefined 
colitis). Despite only including genetically unrelated indi-
viduals, meaning any two individuals are unrelated irre-
spective of case or control status, similar environments 
might affect the analysis.

Network-based analysis
To gain a comprehensive descriptive overview, we initi-
ated the analysis by following traditional steps to confirm 
expected differences in established measures between 
cases and controls [28]. Here, we are mainly interested 
in the feature diversity within individual samples and 
comparing them across groups (cases and controls, and 
CD and UC), therefore we focus on alpha diversity. The 
Chao1 index (R package fossil version 0.4.0) is a measure 
of richness, whereas the Shannon index (diversity func-
tion from the R package vegan version 2.6–4) is a mea-
sure of evenness.

Data preparation
To construct microbial correlation-based networks, 16S 
rRNA gene microbial abundance data was used. The 
initial step in preparing the data, splitted into groups, 
involves filtering out a specific set of genera and samples. 
Filtering steps help reduce the complexity of data and 
technical variability, and create more reproducible results 
[29, 30]. Genera are kept if: (i) the number of reads aver-
aged over all samples is at least 0.001% of the total num-
ber of reads and (ii) they are observed in at least 1% of 
the samples. We consider these cutoffs robust, as sup-
ported by sensitivity analyses in other studies examining 
the impact of filtering steps, such as e.g. [31]. Samples are 
kept if the total number of reads after quality control is at 
least 10,000. These filtering steps lead to a reduction from 
548 to 87 genera and 11 fewer controls (354 from 365), 
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and three fewer cases (519 from 522). Applying the same 
filtering steps separately for the networks for CD and UC 
leads to a reduction from 548 to 86 genera, and one fewer 
sample for UC (229 from 230) and two fewer samples for 
CD (278 from 280).

To address the compositional nature of the data and 
allow the use of correlation-based methods, we applied 
a centered log-ratio (CLR) transformation. Prior to the 
CLR transformation, zero values were handled using a 
Bayesian approach (function cmultRepl from the R pack-
age zCompositions version 1.5.0–3), which replaces zeros 
with small positive values based on the data distribution. 
As association measure between genera we used Pear-
son correlation after log-ratio transformation, as imple-
mented in SparCC [32]. This has been proposed and is 
widely used for sparse, compositional data such as micro-
biome abundances.

Network construction
Using the NetCoMi R package [33], we constructed 
microbial correlation-based networks separately for 
controls, for cases, for CD patients, and for UC patients. 
Microbial genera serve as nodes and edges represent the 
Pearson correlation coefficient between pairs of gen-
era, computed using the SparCC algorithm [32]. Two 
nodes are connected through an edge, if the correla-
tion between those nodes significantly differs from zero.
The resulting network reveals patterns among different 
microbial genera. We retained statistically significant 
edges based on a one-sample Student’s t-test as a spar-
sification method. Taking into account multiple testing, 
p-values are adjusted using the local false discovery rate 
correction, with a family-wise significance level set at 
0.05. To identify clusters within a microbial network, 
groups of highly connected nodes, the cluster-fast-
greedy algorithm is used [34]. For visualization pur-
poses, the"spring layout"in the R package is employed 
with the netPlot function. This approach should be dis-
tinguished from differential network analysis, where the 
abundance of a genus in one group is subtracted from 
its abundance in another group, resulting in a single 
combined network without group-specific partitions. 
This can lead to false differential edges caused by the 
change of conditional variances. The need for rigorous 
statistical methods requires more complex models to 
ensure the robustness of the results [35].

Network analysis
The resulting networks are further analyzed based on 
global and local network characteristics. The following 
global network properties were calculated: (1) Number 
of components [36]: subnetworks where any two nodes 
are connected by a path, each single unconnected node 
is a component too, as connected to itself via the trivial 

path, (2) Clustering coefficient [37]: indicates how likely 
it is for neighboring nodes of a particular node to be 
connected to each other, a high clustering coefficient 
indicates a network where nodes tend to form clusters, 
(3) Modularity [34]: is a measure to evaluate the quality 
of a division of a network into clusters, measuring the 
number of within cluster edges, relative to a null model 
of a random network, (4) Positive edge percentage [38]: 
indicates the percentage of edges with positive estimated 
correlation of the total number of edges, (5) Edge den-
sity [39]: the proportion of present edges relative to the 
number of possible edges in the network, (6) Edge num-
ber: considering that edge density is a relative measure 
of network connectivity, the product of edge density and 
the number of components, referred to as edge number, 
provides a more comprehensive assessment of network 
complexity, and (7) Natural connectivity [40]: robustness 
measure, corresponding to the average eigenvalue of the 
adjacency matrix. Other measures were only calculated 
for the largest connected component (LCC): (8) Relative 
LCC size [36]: calculated as number of nodes in the LCC 
divided by number of nodes in the whole network, (9) 
Average dissimilarity [41]: dissimilarity is defined as 1- 
edge weight, where the edge weight is the absolute value 
of the strength of the correlation coefficient between 
pairs of nodes, and (10) Average path length [42]: average 
number of steps along the shortest path for all possible 
pairs of connected nodes.

Local properties/Hubs
In order to describe the importance and influence of 
nodes within the network we calculated node centrality 
measures. In this study degree, betweenness, and close-
ness centrality are used. Normalized versions of between-
ness and closeness were calculated, by dividing the 
centrality measure by n-1, n being the number of nodes 
in the network. For better comparability, all centrality 
measures were min/max scaled. Betweenness central-
ity is defined as the number of shortest paths that pass 
through a node, indicating the importance of a genus as a 
bridge, connecting different parts of the microbiota net-
work [43, 44]. Closeness centrality is based on distances, 
i.e. the lengths of paths to all other genera in the network 
[45]. If a node is unconnected its closeness centrality is 
considered zero or undefined. Degree centrality, sim-
ply the number of edges of a node, quantifies the num-
ber of connections that a genus has with other genera in 
the network, indicating that node's overall importance in 
the network [46]. An important genus in terms of node 
degree will have many neighbors.

Hub nodes are defined as nodes with the highest cen-
trality for all selected measures. Specifically, nodes 
with each centrality value above the 90th percentile are 
defined as hubs. We chose to characterize important 
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nodes as hubs in the microbiome network rather than 
relying solely on abundance and prevalence, as hubs pro-
vide a more comprehensive view of their importance. 
For example, Fisher et al. [47] identified Bacteroides as 
a"keystone species"in microbial communities, despite 
its relatively low median abundance. While abundance 
measures the commonness of a taxon, centrality met-
rics, such as degree and closeness, are more indicative of 
a taxon’s influence on structure and stability [48, 49]. A 
study by Berry et al. [23] has demonstrated that utilizing 
high degree and closeness centrality, can identify key-
stone taxa with 85% accuracy.

Additionally, the Jaccard index, as proposed by [50], 
was computed for each centrality measure, expressing 
for each centrality measure how similar the sets of most 
central nodes (above the 0.90 quantile) are among two 
networks.

Core microbiota
In our study, we examined the core microbiota sepa-
rately for cases and controls, as well as for CD and UC, 
at the genus level. Oftentimes the definition of the core 
microbiota is based on prevalence metrics, alongside 
relative and/or absolute abundance considerations, 
with typical thresholds being 50/100 for prevalence and 
0.1/100 for abundance [18]. We suggest a different defi-
nition of the core microbiota making use of the concept 
of hub nodes, by considering all identified hub genera as 
core members. To enhance comparability between both 
definitions, we lowered the percentile in the definition 
of hubs, until the same number of genera is achieved as 
in the used abundance/prevalence core definition. We 
investigated the overlap in terms of core microbiota 
members between cases and controls, as well as between 
CD and UC. To further compare group wise, we calcu-
lated for all genera in the core and with both definitions 
separately: (i) the average prevalence: average percent-
age of core genera present per sample, (ii) the cumulative 
total abundance: abundances of core genera summed for 
genera and averaged over samples, and (iii) the averaged 
value of all centrality measures. For these analysis steps 
we created phyloseq objects [51] and used the R pack-
age microbiome [52] and its functions “transform” and 
“core_members”.

Network comparison/Differential network analysis
In the last step, two constructed networks (controls vs. 
cases and CD vs. UC) can be compared, regarding local 
and global network properties.

Permutation tests are used to compare local and 
global network properties between two groups. The 
null-hypothesis is defined as  H0 : nProps1 = nProps2, 
where nProps1 and nProps2 denote the local/global net-
work property in group 1 and 2 respectively. To obtain 
sampling distributions of the differences under the null 
hypothesis, we employ standard nonparametric permu-
tation procedures. This involves randomly reassigning 
group labels to the samples while maintaining the origi-
nal group sizes. Similar steps are followed to assess sig-
nificant differences in the global network measures for 
both groups. To assess the difference between the two 
sets of most central nodes (hubs) the Jaccard index is 
used, ranging from 0 (no nodes in common) to 1 (equal 
sets). To test if that index is different from a randomly 
expected index, a permutation-based approach (1000 
permutations) following Real and Vargas [50] is applied.

Graphlets
By analyzing the distribution of graphlets and orbits 
within a network, one can identify recurring patterns of 
connectivity that are not immediately apparent from an 
examination of the entire network. Graphlets are induced 
sub-graphs of k connected nodes from the complete 
graph [26, 53], see Fig.  1. Orbits contain nodes, which 
when swapped result in an automorphism of the same 
graphlet. Grouping nodes into orbits allows one to ana-
lyze the individual role of nodes better, as orbits repre-
sent different local network structures. Regarding k = 4 
nodes, there are 11 non-redundant orbits: Orbit 0 rep-
resents the node degree, while orbits 2, 5, and 7 repre-
sent nodes within a chain, orbits 8, 10, and 11 represent 
nodes in a cycle, and orbits 6, 9, 4, and 1 represent ter-
minal nodes. To compute the graphlet correlation matrix 
(GCM) [54], we followed a series of steps. First, we 
computed a matrix containing for each node the orbit’s 
degree, that is, the number of times the node is present 
in each orbit. The columns of this matrix are called the 
graphlet degree distribution and rows are called graphlet 
degree vectors, allowing for the analysis of the roles of 
individual nodes. By computing Spearman's correlation 

Fig. 1  Graphlets up to four nodes. Graphlets with k = 2 to k = 4 nodes. Node colors correspond to orbit types within each graphlet, labeling refers to 
orbits. Adapted from [26]
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coefficient between all pairs of columns from the above 
described matrix, one ends up with the GCM. Here, we 
used the Spearman correlation instead of the Pearson 
correlation. Being rank-based, Spearman correlation can 
detect monotonic but non-linear relationships, making it 
well-suited for identifying broader patterns of association 
[53]. To compare GCMs between two groups, we created 
a new GCM by subtracting the entries from the upper 
triangles of each GCM. Subsequently, we conducted a 
Fisher’s z-test to assess the significance of the absolute 
differences between graphlet correlations in this new 
GCM [26, 53]. Only orbits up to k = 4 nodes are taken 
into account, and orbit counts are calculated using the 
function count4 from the orca package in R [26]. Addi-
tionally, a row with pseudo-counts of 1 is added, to deal 
with the problem of missing values that would occur for 
unobserved orbits.

By comparing two networks and their GCMs, we chose 
orbits of interest, based on the discrepancy in pairwise 
similarity of subgraph patterns. Specifically, we focus 
on orbits where the similarity between corresponding 
entries in the two distinct GCMs significantly varies in 
terms of Spearman correlation coefficient values. We 
propose that nodes with similar local network structures, 
predominantly occurring in the same orbits, may exhibit 
similar metabolic functions. This idea aligns with findings 
in the literature [55, 56], showing an association between 
co-occurrence and metabolic dependence. Therefore, we 
map genera back to orbits of interest to gain biological 
insights. To map genera back, we use the graphlet degree 
distribution, arranging the rows with orbits of interest by 
genus occurrence within each selected orbit. By select-
ing the top 25 genera for each orbit, we identify common 

genera across all selected orbits. The choice of the top 25 
genera per orbit was a practical one, balancing focus on 
prominent genera with manageable analysis size. These 
shared genera serve as focal points for comparative anal-
ysis between groups, such as cases versus controls, as 
well as between CD and UC.

Results
Characterization of IBD-KC cohort
Clinical and gut microbiota-specific data of IBD cases 
and healthy controls from the IBD-KC cohort is given 
in Table  1. There are significant differences in all of 
those variables between cases and controls, suggesting 
to adjust for those variables. However, network analysis 
does not easily allow for the inclusion of covariates [57]. 
Here, stratification would be the only feasible approach, 
which would severely reduce the sample size. Sample 
size is critical for network analysis [58], particularly 
when conducting permutation tests. Given the impor-
tance of maintaining an adequate sample size, we chose 
not to pursue stratification in this study.

Preceding the network-based analysis of the human 
gut microbiota, we analyzed some characteristics of 
the human gut microbiota in the context of IBD and its 
subtypes.

As expected, the analysis demonstrated significantly 
reduced microbial richness (Chao1 index, Fig.  2a) in 
individuals with IBD compared to unaffected controls, 
with CD exhibiting significantly lower values than UC. 
Additionally, IBD cases displayed significantly decreased 
microbial evenness (Shannon index, Fig. 2b), particularly 
evident in CD compared to UC again.

Global properties
Following the network construction, we analyzed global 
properties of the networks and their largest connected 
component (LCC), and compared them between cases 
and unaffected controls, as well as between CD and UC 
patients, see Table 2. Furthermore, we compared CD to 
controls and UC to controls separately, see Supplemen-
tary table S T1.

Cases and controls demonstrated differences in both 
global network properties, as well as characteristics 
specific to the largest connected component (LCC). 
Notably, the number of components (already a single 
unconnected node counts as a component) differed sig-
nificantly between cases and controls, as well as the num-
ber of clusters (see Fig. 3). The clustering coefficient and 
natural connectivity were significantly higher in cases 
compared to controls. Controls exhibited significantly 
higher modularity and displayed a higher percentage of 
positive edges, indicating more microbial genera cor-
related within their networks. Controls also exhibited 
lower edge density compared to cases, suggesting that 

Table 1  Characterization of the IBD-KC cohort
IBD-KC
IBD cases non IBD 

controls
pIBD

a

Subjects, n 522 365 -
Female sex, n (%) 342 (65.52) 193 (52.88) 8.8 

× 10–3

Age, years 56 (44, 64) 60 [49, 70]  < 
10–5

BMI, kg/m2 24.01 [21.72, 
26.81]

25.08 [22.48, 
27.99]

1.15 
× 10–4

Current Smoker, n(%) 54 (10.34) 34 (17.62) 9.3 
× 10–3

Gut microbiota
  Shannon index (evenness) 2.19 [1.89, 

2.40]
2.30 [2.11; 
2.46]

 < 
10–5

  Chao1 index (richness) 43 [35, 49.75] 46 [41, 52]  < 
10–5

Data is displayed as median [Interquartile Range], or count n (percentage)

IBD Inflammatory bowel disease; BMI Body Mass Index
aChi2-test for categorical variables, Mann–Whitney test for continuous variables
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while the overall number of connections may be lower, 
the connectivity within individual components is higher. 
The same can be seen regarding the higher edge number 
observed in controls, which suggests a greater level of 
connectivity within their microbial networks. This phe-
nomenon is visually depicted in Fig.  3 and explains the 
significantly higher number of components observed in 
the network of controls. The size of the LCC was nota-
bly larger in cases, suggesting a more consolidated and 
interconnected microbial community in individuals with 
IBD. This observation, coupled with the higher cluster-
ing coefficient observed in cases and higher modularity 
in controls, further emphasizes the contrasting organiza-
tion of microbial networks between cases and unaffected 
controls. Additionally, the higher average path length 
and dissimilarity within the LCC of healthy individuals 

indicate a greater degree of network compactness and 
strength.

In contrast, both CD and UC groups displayed simi-
larity, with no significant differences detected in global 
network properties. This similarity is also visually repre-
sented in Figure S1.

Additionally, when investigating differences in global 
network properties between UC and controls, and 
CD and controls, we observed interesting results. No 
significant differences were found between UC and 
controls, but most properties showed significant differ-
ences between CD and controls. A similar pattern was 
observed for microbial richness and evenness (see Fig. 2), 
where CD exhibited significantly lower values than UC, 
highlighting the distinct characteristics of the CD group.

The global property values for cases do not fall within 
the range observed for CD and UC but are notably closer 

Table 2  Global network properties
Global Network properties Controls Cases Pcontrols/cases CD UC PCD/UC 
Number of components 10 2 0.002 3 5 0.65
Clustering coefficient 0.45 0.62 0.001 0.55 0.49 0.28
Modularity 0.34 0.13 0.001 0.15 0.19 0.52
Positive edge percentage 68.00 50.15 0.001 53.99 57.72 0.34
Edge density 0.09 0.36 0.001 0.23 0.15 0.17
Natural connectivity 0.023 0.10 0.001 0.073 0.043 0.13
Edge number 0.9 0.72 n.a.c 0.69 0.75 n.a.c

Largest connected component (LCC)
  Relative LCC size 0.90 0.99 0.002 0.98 0.95 0.65
  Average dissimilaritya 0.96 0.89 0.001 0.92 0.95 0.14
  Average path lengthb 1.82 1.24 0.001 1.38 1.54 0.18
  Clustering coefficient 0.45 0.62 0.001 0.55 0.50 0.28
  Modularity 0.34 0.13 0.001 0.15 0.19 0.52
Comparison of global network properties between controls and cases, as well as between CD and UC patients. P-value obtained through a permutation test (1000 
permutations). aDissimilarity = 1—edge weight, bPath length = Units with average dissimilarity, cp-value not available, due to specific definition of edge number

Fig. 2  Alpha diversity expressed through the Shannon index (a) and Chao1 index (b), colors depict the different groups. Both indices show higher diver-
sity in the control group, and CD patients having the lowest diversity. Significance is tested using the Mann–Whitney test
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to them compared to the values for controls. This dis-
crepancy may arise from variations in the network con-
struction process, which relies on different sub datasets, 
as well as the number of components identified in each 
group.

Local properties
In the analysis of local networks, the first step is selecting 
appropriate centrality measures to identify hub nodes. 

Next, hub nodes are used to propose an alternative def-
inition for the core microbiota. Finally, the role of indi-
vidual nodes is examined through graphlet analysis and 
GCM’S.

Identification of Hubs
We compared hubs of networks constructed using micro-
bial abundance data from cases and unaffected controls, 
as well as from CD and UC patients. By utilizing three 

Fig. 3  Node color depicts the cluster, node size is scaled according to the sum of normalized counts, hubs are highlighted by a black circle, and for clarity 
only edges corresponding to an absolute association > = 0.15 are plotted and labels of nodes are shortened. The color and thickness of the edges indicate 
the direction (red for negative, green for positive) and strength of the Pearson correlation coefficient. Same layout is used for both groups and gray nodes 
depict genera that are not connected and/or only present in the other group
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node centrality concepts, namely betweenness, closeness, 
and degree centrality, we were able to define hubs (defini-
tion see network-based analysis).

The Jaccard index was utilized to assess the similarity 
between the sets of most central nodes (above the 0.90 
quantile) for each centrality measure, across different 
networks, see Table  3. Comparisons between cases and 
controls revealed a very low level of similarity, with a Jac-
card index around 0.3. Comparisons between CD and UC 
showcased a slightly higher, but still non-significant level 
of similarity. For example, when using closeness central-
ity to compute the Jaccard index, the index is right in the 
middle of the interval (0.50).

Based on similar Jaccard values for all three centrality 
measures, we investigated further, how the three central-
ity concepts are related with each other. Literature varies 
on the if and to what extent centrality concepts are corre-
lated [23, 59]. To address this, we performed an analysis 
to explore the nuances of these centrality metrics within 
the context of our specific microbiome networks. This 
approach allowed us to ensure accurate interpretation of 
the metrics and to provide a clear rationale for selecting 
the centrality measures used in our analysis. Figure 4 dis-
plays min/max normalized betweenness, closeness and 
degree of individual genera in controls (a), cases (b), CD 
(c), and UC (d) patients.

The results demonstrated a consistent trend: closeness 
centrality is moderately correlated with betweenness cen-
trality, as reflected by Spearman correlation coefficients 
around ρ ≈ 0.7. Degree showed a particularly strong cor-
relation with closeness (ρ = 0.98–1), and a mild to mod-
erate correlation with betweenness (ρ = 0.65–0.75). These 
findings align with the conceptual distinctions between 
the measures. While degree and closeness are both indi-
cators of local node connectivity, betweenness captures 
the extent to which a node lies on global paths within the 
network. Hence, it is crucial to examine all three central-
ity measures when identifying hubs.

Based on the previous analysis steps, hubs, defined as 
genera in the network for which each of the three cen-
trality measures is above the 0.9 quantile, were identified. 

The results are displayed in Fig. 5 and Table 4, stratified 
for IBD cases, unaffected controls, CD, and UC.

Comparing cases and controls, 4 of 8 hubs for con-
trols were not hubs in cases, while 5 of 9 hubs for cases 
were not hubs in controls. Similar hubs in cases and 
controls are these four genera: Oscillibacter, Alistipes, 
Pseudoflavinofractor, and Flavonifractor. Oscillibacter 
exhibits the highest centrality, followed by Allistipes and 
Pseudoflavonifractor.

Similarly, 3 of 8 hubs for CD were not hubs in UC, and 
4 out of 9 hubs for UC were not hubs in CD. Similar hubs 
in CD and UC are these 5 genera: Alistipes, Faecalibacte-
rium, Oscillibacter, Pseudoflavonifractor, and Veillonella.

Notably, Oscillibacter, Alistipes, and Pseudoflavinofrac-
tor are hubs in all subgroups, highlighting the significance 
of those genera in the networks across conditions. Fae-
calibacterium and Veillonella emerge as significant con-
tributors in IBD and both subtypes, but not in controls. 
In controls, their centrality values are between 1 to 1.5 
for Faecalibacterium and below 1.0 for Veillonella which 
is notably lower than in the other groups, where their 
centrality values exceed 2.0. Bacteroides, Blautia, Clos-
tridium XVIII and Clostridium XIVa stand out as hubs 
exclusively in controls, with centrality values between 
1.69 and 2.59, and are not hubs in IBD or its subtypes. 
However, for Blautia and Clostridium XIVa the centrality 
values in IBD and its subtypes are still comparable high 
(1.54 to 1.83 and 1.5 to 1.84), indicating these genera still 
as important nodes. Notably evident in the subplot for 
cases (see Fig. 5) is that the genera appear to be arranged 
in order on their betweenness centrality values. This phe-
nomenon can be attributed to the previously observed 
moderate correlation between those centrality concepts.

The core microbiota
We used two distinct definitions for characterizing the 
core microbiota. The first commonly used one, referred 
to as definition 1, is based on prevalence (50/100) and 
abundance (0.1/100). In contrast, we propose an alterna-
tive definition, definition 2, wherein core microbiota taxa 
are defined via network centrality measures similar to the 
previously defined hub nodes.

Following definition 1, the core microbiota comprised 
34 genera for cases and 40 genera for controls. To align 
the total number of core members in cases and con-
trols for definition 2, we adjusted the quantile to 0.55 
for defining hubs. This adjustment yielded 38 genera in 
the core for cases and 35 in the core for controls, with 
23 overlapping for cases and 27 for controls with those 
core members defined by definition 1, as illustrated in 
Fig. 6. The specific core members can be found in Supple-
mentary table S T2. We found for example unique core 
genera when using definition 2 like Enterobacter, Entero-
coccus, Lactobacillus, Fusobacterium, and Morganella. 

Table 3  Comparison of local network properties
Comparison Con-

trols vs 
Cases

Pcontrols/cases CD vs 
UC

PCD/UC

Jaccard index
  Degree 0.29 0.48 0.38 0.45
  Betweenness centrality 0.29 0.48 0.38 0.45
  Closeness centrality 0.29 0.48 0.50 0.18
Similarity between the set of most central nodes accessed through the Jaccard 
index. Comparing between controls and cases, as well as between CD and 
UC patients. Most central set of nodes defined via one of the three centrality 
concepts: degree, betweenness, or closeness centrality. P-value obtained 
through permutation test (1000 permutations)
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These genera are associated with dysbiosis in IBD. For 
instance, Enterococcus [60] and Enterobacter [61] have a 
higher resilience in inflamed or dysbiotic environments. 
This suggests that the centrality-based definition might 
capture genera more closely linked to pro-inflammatory 
states or dysbiosis, aligning with mechanisms relevant to 
IBD pathology.

The cumulative abundance is higher using definition 1, 
which is based on abundance (cases: definition 1: 22,394, 
definition 2: 21,808, controls: definition1: 20,730, defini-
tion 2: 17,702). The average prevalence of core genera 

present per sample is between 55–80%, noticeable higher 
for definition 1 (cases: definition 1: 72%, definition 2: 
55%, controls: definition 1: 80%, definition 2: 71%). The 
average over the sum of all three centrality measures was 
higher for core members found via definition 2, which is 
based on hubs and therefore on high centrality values, 
and it is in generally lower in controls (cases: definition 1: 
13.2, definition 2: 14.9, controls: definition 1: 4.4, defini-
tion 2: 5.3). All those values are visualized in Fig. 7.

Doing the same comparisons for CD and UC patients, 
the core microbiota included 32 genera for CD and 38 

Fig. 4  Closeness against betweenness centrality measures for all genera of networks constructed for cases (a) and controls (b), CD (c) and UC (d), color 
scale represents degree value. For better visibility the x-axis is log-scaled. Additionally, each subplot displays the Spearman correlation coefficients for the 
associations between closeness and betweenness (clos_betw), degree and betweenness (deg_betw), and degree and closeness (deg_clos)
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genera for UC using definition 1. The quantile to define 
hubs was set to 0.575. Following definition 2, there were 
36 genera in the core for CD and 35 genera in the core 
for UC patients, with 19 overlapping for CD and 24 
overlapping for UC with those core members defined 
by definition 1, as illustrated in Fig. 8. A detailed list of 
core genera is given in Supplementary table S T3.

The cumulative abundance is very similar, indepen-
dent of the used definition (CD: definition 1: 21,457, 
definition 2: 21,679, UC: definition 1: 23,252, definition 
2: 20,803). The average prevalence of core taxa is notice-
ably higher when using definition 1 (CD: definition 1: 
72%, definition 2: 5%, UC: definition 1: 80%, definition 

2: 71%). Summing over of all three centrality measures 
for each genus and averaging over all core genera, using 
definition 2 yielded notably higher values for both CD 
and UC core genera (CD: definition 1: 9.5, definition 2: 
11.6, UC: definition 1: 6.8, definition 2: 8.2). These val-
ues are visualized in Fig. 9.

Role of individual nodes/Graphlet analysis/GCM’s
We calculated Graphlet correlation matrices (GCMs) 
from the constructed networks separately for cases, con-
trols, CD, and UC. For comparisons between groups, 
we also computed a matrix containing the absolute 

Fig. 5  Barplots depict min/max normalized centrality values for betweenness (yellow), closeness (orange), and degree (brown) for hubs from controls, 
cases, CD, and UC patients. Boxes present genera present in controls but not cases and vice versa, and genera present in CD but not UC and vice versa
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difference between the GCMs for cases and controls 
(Fig. 10), as well as for CD and UC (Figure S2).

Our analysis revealed highly significant differ-
ences in the pairwise similarity of subgraph patterns 
for orbits 1, 4, 6, and 9. For those orbits, the Spear-
man correlation coefficients across node orbits differ 
significantly for the comparison of cases and controls, 
and differ slightly for the comparison between CD and 
UC. This is of particular interest, because all of these 
orbits have the same topological role: they represent 
end node orbits.

By mapping genera back to these orbits and focus-
ing on the 25 most abundant ones in each of the four 
orbits, we identified sets of terminal nodes pres-
ent in all orbits for inter-group comparisons listed in 
Table  5. Terminal nodes in an undirected graph rep-
resent nodes with just one single edge We also com-
pared these terminal nodes to identified hub nodes. 
Notably, four genera appear in both lists, albeit in dis-
tinct disease states. Bacteroides, a hub for controls, 
appeared as a terminal node in UC patients. Similarly, 
Clostridium XIVa, identified as a hub for controls, is 
found as a terminal node for CD patients. Faecalibac-
terium, an important hub for IBD and both subtypes, 
appeared as a terminal node for controls. Additionally, 
Subdoligranulum, identified as a hub in CD patients, is 
observed as a terminal node in controls. Furthermore, 
we concentrated on terminal nodes exclusive to cases 
or controls and those exclusive to CD or UC. The aver-
aged genus occurrence o (averaged over orbits 1,4,6, 
and 9) denotes how often a genus is part of substruc-
tures in accordance with the end node orbits. Termi-
nal nodes exclusive to controls included Clostridium 
XlVb (o = 365), Catabacter (o = 330), Streptococcus (o 
= 322), Faecalibacterium (o = 304 Subdoligranulum (o 
= 283), Mitsuokella (o = 268), Holdemania (o = 285), 
and Intestimonas (o = 296). Conversely, genera exclu-
sive to cases comprised Dorea (o = 3145), Butyrivibrio 
(o = 3322), and Allisonella (o = 3405). In CD, but not 
UC, genera included Enterobacter (o = 1673), Hafnia 
(o = 1656), Fusicatenibacter (o = 1264), Clostridium 
XIVa (o = 1697), Butyricimonas (o = 498), Collinsella 
(o = 1640), and Bilophila (o = 1540). Conversely, in UC, 
but not CD, genera encompassed Bacteroides (o = 917), 
Catabacter (o = 192), Ruminococcus (o = 855), Parasut-
terella (o = 921), and Anaerovorax (o = 914).

Table 4  Hub nodes and their summed centrality values
Hubs controls cases CD UC
Alistipes 2.56 3 2.63 2.82
Bacteroides 2.29 1.4 1.43 1.18
Blautia 1.96 1.83 1.73 1.54
Clostridium_XlVa 2.02 1.84 1.5 1.8
Clostridium_XVIII 1.69 1.25 1.01 1.06
Enterococcus 1.04 2.09 1.88 1.46
Escherichia.Shigella 0.79 2.37 2.21 1.13
Faecalibacterium 1.41 2.51 2.1 1.82
Flavonifractor 1.8 2.4 2.06 1.83
Granulicatella NA NA 1.47 1.72
Klebsiella 1.55 1.92 1.72 1.57
Odoribacter 1.49 1.85 1.69 1.78
Oscillibacter 3 2.8 2.72 3
Parabacteroides 0.99 1.74 1.4 1.62
Pseudoflavonifractor 1.99 2.14 2.04 1.64
Ruminococcus2 1.37 1.99 2.69 1.66
Subdoligranulum 1.23 1.79 1.9 1.43
Veillonella 0.94 2.17 2.06 2.27
Hubs for controls, cases, CD, and UC in alphabetical order, and summed (degree 
+ betweenness + closeness) min/max normalized centrality value. Genera in 
bold indicate that those genera are hubs in the respective group (column). NA 
indicates that this genus was not present in the group specific network

Fig. 6  Number and percentage of genera in the core of cases (left, blue) and controls (right, pink), following definition 1 (prevalence and abundance) 
compared to definition 2 (hubs), depicting the intersection and distinct sets
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Discussion
Examining global network properties of the gut microbi-
ota, we found a more robust network structure in healthy 
controls, characterized by a higher number of compo-
nents, and a greater presence of specialized, unconnected 
parts (components) compared to IBD patients. The 
higher edge number observed in controls suggests that 

the healthy population may harbor a more diverse range 
of microbial communities with specialized roles, sup-
porting this hypothesis. Our findings are consistent with 
those reported by others [62], finding higher connected-
ness and lower centralization in healthy networks, imply-
ing a lower susceptibility to dysbiosis and an increased 
robustness in healthy individuals compared to IBD 

Fig. 9  Comparing the cumulative abundance, average prevalence, and sum of all three centrality values, summed (averaged for centrality) over all core 
members identified by definition 1 (each left) and definition 2 (each right) for CD (turquoise) and UC (light green) patients

 

Fig. 8  Number and percentage of genera in the core of CD (left, turquoise) and UC (right, light green) patients, following definition 1 (prevalence and 
abundance) compared to definition 2 (hubs), depicting the intersection and distinct sets

 

Fig. 7  Comparing the cumulative abundance, average prevalence, and sum of all three centrality values, summed (averaged for centrality) over all core 
members identified by definition 1 (each left) and definition 2 (each right) for cases (blue) and controls (pink)
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patients. Our analysis extends these observations by uti-
lizing a larger cohort and by investigating a broader range 
of global network properties than has been explored in 
earlier studies. Moreover, our analysis revealed a higher 
clustering coefficient in the network of IBD cases, indi-
cating an increase in co-dependence among microbial 
taxa within the whole network, which may negatively 
influence network stability. This finding is in line with 

previous results [63], of higher clustering coefficients 
in networks associated with various gastric conditions. 
Additionally, our study identified lower modularity in 
the networks of IBD cases, suggesting a loss of commu-
nity structure and increased homogenization associated 
with disease pathology. This finding echoes the results of 
Baldassano et al. [64], who reported a lower modularity 
index in networks of IBD patients, indicating disruption 

Fig. 10  Presented are two graphlet correlation matrices computed for two different networks (based on cases (left GCM1) and controls (right GCM2)). 
The graphlet correlation matrix quantifies the pairwise similarity (Spearman correlation coefficient) of subgraph patterns (network's node orbits) in each 
network. In both cases, the color of each square represents the correlation coefficient between the corresponding pairs of graphlets. The diagonal of the 
matrices corresponds to the self-correlations of each graphlet. The matrix at the bottom shows the absolute difference between the graphlet correlation 
matrices for both networks. Positive values (blue) in the difference matrix indicate an increase in similarity, while negative values (red) indicate a decrease. 
Orbits are sorted according to their topological role
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to the communities of co-occurring organisms in the gut 
microbiota under disease conditions. Further research 
using perturbation theory, ideally with adjustment for 
covariates when available, is needed to verify that these 
global network properties result in a more robust struc-
ture for the healthy controls.

For CD and UC, global network properties were very 
similar, but significant differences emerged for local net-
work properties.

Furthermore our analysis revealed significant diver-
sity differences among IBD patients, with CD exhibit-
ing lower diversity than UC, as observed in previous 
studies [65, 66]. Notably, no significant differences in 
alpha diversity were found between healthy controls 
and UC patients, consistent with prior research [67, 68]. 
This aligns with our findings comparing global network 
properties between UC and controls, and between CD 
and controls, where we observed no significant differ-
ences for UC but several for CD. These results are con-
sistent with existing knowledge [69, 70] suggesting that 
CD is associated with a more strongly altered microbiota 
composition. However, differences in network proper-
ties between CD and controls have not been commonly 
reported, making our findings a valuable contribution to 
the understanding of the human gut microbiome in these 

conditions. When comparing CD and UC, it is important 
to consider differences arising from disease location, as 
particular ileal involvement may be a key driver. How-
ever, with only stool samples available, we can not empir-
ically investigate the effect of disease location.

Examining local network properties, we identified hub 
nodes based on centrality measures, revealing distinct 
patterns between IBD and its subtypes compared to con-
trols. While research exploring hubs for genes and path-
ways is available [29, 71], research on microbiota genera 
as hubs is still relatively scarce. This study addresses 
this gap, and for instance highlighted Faecalibacterium, 
an important butyrate producer [72], as a notable hub 
in IBD cases, despite its low abundance, indicating the 
importance of specific low-abundant genera, like other 
studies [73]. This observation resonates with further 
findings [74] in an investigation of Myalgic encephalo-
myelitis/chronic fatigue syndrome patients, where Fae-
calibacterium exhibited elevated centrality values in case 
networks across various metrics. In another study on 
the nasal microbiome of Chilean children with asthma 
[75], Veillonella and Granulicatella emerged as hubs in 
cases. This is comparable to our study, where Veillonella 
emerged as a hub in the network of IBD and both sub-
types and Granulicatella emerged as a hub in the net-
work of UC patients. This aligns with the biological role 
of Veillonella, an oral microbe that derives energy by 
fermenting short-chain organic acids. Veillonella utilizes 
nitrate, a metabolite enriched during inflammation, to 
grow, making it more abundant in the microbiome of IBD 
patients [76]. Another oral microbe, Klebsiella, emerged 
as a hub in cases, consistent with other findings [77] 
that demonstrate Klebsiella’s ability to induce Th1 cell 
responses, thereby promoting colitis. In contrast, hubs 
exclusive to controls shed light on potential protective 
mechanisms. Our analysis at the genus level identified 
Bacteroides, Blautia, Clostridium XIVa, and Clostridium 
XVIII as hubs uniquely in controls. This parallels findings 
from Izuno et al. [78] in their study on irritable bowel 
syndrome, where Clostridium XIVa exhibited hub char-
acteristics in controls based on higher degree centrality. 
Additionally, another study on IBD at the species level 
[79] revealed species-specific hub dynamics, with Bacte-
roides nordii and Bacteroides plebeius emerging as hubs 
in controls and cases, respectively. Furthermore, Guo et 
al. [74] also identified Blautia as a hub in controls, con-
sistent with our results.

When analyzing global and local network properties, it 
is important to raise awareness that the construction and 
analysis of networks involve many choices: starting at 
how to pre-process data, over which similarity measure 
to use, to choosing filters for nodes and cut-off values for 
edges of interest. We tried to stay within the most com-
monly used methods; however, we can not ensure that 

Table 5  Terminal nodes
Terminal nodes controls cases CD UC
Allisonella 81 3405 951 0
Anaerovorax 252 3386 1652 914
Bacteroides 240 2488 1439 917
Bilophila 186 2906 1540 828
Butyricimonas 261 3054 498 664
Butyrivibrio 10 3322 1575 452
Catabacter 330 3279 744 192
Clostridium_XlVa 229 2946 1697 838
Clostridium_XlVb 365 1353 337 83
Collinsella 236 3160 1640 765
Dorea 206 3145 1689 154
Enterobacter 56 1116 1673 728
Faecalibacterium 304 856 614 661
Fusicatenibacter 293 3318 1264 496
Hafnia 0 2939 1656 693
Holdemania 285 3335 1214 816
Intestinimonas 296 2344 1184 770
Mitsuokella 268 2970 407 808
Parasutterella 136 3374 1665 921
Ruminococcus 272 1622 931 855
Streptococcus 322 1510 756 796
Subdoligranulum 283 986 497 619
Terminal nodes for controls, cases, CD, and UC in alphabetical order, and 
averaged genus occurrences over orbits of interest (O1, O4, O6, and O9). Genera 
in bold indicate that those genera are terminal nodes in the respective group 
(column). Zero values indicate that this genus was an unconnected node in the 
group specific network. Additionally, the values from genera that are hubs in 
the previous analysis part are underlined
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these are the most appropriate ones. For example, we 
employed SparCC due to its proven effectiveness in man-
aging compositional bias and its computational efficiency 
for large-scale microbiome data [32]. However, recent 
advances, such as SPIEC-EASI, may provide improved 
network precision by focusing on direct associations, as 
noted by Kurtz et al. [58]. Both SparCC and SPIEC-EASI 
have shown strong performance in microbial network 
inference, yet each method has limitations depending 
on the data characteristics. Given the lack of a true gold-
standard network, future studies might benefit from a 
combined or comparative approach to assess the robust-
ness of microbial association networks more comprehen-
sively. Another limitation in our network construction 
process and with the interpretation of results is the com-
plexity of incorporating covariates, which prevented 
us from stratifying by factors such as age or BMI in this 
study. Moreover, in case–control comparisons, adjust-
ing for covariates like inflammation or medication use is 
not straightforward, because many covariates of interest 
are strongly related to disease status. Future studies with 
standardized metadata should investigate alternative net-
work approaches to integrate covariates more directly.

We utilized hub nodes to propose an alternative 
definition of a core microbiota in both cases and con-
trols, as well as separately in patients with CD and UC. 
Core microbiota definitions vary widely, encompassing 
approaches such as community composition, functional 
profile, stability, and network-based methods [80]. We 
compared two definitions: one based on cut-off values 
for abundance and prevalence (definition 1), and another 
based on hub nodes as core members (definition 2). 
Notably, the latter requires only the selection of a quan-
tile for hubs, unlike the former which necessitates the 
choice of at least two arbitrary thresholds [81].

A comparative analysis of core members under both 
definitions yielded comparable results. As expected, the 
average prevalence of core members was higher with 
definition 1, while the average sum of centrality values 
showed higher values when using definition 2. However, 
the cumulative abundance was almost independent of the 
definition used. Differences were also notable in terms of 
core members, particularly among cases (47% intersec-
tion) and CD patients (39% intersection). The overlap of 
core genera between both definitions is notifiable lower 
in cases and CD than in controls and UC. Dysbiotic 
states, especially in CD and cases, appear to shift the cen-
trality values of certain genera. Some IBD-associated taxa 
may acquire higher centrality, even if their abundance 
or prevalence does not increase proportionally. Similar 
observations were made by Pisani et al. [82], where net-
work members indicative of IBD exhibited larger cen-
trality values. In conclusion, we advocate the use of hub 
nodes in defining the core microbiota. The advantage of 

using this centrality-based hubs definition is that it can 
incorporate taxa that may be low abundant but still bio-
logically important. A potential limitation is that it may 
overlook taxa that are less connected in the network and 
thus exhibit lower centrality values. The use of hub nodes 
to define the core microbiota has already been used in 
other microbiome studies, such as fungal pollen micro-
biome [83] and plant microbiome [84]. However, in the 
human gut microbiome, applying this approach in direct 
comparison to traditional abundance- or prevalence-
based methods appears to be relatively unexplored, and 
our study contributes to addressing this gap. Further-
more, the core microbiota could serve as a foundational 
element for manipulating the gut microbiome, poten-
tially as a therapeutic target. So far, this application has 
been primarily explored in mice [85] and kelp [86], for 
instance, through the administration of prebiotics [87].

While the IBD-KC cohort provides a very large dataset, 
only 16S rRNA gene data was available for the present 
analysis. 16S data compared to e.g. whole-genome shot-
gun metagenomics is limited in its resolution [88], which 
might prevent some genera from appearing as hubs, such 
as Akkermansia muciniphila which has been shown to be 
relevant in IBD. Working at genus level provides a good 
balance between resolution and practicality when limited 
to 16S rRNA data. Furthermore, the analysis was based 
solely on microbiome data, limiting the scope of insights 
into microbial relationships. Incorporating other omics 
layers, such as proteomics, metagenomics, and transcrip-
tomics, through multi-omics techniques could provide 
a more comprehensive understanding of the microbi-
ome’s role in IBD. Similarly, replication in an indepen-
dent dataset would be highly valuable to strengthen our 
findings. However, we evaluated what is, to our knowl-
edge, the largest publicly available dataset (HMP2) and 
found that, in addition to being based on biopsy samples 
rather than stool samples, the remaining sample sizes 
after necessary filtering were too small to support a rig-
orous reanalysis using our network-based framework. 
Additionally, we only used genetically unrelated partici-
pants. Using the same family-based dataset with fam-
ily controls and completely unrelated healthy controls, 
recent findings in metagenomic analysis [89] suggest that 
dividing unaffected controls into genetically related and 
unrelated groups could uncover additional differences. 
While we stratified samples based on clinical diagnosis, 
we acknowledge that dysbiosis is a dynamic process. Not 
all IBD patients may have experienced an active flare at 
the time of sampling. Therefore, especially the case group 
includes heterogeneity.

Our analysis not only emphasizes the significance of 
hub genera but also underscores the importance of ter-
minal nodes, representing two extremes in local network 
properties. Terminal nodes, despite not necessarily being 
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associated with low centrality, provide complementary 
insights to hubs and are equally important. Due to com-
putational constraints limiting our graphlet analysis to 
k = 4 nodes, hubs will not appear in these structures. 
Existing literature in microbiome and graphlet studies 
typically employs graphlet correlation distance for an 
overall comparison of microbial networks [90, 91]. How-
ever, exploration at the node level and mapping identi-
fied differences back to the involved taxa remains limited, 
rendering our approach new. We observed significant 
differences in orbits 1, 4, 6, and 9, which contain terminal 
nodes, between all group comparisons. Biological inter-
pretations of terminal nodes in 16S microbiome data can 
be challenging, but is based on the idea that nodes in the 
same orbits have similar biological functions too [55, 56]. 
In the context of for example metabolic functions, termi-
nal nodes often represent taxa involved in the final stages 
of metabolite processing. An example is the fermentation 
of dietary fiber to produce short-chain fatty acids [92], 
which are not further metabolized by other microbes 
but play a critical role in host health. In microbiome net-
works, terminal nodes may signify specialized taxa with 
unique functional roles. These taxa contribute to diver-
sity and stability through their specialized activities, 
despite having limited connectivity within the microbial 
community.

We noted that some genera, identified as hubs in one 
disease state, acted as terminal nodes in another disease 
state. The dominant genera Bacteroides and the butyr-
ate producer Clostridium XIVa, both having beneficial 
metabolic functions and higher abundance in healthy 
controls [93, 94], transitioned from being hubs in con-
trols to terminal nodes in UC and CD, respectively. This 
transition aligns with the expectation that highly con-
nected genera in controls exhibit reduced connectiv-
ity in cases. Similar results were found previously [95], 
finding different degree distributions between healthy 
controls and IBD cases, with higher degree values in 
the network of controls. Faecalibacterium and Subdoli-
granulum, both known to be short-chain fatty acid pro-
ducers and identified as hubs in cases, were found to be 
terminal nodes for controls despite their typical higher 
abundance in controls [96]. This highlights again that 
high abundance does not always correspond to impor-
tant local network properties. The observation that some 
genera transition from being terminal nodes in controls 
to hubs in IBD suggests a shift in microbial relationships 
in disease states. One possible explanation is that in the 
healthy state, these genera might play a more passive role 
in the network, supporting overall microbial homeostasis 
without the need for strong interconnections. However, 
in IBD, microbial dysbiosis could drive these genera to 
adopt a more central role, potentially as compensatory 
mechanisms in response to disease-related disturbances. 

For instance, Faecalibacterium, might have emerged as 
a hub in cases in response to the inflammatory milieu in 
IBD. Further analysis revealed terminal nodes unique to 
controls and those distinguishing CD from UC, with pat-
terns more aligned with abundance. For example, Strep-
tococcus and Intestimonas, known to be more abundant 
in cases [97, 98], were terminal nodes unique to controls. 
Additionally, based on the topological role of nodes, cer-
tain genera could be used to distinguish CD from UC. 
For instance, Collinsella, a terminal node only in CD, 
is consistent with its reported higher abundance in UC 
cases [69], and Bacteroides, a terminal node exclusively in 
UC, is consistent with findings of significantly increased 
abundance in CD patients [99].

Conclusion
Our network-based study revealed significant differences 
in the global network properties of the gut microbiota 
between Inflammatory Bowel Disease (IBD) patients and 
healthy controls, indicating a potentially more robust 
network structure in healthy controls. Local properties 
varied among all groups, including subgroups of patients 
with Crohn's Disease (CD) and Ulcerative Colitis (UC), 
highlighting the important role of microbiota genera in 
IBD, particularly concerning hubs and terminal nodes. 
Results should be interpreted with caution given that 
many factors influence microbiome data, such as host-
related covariates, and their generalizability would ben-
efit from validation in external datasets. Additionally, we 
recommend considering the proposed core microbiota 
definition based on hub nodes.
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