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Abstract: Diffuse intrinsic pontine glioma (DIPG) is the most lethal tumor involving the pediatric
central nervous system. The median survival of children that are diagnosed with DIPG is only
9 to 11 months. More than 200 clinical trials have failed to increase the survival outcomes using
conventional cytotoxic or myeloablative chemotherapy. Immunotherapy presents exciting therapeutic
opportunities against DIPG that is characterized by unique and heterogeneous features. However,
the non-inflammatory DIPG microenvironment greatly limits the role of immunotherapy in DIPG.
Encouragingly, the induction of immunogenic cell death, accompanied by the release of damage-
associated molecular patterns (DAMPs) shows satisfactory efficacy of immune stimulation and
antitumor strategies. This review dwells on the dilemma and advances in immunotherapy for DIPG,
and the potential efficacy of immunogenic cell death (ICD) in the immunotherapy of DIPG.

Keywords: diffuse intrinsic pontine glioma; immune microenvironment; immunotherapy; immunogenic
cell death; damage associated molecular patterns

1. Introduction

Diffuse intrinsic pontine glioma (DIPG) is the most lethal tumor involving the pediatric
central nervous system [1]. DIPG originates in the pons and is characterized by diffuse
infiltration and poor demarcation from normal tissue, and frequent invasion of distant brain
regions [2]. Due to its delicate anatomical location, it is impossible to achieve significant
resection [3]. Despite nearly five decades of research, the median survival of children
that are diagnosed with DIPG is only 9 to 11 months [4]. Palliative radiotherapy remains
the only clinically effective treatment option, although with only a three-month survival
benefit [5]. Hence, it is imperative to develop new therapeutic strategies to alleviate or cure
this malignant and fatal disease.

In recent years, tumors that are associated with the pediatric central nervous system
have surpassed hematological tumors as the leading cause of cancer-related deaths in chil-
dren and adolescents [6]. It may be largely due to the widespread use of immunotherapy
in hematological malignancies. Immunotherapy is considered to be a milestone in preci-
sion medicine. Advances in immunotherapy have significantly improved the prognosis of
patients that are diagnosed with cancer [7]. Most critically, it elicits a dramatic therapeutic re-
sponse in patients resistant to other conventional treatments [8]. Immunotherapy strategies,
such as the use of immune checkpoint inhibitors (ICIs), chimeric antigen receptor (CAR)
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T-cell therapy, vaccine therapy, and oncolytic viruses present exciting opportunities to cure
DIPG with a unique and heterogeneous feature. Nevertheless, inadequate knowledge of
the DIPG immune microenvironment hinders the use of immunotherapeutic modalities.

The current consensus is that DIPG is a cold tumor, indicating that DIPG shows limited
immune cell infiltration, reduced secretion of inflammatory factors, rare antigen-presenting
cells, isolated and defective immune killing mechanisms, and a nearly deserted immune
microenvironment [9,10]. The non-inflammatory DIPG microenvironment greatly limits
the role of immunotherapy in DIPG. For instance, patients with DIPG do not experience any
survival benefit when they are treated with ICIs [11–13]. The immunosuppressive effect of
steroids and the compactness of the blood-brain barrier (BBB) are also important features
hindering its application [14]. Besides, toxicity that is associated with immunotherapy is a
challenge [15]. Therefore, it is imperative to develop a better theoretical basis and technical
tools to address the limitations of immunotherapy in DIPG.

Immunogenic cell death (ICD) is a form of programed cell death that is induced by
multiple antitumor therapies. It is accompanied by the release of damage-associated molec-
ular patterns (DAMPs), which facilitate the maturation of dendritic cells (DCs) and tumor
death that is induced by cytotoxic T lymphocytes (CTLs) [16]. Intra-tumoral delivery of vac-
cines, oncolytic viruses, CAR-T-cells, or chemotherapeutics inducing the release of DAMPs
may be a promising therapeutic strategy, suggesting that the assessment of ICD-related
molecules in serum and cerebrospinal fluid may have potential diagnostic significance [17].
Hence, ICD may be a promising method contributing to the immunotherapeutic efficacy.

In this review, we summarize the current studies involving the non-inflammatory
DIPG immune microenvironment and immunotherapy strategies targeting DIPG, and
address the dilemma of immunotherapy for DIPG. We also emphasize the potential role of
ICD in enhancing the efficacy of immunotherapy for DIPG. Our review provides a new
perspective on personalized medicine and precision treatment of DIPG.

2. Diagnosis, Current Management, and Molecular Characteristics of DIPG

The diagnosis of DIPG is based on clinical manifestations such as ataxia, pyramidal
tract dysfunction, and abducens nerve (cranial nerve VI) palsy [18]. Magnetic resonance
imaging (MRI) is still the most powerful modality for the clinical diagnosis of DIPG. MRI of
patients with DIPG shows a space-occupying lesion in the pontine region, which is relatively
hypointense or isointense on T1-weighted images and hyperintense on T2-weighted images,
compared with a normal brain [19] (Figure 1). Palliative local radiotherapy remains the only
standard treatment option for DIPG, and in the absence of radiotherapy, the overall survival
is only 5 months [5]. Although temozolomide showed some efficacy in adult high-grade
glioma, it does not improve the prognosis of DIPG [20]. Thus, palliative care services are
indispensable for children with DIPG and their families, including individualized physical,
psychological, social, and other forms of support early in the disease [21].

The therapeutic modalities for DIPG have traditionally been based on the molecular
landscape of adult gliomas, with similar biological behaviors and molecular patterns. Over
the past three decades, more than 250 clinical trials have shown no significant improvement
in DIPG treatment [22,23]. Studies have established primary DIPG cells in vitro as well
as orthotopic animal models of intracranial DIPG tumorigenesis [24–28] using improved
biopsy techniques [29–31]. The rapid development of high-throughput technology and
proteomics has provided a relatively unambiguous molecular landscape of DIPG [28,32–34].
DIPG is associated with a unique pathological behavior and molecular pattern compared
with non-midline pediatric high-grade glioma (pHGG) and adult HGG (aHGG) [35,36].
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Figure 1. MRI images of two patients with radiographically classic DIPG. MRI image of two DIPG 
cases shows a space-occupying lesion in the pontine region, being relatively hypointense or iso-
intense on T1-weighted images and hyperintense on T2-weighted images, when compared with a 
normal brain. DIPG Patient 1: 5 years, male; DIPG Patient 2: 7 years, female. 
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DIPG) and is associated with a range of characteristic clinical manifestations and worse 
treatment tolerance, and represents unsatisfactory prognosis and clinical outcomes 
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H3K27M-mutant” in the 2016 World Health Organization (WHO) tumor classification 
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other mutations in DIPG, such as H3.1K27M-related ACVR1 mutation (25% of DIPG) and 
H3.3K27M-related amplified mutations in CCND2, PDGFRA (30% of DIPG), TP53 (75% 
of DIPG), and MYC [36,44–46]. In addition, RB phosphorylation (30% of DIPG), as well as 
STAT3 and PPM1D amplification (9–23% of DIPG), were identified in patients with DIPG 
[47–49] (Table 1). 

The discovery of the unique molecular landscape provides an important theoretical 
basis for the development of DIPG-targeted drugs [35,50]. Currently, several classes of 

Figure 1. MRI images of two patients with radiographically classic DIPG. MRI image of two DIPG
cases shows a space-occupying lesion in the pontine region, being relatively hypointense or isointense
on T1-weighted images and hyperintense on T2-weighted images, when compared with a normal
brain. DIPG Patient 1: 5 years, male; DIPG Patient 2: 7 years, female.

The mutations that were found in H3K27M were hailed as the most important discov-
ery in DIPG [37,38]. H3K27M, a somatic mutation of histone H3 involving a substitution of
lysine by methionine at position 27, occurs primarily in the genes encoding histones H3.1
and H3.3, HIST1H3B, and H3F3A, respectively [38–41]. H3K27M is found in approximately
80% of patients with DIPG (H3.3K27M: 70% of DIPG; H3.1K27M: 15% of DIPG) and is asso-
ciated with a range of characteristic clinical manifestations and worse treatment tolerance,
and represents unsatisfactory prognosis and clinical outcomes (H3.1K27M, median overall
survival: 15 months; H3.3K27M, median overall survival: 11 months) [41]. Therefore, the
mutation was newly labeled as “diffuse midline glioma H3K27M-mutant” in the 2016
World Health Organization (WHO) tumor classification [42] and the 2021 WHO tumor
classification [43]. Further, H3K27M is closely related to other mutations in DIPG, such
as H3.1K27M-related ACVR1 mutation (25% of DIPG) and H3.3K27M-related amplified
mutations in CCND2, PDGFRA (30% of DIPG), TP53 (75% of DIPG), and MYC [36,44–46].
In addition, RB phosphorylation (30% of DIPG), as well as STAT3 and PPM1D amplification
(9–23% of DIPG), were identified in patients with DIPG [47–49] (Table 1).

The discovery of the unique molecular landscape provides an important theoretical
basis for the development of DIPG-targeted drugs [35,50]. Currently, several classes of
drugs have been used in pre-clinical experiments and clinical trials to treat DIPG, such
as histone deacetylase and demethylase inhibitors, H3K27 demethylase inhibitor, Zeste
enhancer homologue-2 (EZH2) inhibitors, DNA methylation inhibitors, and inhibitors of
bromodomain and extra-terminal motif proteins [51–60].
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Table 1. Recurring genomic and proteomic alterations in DIPG.

Alteration Mutated
Categories Prevalence Description of Mutation Refs.

H3.1K27M HIST1H3B;
Missense mutation 15% H3 K27 trimethylation is ablated, generating an

inhibition of the polycomb repressive complex 2
target genes, resulting in chromatin disaggregation
and cellular aneuploidy.

[38–41]

H3.3K27M H3F3A; Missense
mutation 70%

ACVR1
R206H, R258G,
G328E/V/W and
G356D; Mutation

25%

Encoding a serine/threonine kinase (ALK2)
receptor with enhanced sensitivity to the ligand
activin A, resulting in dysregulation of the
BMP/SMAD pathway and increased tumor
proliferation

[61–63]

TP53

G245S, R175H,
R248Q, R248W,
R273C, R273H,
S241F, V157F;
Mutation

75%
An increased co-occurrence with the H3 K27M
mutation, increased DNA and protein instability
resulting in decreased apoptosis

[64,65]

MYCN Amplification 8% DNA hypermethylation and chromosomal
rearrangement leading to aneuploidy [66,67]

ATRX Depletion 10%

High co-occurrence with the H3 K27M mutation,
causing destabilization of telomeres and altering
gene expression in conjunction with the H3 K27M
mutation

[45,68,69]

Receptor Tyrosine
Kinase (RTK)

PDGFR, EGFR,
FGFR;
Amplification and
mutation

60% It occurs frequently with the H3 K27M-mutantion [45,70,71]

Cell-cycle
regulatory genes

controlling RB
phosphorylation

CDK4, CDK6,
CCND1, CCND2,
CCND3; Focal
amplifications

30%
Inactivation of RB relieves negative regulation of
the E2F transcription factor, permitting DNA
synthesis and cell proliferation

[47,72]

3. Immune Microenvironment of DIPG

Currently, the immune microenvironment of DIPG remains unclear due to the dif-
ficulty of obtaining tumor samples and the relevance of intracranial animal models [73].
However, the tumor immune microenvironment differs greatly between pediatric and adult
gliomas [74]. Further, DIPG exhibits a unique immune microenvironment compared with
non-midline pediatric gliomas and adult glioblastoma (GBM) (Figure 2) [10].

3.1. Immunological Subgroups of DIPG

Vinci et al. reviewed subclonal genomic analyses to report a remarkable intertumoral
heterogeneity of DIPG [75]. A previous study identified six immune subtypes of cancer
tissue (C1, wound healing; C2, IFN-gamma dominant; C3, inflammatory; C4, lymphocyte
depleted; C5, immunologically quiet; C6, TGF-β dominant), in an effort to determine
immunogenicity across cancer types [76]. Accordingly, Zhu et al. classified patients with
DIPG into three immune subgroups: lymphocyte-depleted (50%), immunologically quiet
(14%), and an inflammatory subtype (14%) [77]. In this study, nearly 80% of patients
with DIPG carried a “barren” and “silent” immune status of unresponsiveness, although
the inflammatory subgroup exhibited a prolonged survival and a favorable response
to irradiation.
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Figure 2. Characterization of the DIPG-associated immune microenvironment. DIPG is a “cold
tumor”, indicating reduced immune cells infiltration, lower secretion of inflammatory factors, rare
antigen-presenting cells, isolated and defective immune death mechanisms, and a nearly deserted
immune microenvironment. Besides, DIPG-associated macrophages do not fully fit the M1 or M2
classification. In general, immunosuppression is not a major feature of the DIPG microenvironment,
compared with adult GBM.

3.2. Tumor-Associated Macrophages (TAMs)

Tumor-associated macrophages (TAMs) are the predominant subtype of immune cells
infiltrating pediatric and adult gliomas [78]. TAMs sustain tumor proliferation and mediate
immunosuppression [79,80]. Further, they facilitate the progression of cerebral edema,
and induce GBM resistance to chemoradiotherapy [81,82]. In adult GBM, the M1-like and
M2-like phenotypic classification of TAM is still widely used, despite controversy [83,84].
However, DIPG-associated macrophages do not fully fit the M1 or M2 classification [9].
The recruitment of M1-like macrophages in Sonic Hedgehog (SHH) medulloblastomas
correlates with poor prognosis, suggesting the unique biological behavior of TAMs in
pediatric CNS tumors [85].

Transcriptome sequencing and flow cytometry of DIPG tissues demonstrated that M1-
like macrophages were not significantly different in the DIPG immune microenvironment
compared with normal brain tissues; however, the number of CD45+Iba1+ microglia were
increased [9]. And the proportion of macrophages in CD45+ leukocytes was 95% compared
with 70% in adult GBM [9]. Besides, H3.3-K27M DIPG cells that were co-cultured with
macrophages in vitro manifested little effect on macrophage phenotype compared with
U87 cells co-cultures [10]. It is interesting to explore the discrepancy in the activation of
microglia/macrophage between DIPG and adult GBM.
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3.3. Tumor-Associated Lymphocytes

Tumor-infiltrating lymphocytes (TILs) play a pivotal role in the tumor microenviron-
ment. Not only the amount of the infiltrating TILs, but the subtype also determines the
clinical outcome and therapeutic effect of patients with tumors [86–88]. Type 1 T-cells, such
as CD4 T-helper 1 (Th1), facilitate antigen presentation, whereas CD8 cytotoxic T-cells (CTL)
accelerate tumor destruction [89]. Conversely, Type 2 CD4 T-helper cells (Th2), such as
Tregs (FOXP3 + CD4 regulatory T-cells) functionally reduce the number of CTL to enhance
tumor growth, resulting in an immunosuppressive microenvironment [90].

Previous studies demonstrated that the increased infiltration of CD8+ T-cells in adult
GBM tissue correlated with favorable patient outcomes [91]. However, immune infiltration
in pediatric low-grade glioma (pLGG) and pHGG has no bearing on survival, despite
increased T-cell infiltration compared with normal brain tissue [92]. In DIPG, lymphocyte
infiltration was not increased and the recruitment and activation of effector lymphocytes
is rare. CD45 + CD3+ T lymphocytes in DIPG accounted for about 1.72% to 2.65% of the
total CD45+ leukocytes, while GBM carried an abundance of infiltrating T lymphocytes,
accounting for roughly 7.09% to 50.2%. Majzner et al. reported that some patients with
mutant H3K27M harbored few infiltrating T-cells in their tumor tissue even after CAR-T
treatment [93], suggesting a potential reason for DIPG resistance to ICIs.

3.4. Natural Killer Cells

Natural killer (NK) cells are cytotoxic effector cells in the innate immune system, and
are essential for normal immune clearance [94,95]. The dysfunction of NK cells in tumors is
strongly correlated with poor survival in patients with solid tumors, indicating its potential
role in inhibiting tumorigenesis and tumor progression [96,97].

In adult GBM, NK cells can specifically target glioblastoma stem cells, and NKG2C+
NK cells are valuable for immunotherapy of glioblastoma [98–101]. In contrast to adult
HGG, NK cell infiltration is absent in DIPG, and single-cell sequencing data suggest that
only about 0.66% of lymphocytes are present in H3K27M-mutant DIPG patients [102].
Fortunately, the ability of NK cells to lyse DIPG cells was demonstrated when they were
co-cultured in vitro [10], suggesting the potential significance of an anti-DIPG mechanism.
However, clinical trials are still lacking to confirm the effectiveness of NK cells for DIPG.

3.5. Tumor Immune-Related Molecules

A lack of inflammatory mediators is an important feature of DIPG. DIPG-associated
macrophages express markedly lower levels of IL6, IL1A, IL1B, CCL3, and CCL4, among
other inflammatory factors than adult GBM-associated macrophages [9]. In vitro culture
studies and RNA-sequencing of DIPG samples revealed that DIPG showed significantly
reduced levels of both cytokines and chemokines, compared with adult GBM [77]. Immune
escape mechanisms are dispensable for the maintenance of the DIPG immune microenvi-
ronment. The majority of infiltrating cells exhibit a loss of PD-1 or PD-L1 expression [92],
and soluble NKG2D ligands are barely detectable in patients’ sera [102]. Only a few
immunosuppressive factors, such as TGFB1, are detected in DIGP [9]. In general, immuno-
suppression is not a major component of the DIPG microenvironment when compared
with adult GBM.

4. Immunotherapy for DIPG

The immune system adopts a series of complex mechanisms to detect and eradicate
cancer cells [103]. These pathways could theoretically interfere with the progression of
malignant tumors; however, surviving tumor cells after immune screening accelerate the
disease process in cancer by avoiding the host’s anti-tumor immune response. Cancer
immunotherapy was developed based on studies investigating the reactivation of anti-
tumor immune responses to overcome immune escape-related pathways [7]. Currently,
the main immunotherapies for DIPG include checkpoint inhibitors (ICIs), CAR-T Cells,
vaccine therapy, and oncolytic viruses (Figure 3A).
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Figure 3. Types and dilemmas of immunotherapy for DIPG, and mechanisms by which immunogenic
cell death enhances immunotherapy. (A) Cancer immunotherapy is based on the reactivation of
anti-tumor immune responses and overcoming immune escape-related pathways. Current treatments
utilize ICIs, CAR-T-cells, vaccines, and oncolytic viruses. The use of immunotherapy in DIPG is
limited by a non-inflammatory immune microenvironment, lower mutational load, antigen insuffi-
ciency, attenuation and escape, toxicity of immunotherapy, blood brain barrier (BBB), and the use
of cortisol. (B) ICD inducers can be combined with radiotherapy and immunotherapy for DIPG,
resulting in cellular stress and cell death and the concomitant release of damage-associated molecular
patterns (DAMPs), i.e., HMBG1, calreticulin, and ATP from dying tumor cells. Recruited dendritic
cells assimilate the DIPG tumor antigens that are released from dying cells, such as HMGB1 binding
to TLR2/4, which facilitates cytokine production and tumor antigen cross-presentation. The dendritic
cells carrying DIPG antigens migrate to the cervical draining lymph node where they present the
antigens to naive T-cells, thereby activating anti-DIPG effector T-cells. Primed effector T-cells migrate
toward the tumor microenvironment and kill residual DIPG cells.

4.1. Checkpoint Inhibitors

Programmed death 1 (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4)
are immune checkpoint proteins that are involved in the initial suppression of T-cell func-
tion, playing a crucial role in tumor-mediated immunosuppression [104,105]. Checkpoint
inhibitors block the inhibitory signaling when T-cells interact with tumor cells, by targeting
PD-1 and/or CTLA-4 [106]. ICIs reactivate CD8+ T-cells in the tumor microenvironment
and serve as an effective therapy in cancers, such as colon carcinoma, fibrosarcoma, and
melanoma [107–109].

Unfortunately, patients with DIPG did not exhibit any survival benefit when they
were treated with ICIs [11–13]. In a clinical trial, these patients that were treated with the
PD-1 inhibitor, or pembrolizumab, manifested reduced median progression-free survival
(PBTC045). This may be due to the rapid deterioration of the patient’s neurological function
after the initiation of checkpoint blockade.
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4.2. CAR-T Cells

The concept of CAR-T-cells was proposed in 1989 [110]. CARs have the ability to
redirect T-cells to specific antigens. The activated T-cells that are infused into patients kill
cells that are expressing specific antigens [111]. Considering the ineffectiveness of ICIs in
DIPG therapy, CAR-T-cell therapy may represent a more appropriate treatment strategy.
The specific recognition of an engineered antibody reflects the enormous significance of
individualized and precise treatment [112]. CAR-T-cell therapy has shown encouraging
success in hematological malignancies, such as B-cell acute lymphoblastic leukemia that
was treated with anti-CD19 CAR-T-cell therapy, prompting investigation into other types
of solid tumors [113–115].

However, despite sporadic preclinical studies and few case reports, evidence from
large cohort clinical trials that suggests the effectiveness of targeting CAR-T-cells in glioma
remains insufficient [116,117]. Currently, several DIPG antigens have been developed
as the specific recognition antigens of CAR-T, such as IL13Rα2, GD2, EGFRvIII, and
B7-H3 [118–124]. GD2 CAR-T-cell therapy is the most representative and efficacious
intervention [93]. GD2, which is disialoganglioside, is highly expressed in DIPG tumor cells
carrying H3.1K27M and H.3.3K27M, and its inhibition attenuates DIPG cell proliferation
and tumorigenesis in vitro and in an animal intracranial model [120]. Therapies targeting
GD2 are currently being investigated in various malignancies, including neuroblastoma,
osteosarcoma, and melanoma [125–128]. In the latest clinical trial, it is encouraging that
three patients that were diagnosed with H3K27M-mutant diffuse midline gliomas (DMG)
showed clinical and imaging improvement after the first intravenous infusion of GD2
CAR-T-cells [93].

4.3. Vaccine Therapy

In recent years, cancer vaccines, as a new immunotherapy method, have gradually
attracted the attention of researchers [129]. Cancer vaccine therapy emphasizes the fight
against immune tolerance via the stimulation of foreign antigens (cancer-specific DNA,
mRNA or polypeptide chains) to reactivate the immune system and induce an immune
response against the tumor [130]. Cancer vaccines include several categories: genetic
vaccines, tumor cells, immune cells, and peptides or proteins [131].

Peptide vaccines containing EphA2 and IL-13Ra2 antigens exhibited a specific immune
response and advanced clinical survival of children with malignant brainstem and non-
brainstem gliomas [132,133]. In addition, peptide vaccines that directly target H3K27M-
specific proteins have been successful in preclinical studies of DIPG [134], and efficacious in
clinical trials [135]. Further, autologous dendritic cell vaccines (ADCVs) also demonstrated
negligible toxicity in normal cells and improved the clinical response [136]. A clinical trial
evaluating ADCV is ongoing (NCT03396575).

4.4. Oncolytic Viruses

Oncolytic viruses are designed to target and kill cancer cells with minimal damage
to normal cells [137]. Infection by the oncolytic virus itself and concomitant killing of
cancer cells results in the release of large amounts of antigens, which elicit anti-tumor
immunity and the activation of the tumor microenvironment. Oncolytic viruses can repro-
gram the immune microenvironmental phenotype, convert immune cold tumors to hot
tumors, enhance the intrinsic capacity of immune cell infiltration, and stimulate cytokine
release [138,139]. Essentially, this is a translational application of the concept of immune
stimulation to immunotherapy [138,140].

Currently, two oncolytic viruses have been developed for the treatment of pediatric
gliomas (containing DIPG). The first is adenovirus DNX-2401 (delta-24-RGD), initially
demonstrating the safety and efficacy in an immunocompetent DIPG mouse model, by
targeting and killing DIPG cells, as well as inducing an immune response [141,142]. A
subsequent clinical trial (NCT03178032) further validated its therapeutic efficacy. Excitingly,
in this clinical trial, an 8-year-old patient with DIPG demonstrated the utility of this
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oncolytic virus at the time of biopsy [143] (Table 2). Another oncolytic virus, herpes
simplex virus 1716 (HSV1716), has been shown to exhibit potential anti-DIPG ability with
an advantageous non-tumor tissue safety profile. HSV1716 greatly reduced the invasive
capacity of DIPG cells and exhibited an exciting therapeutic efficacy in an orthotopic mouse
tumorigenesis model [144].

Table 2. Current clinical trials of DIPG immunotherapy.

Type of
Therapy Treatment Delivery Method Patients Efficacy Ref. or NCT

Number

ICIs

Ipilimumab/nivolumab Convection
enhanced delivery Patients (n = 2)

Patient 1: dead;
Patient2:

progressive disease
[12]

Pembrolizumab Intravenous
injection Recruiting Unknown NCT02359565

Pembrolizumab Intravenous
injection Patients (n = 5) Shorter median

PFS than expected PBTC045

Pidilizumab Intravenous
injection

Active, not
recruiting Unknown NCT01952769

CAR T-cell
therapy

B7-H3-specific CAR T-cell
locoregional therapy

Catheter into the
ventricular system Recruiting Unknown NCT04185038

C7R-GD2 CAR T-cell
therapy

Intravenous
injection Recruiting Unknown NCT04099797

GD2 CAR T-cell therapy

Intravenous
injection and

intraventricular
delivery

Patients (n = 3)

Patient 1: OS,
13 months; Patient
2: OS, 26 months

Patient 3: OS,
20 months.

NCT04196413

Oncolytic virus

Oncolytic virus:
DNX-2401

Intratumoral
injection Patients (n = 12)

Median OS: 17.8
months (range, 5.9

to 33.5)
NCT03178032

Oncolytic virus:
AloCELYVIR

Intravenous
injection Recruiting Unknown NCT04758533

Oncolytic virus: Wild-type
Reovirus + Sargramostim

Intravenous
injection

Active, not
recruiting Unknown NCT02444546

Vaccines

Peptide vaccine: SurVaxM Subcutaneous
injection Recruiting Unknown NCT04978727

Peptide vaccine: H3K27M
peptide vaccine

Subcutaneous
injection Not yet recruiting Unknown NCT04808245

DC vaccine: WT1
mRNA-loaded autologous

monocyte-derived DCs

Intradermal
vaccination Recruiting Unknown NCT04911621

DC vaccine: TTRNA-DCs Intradermal
vaccination Recruiting Unknown NCT03396575

5. Dilemma of Immunotherapy for DIPG
5.1. Non-Inflammatory Immune Microenvironment

As mentioned above, the sparse immune infiltration and insignificant host antitumor
immune responses are the dominant roadblocks hindering immunotherapy in patients
with DIPG. The negligible infiltration of antigen-presenting cells (APCs), such as DCs, B
cells, and Th1 cells yields minimal concentrations of antigens that are presented to the
lymphatic system, which is insufficient to activate the anti-tumor response of effector cells
such as CD8+ T-cells and NK cells. Besides, the decreased secretion of immune-stimulating
factors and pro-inflammatory cytokines is also one of the main factors contributing to the
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poor immune response (Figure 3A) [9,10,77]. The characterization of the DIPG immune mi-
croenvironment is still basically unknown, warranting further exploration. The resolution
of the “cold” tumor immune microenvironment strongly favors immunotherapy.

5.2. Lower Mutational Load

The mutational burden of a tumor is defined as the number of mutations in each
coding region of the tumor genome. For certain cancer types, a higher mutational load may
be a significant predictor of enhanced clinical response to checkpoint inhibitors [145–147].
Although the efficacy of mutational burden in predicting response to treatment with ICIs is
controversial [148], a lower response is still associated with a relatively lower mutational
load in GBM [149]. Similar to adult GBM, a recent study reported that DIPG carries a
lower tumor mutational burden that is associated with a lower level of neoantigens that
are generated [150]. Therefore, checkpoint inhibition may not be an effective therapeutic
approach targeting pHGG in the absence of a high tumor mutational burden [151].

5.3. Antigen Insufficiency, Attenuation, and Escape

In adult GBM, EGFR amplification and mutations and the loss of PTEN are common
molecular features that are associated with neoantigens [152]. Compared with adult GBM,
mutations such as EGFR gene amplification or PTEN deletion are less common in pediatric
HGG, suggesting that a few common antigens in adult GBM may not be used in DIPG-based
CAR-T [153–155].

The recognition of specific tumor antigens is one of the most critical steps in CAR-T-cell
therapy [115]. Taking CD19+ CAR-T treatment of leukemia as an example, a decrease in
the expression of tumor antigens below the threshold that was detected by CAR-T-cells
can lead to a decline in efficacy and tumor recurrence [114,156]. In the clinical trials of
CAR-T for GBM treatment, targeting IL13-Rα2 has attracted great attention. Unfortunately,
no IL13-Rα2 was detected in patients who have relapsed after 6 months treatment [116].
However, targeting an identified neoantigen has yielded favorable results in preclinical
studies, whereas antigen evasion and attenuation disqualify it as a universal drug target.
Moreover, despite the high affinity of HLA peptides for a wide variety of HLA molecules,
the heterogeneity of HLA types renders HLA molecules untargetable in patients with
DIPG. In addition, the design of CAR-T-cells targeting neoantigens is expensive and
time-consuming, and dysfunctional in patients with defective T-cells owing to disease or
previous treatments [157].

5.4. Toxicity

The growing exploitation and application of immunotherapy has highlighted the
importance of the identification and management of its toxicity and side effects. [15].
Currently, studies investigating immunotherapy-related toxicity mainly focuses on ICI
and CAR-T-cell therapies [158]. ICI therapy can reverse the inhibitory effect of tumor cells
on T-cells in the tumor microenvironment. However, the reactivation of T-cell function
leads to the upregulation of inflammatory factors, which facilitates a spectrum of immune-
related adverse events (irAEs) [159]. The irAEs encompass organ toxicities involving
skin [160], gastrointestinal tract [161], hepatitis [162], endocrinopathies [163], thyroid [163],
pituitary [164], pneumonitis [165], and rheumatologic manifestations [166]. Adoptive cell
therapies, such as CAR-T-cell, can lead to the occurrence of cytokine release syndrome
(CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) [167,168]. CRS
is the most common side effect of CAR-T-cell therapy, characterized by the massive release
of pro-inflammatory cytokines (IL-6, IFN-γ, and TNF-α). The inflammatory storm that
is triggered by CRS leads to systemic inflammation and even multi-organ failure [169].
CRS occurs more frequently in children than in adults that are treated with CAR-T-cells,
which requires careful evaluation of potential toxicity when administering CAR-T-cells to
pediatric patients with DIPG [170]. ICANS is another potential side effect of CAR-T therapy,
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occurring in 40% of CAR-T-treated patients [171]. These toxicities impair the efficacy of
immunotherapy and warrant specific management [158].

The immaturity and inherent fragility of the pediatric immune system poses a huge
challenge to the immunotherapy of DIPG [172]. Schuelke et al. established four DIPG
immunotherapy models to monitor brainstem toxicity that was induced by CAR-T-cell
therapy, HSVtk/GCV suicide gene therapy, oncolytic virus therapy, and adoptive T-cell
transfer. The results showed that all animal models that were treated with immunotherapy
exhibited brainstem inflammation [173]. In a clinical trial of GD2-CAR T-cell therapy for
H3K27M-mutated diffuse midline gliomas (DMG), an H3K27M+ spinal cord DMG patient
exhibited Grade-3 CRS and Grade-4 ICANS [93].

5.5. Blood-Brain Barrier (BBB)

Under physiological conditions, T lymphocytes cannot cross the blood-brain barrier,
but the presence of lymphocytes can be detected in the cerebrospinal fluid, suggesting
that immune cells may enter the brain lesions through the cerebrospinal fluid and choroid
plexus pathways [174,175]. DIPG manifests reduced permeability of the blood-brain barrier
compared with the other pediatric gliomas that are located in the cerebral cortex [14].

Due to the compactness of the BBB in DIPG, fewer APCs infiltrate the brain parenchyma,
which leads to the influx of tumor antigens into the lymphatic system at an insufficient
concentration to induce an effective immune response against DIPG tumor cells [176–178].
In addition, the existence of the BBB leads to a huge discrepancy between the real therapeu-
tic concentration of the lesion and the ideal hypothetical concentration of chemotherapy
drugs, ICI, or infusion of CAR-T-cells and other therapies.

5.6. Cortisol Treatment

Dexamethasone is the most common initial treatment for newly diagnosed (or sus-
pected) DIPG for the alleviation of neurological symptoms that are caused by the tumor [2].
It can effectively reduce the degree of edema and inhibit the inflammatory response [179].
As corticosteroids inhibit the permeability of the BBB, it may limit the infiltration of APCs
and effector cells such as NK and CD8 + T-cells [180–182]. Besides, dexamethasone can
upregulate CTLA-4, resulting in immunosuppression and the arrest of T-cells in the cell
cycle [183]. In a study using an H3.3K27M-specific vaccine in DIPG, patients that were
treated with dexamethasone showed higher levels of baseline circulating MDSCs, which
were associated with a poor immunotherapy response and poor prognosis [135].

6. Immunogenic Cell Death (ICD)

Due to the low response to ICIs and immune-related adverse side effects that were
mentioned above, a new immunotherapy concept is needed. ICD can reverse the tumor
immunosuppressive microenvironment by boosting the efficiency of immunotherapy. ICD
is a form of programed cell death that is induced by multiple antitumor therapies accompa-
nied by the release of DAMPs, which facilitate the maturation of DCs and tumor death by
CTLs [16]. The DAMPs that are exposed on, secreted from, or passively released by dying
tumor cells can interact with phagocytotic, purinergic, or pattern-recognition receptors
(PRRs) to activate the tumor immune microenvironment and ultimately boost antitumor
innate and the adaptive immune response [184]. Mice showed resistance to challenges with
live cancer cell lines after vaccination with cancer cell lines exhibiting ICD that was induced
by anthracyclines, oxaliplatin, photodynamic therapy (PDT), or γ-irradiation in vitro [185].
Recently, several clinical trials have confirmed the clinical benefit of doxorubicin chemother-
apy (a typical ICD inducer) combined with ICIs [186–188]. Patients with B-cell lymphoma
manifested an improved clinical outcome when they were vaccinated with autologous
tumor cells showing immunogenic death [189]. Moreover, modifying the delivery of ICD
inducer formulations can further improve tumor regression rates and reduce adverse toxic
effects. For example, cancer-activated doxorubicin prodrug nanoparticles (CAP-NPs) can
specifically release cytotoxic doxorubicin when targeting cathepsin B-overexpressing cancer
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cells, which significantly reduces systemic adverse effects as well as greatly increases the
rate of tumor regression in combination with ICIs [190]. Hence, ICD is a promising method
to potentiate the immunotherapeutic efficacy synergistically.

6.1. Induction of ICD

ICD can be triggered by multiple stimuli, including but not limited to intracellular
pathogens, conventional chemotherapeutics, and physical stress. The rapid induction of
ICD contributes to the anticancer effect of many chemotherapeutics and physical thera-
pies [191–193]. The inducers of ICD can be divided into Type I and Type II categories,
according to different ICD inductive mechanisms. Type I inducers trigger ICD by promoting
secondary or collateral endoplasmic reticulum (ER) stress including cardiac glycoside (CG),
cyclophosphamide (CTX), doxorubicin (DOXO), mitoxantrone (MTX), oxaliplatin (OXP), ul-
traviolet C radiation (UVC), γ-irradiation (γ-IRR), and bortezomib [184]. By contrast, Type
II ICD inducers are focused on ROS-based ER stress as in hypericin-based photodynamic
therapy (Hyp-PDT) and coxsackievirus B3 (CVB3) infection [193]. The basic mechanism
underlying ICD is ER stress induction and ROS production. The ability to induce ICD is
largely determined by the degree of ER stress. Compared with secondary or collateral
ER stress, focused ER stress is more immunogenic and releases an abundance of DAMPs
frequently and effectively [194]. Therefore, Type I ICD inducers are preferred over Type II
ICD inducers in terms of ICD-inducing capability. However, a substantial proportion of
ICD inducers do not directly target ER but target the plasma membrane (channels or pro-
teins), nucleus (DNA replication proteins), or cytosol [184]. Shikonin targets tumor-specific
pyruvate kinase-M2 protein in the cytosol [195]. Cyclophosphamide targets DNA in the
nucleus [196]. They induce ER stress and release of DAMPs via secondary or collateral
effects. A small proportion of ICD inducers target ER stress. For instance, Hyp-PDT induces
focused ROS-based ER stress owing to the ER-localizing ability of hypericin to release mas-
sive ROS at the ER when it is excited by light at a specific wavelength [193,197]. Hyp-PDT
promotes protective antitumor immunotherapy via ICD-mediated release of DAMPs.

6.2. Emission of DAMPs

DAMPs play a critical role in ICD-mediated antitumor immune response. DAMPs act
as a danger signal or adjuvant and can be exposed on the surface, passively released, or
actively secreted by dying cells during ICD. ICD-associated DAMPs mainly contain high
mobility group protein B1 (HMGB1), the small metabolite ATP, mtDNA, calreticulin (CRT),
heat shock protein 90 (HSP90), Type I interferons (IFNs), and IL-1 family cytokines [198].
DAMPs can be classified into constitutive DAMPs that are inherently expressed in the cell,
while inducible DAMPs are generated during ICD [199]. ICD-associated DAMPs display
four significant characteristics. First, the production and emission mechanisms of DAMPs
are dynamic in a defined spatiotemporal sequence, which depends on the death stage and
stimulus type. DAMPs can be transferred to extracellular space via the classical secretory
pathway and exocytosis in the case of cells in the pre-apoptotic stage [200]. The early-
apoptosis secretion and exposure of DAMPs depend on autophagy and association with
phosphatidylserine exposure, respectively [201]. In the middle or late stages of apoptosis,
the defective plasma membrane contributes to the passive release of DAMPs [202]. Second,
the number of DAMPs is closely associated with the type of stimulus that induces ICD.
Doxorubicin promoted the surface exposure of HSP70, HSP90, and CRT, secretion of ATP
and HMGB1, and upregulation of Type I interferons based on lipid peroxidation signaling-
induced ER stress [190]. By contrast, colchicine induced the release of HSP70, HSP90, and
HMGB1 [203]. Third, DAMPs exert biological effects mainly through binding pattern-
recognition receptors (PRRs) that are expressed on the surface of DC and other immune
cells. Fourth, DAMPs may be multifaceted contributing to tumor progression or metastasis
depending on the extracellular microenvironment. Recent studies reported that some
DAMPs such as HMGB1 and ATP accelerate tumor progression and contribute to resistance
to anti-cancer therapies [204].
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6.2.1. HMGB1

HMGB1 participates in DNA repair and transcription as well as nucleosome stabiliza-
tion, in addition to playing a role in immune regulation in the extracellular matrix [199].
The majority of anti-cancer agents and inducers of apoptosis and ICD such as doxoru-
bicin, cardiac glycosides, septacidin, and Coxsackievirus B3, promote HMGB1 release [205].
HMGB1 release occurs in the middle and late phase of cell death via autophagy and plasma
membrane defects after ICD induction. The priming of T-cells was inhibited in mice bear-
ing CT26 cancer cells, owing to the depletion of HMGB1 or co-injection of anti-HMGB1
antibody [206]. HMGB1 boosted the antitumor immune response by binding TLR2 and
TLR4 [207]. HMGB1 is as a strong cytokine, promoting the recruitment of various immune
cells and the production of pro-inflammatory factors [208]. In addition, HMGB1 promotes
DC maturation to potentiate antigen presentation and adaptive immune response [206].
A loss-of-function single-nucleotide polymorphism in breast cancer patients is associated
with early relapse after anthracycline treatment [209].

However, HMGB1 may promote tumor invasion, while metastasis reduces anti-tumor
immunity by interacting with the receptor for advanced glycation end products (RAGE) and
T-cell immunoglobulin domain and mucin domain 3 (TIM3) [199]. The different behaviors
of HMGB1 can be partially explained by the switch in redox states. HMGB1 is an inactive
DAMP when fully oxidized. HMGB1 attracts immune cells in the fully reduced form.

6.2.2. CRT

Calreticulin (CRT) can be surface exposed during the whole course of ICD (pre-/mid/late
apoptosis) via different emission mechanisms [184]. CRT that is exposed on the surface
of tumor cells experiencing ICD is an important “eat me” signal to promote tumor cell
phagocytosis and antigen presentation via CD91, also known as LDL-receptor-related
protein 1 (LRP1). The knockdown of CRT reduced the immunogenicity of tumor cells
and suppressed the engulfment of anthracyclin-treated tumor cells by DCs in mice [210].
Further, recombinant CRT fragment 39-272 induced the activation and Ig class switching of
B-cells [211].

6.2.3. ATP

Similar to CRT, ATP was released in different stages of cell death/injury/stress [199].
ATP can be actively secreted before apoptosis, autophagy-dependent secretion in the mid-
dle of apoptosis, or passively released in the late stage of cell death. The function of ATP
is related to its concentration in the extracellular space. Immature DC cells significantly
increased their expression of MHC and costimulatory molecules (CD83, CD86, and CD54)
after incubation for 24 h with 250 µM ATP. On the other hand, their ability to initiate
T-helper 1 (Th1) responses was impaired [212]. Nevertheless, stimulation for less than
30min with 5mM ATP assists the maturation of human DCs and the release of IL-1β [213].
Stimulation of X2Y2 receptors on macrophages requires an EC50 < 1 µM ATP. An appropri-
ate extracellular ATP gradient is established during chemotaxis of numerous immune cells.
However, at the dose of 1 mM, ATP enhances immunosuppression by Tregs by activating
P2Y2 receptor [204]. Extracellular ATP can be hydrolyzed to adenosine, a prominent im-
munosuppressive agent [214]. Therefore, ATP may also attenuate the anti-tumor immune
response via immune suppression.

7. The Diagnostic and Therapeutic Potential of Induced ICD in DIPG
7.1. Advances in DIPG Immunotherapy

The discovery of several neoantigens, such as EZH2, WT1, B7-H3, HLA-A*02.01+
H3.3K27M26-35, and LSD1 provides the basis for the clinical transformation of immunother-
apy [52,57,58,124,135,215]. In adult GBM, NK cells can circumvent the antigen loss that is
seen in CAR-T-based models [152].
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As mentioned above, GD2 CAR-T-cell and oncolytic viruses such as Ad-CD40L, DNX-
2401, and HSV1716 show excellent safety and feasibility in the treatment of DIPG animal
models [93,143,144,216]. However, how to deliver CAR-T-cells or oncolytic viruses to the
brainstem of children with DIPG is still a challenge. Intraventricular infusion (ICV) is cur-
rently the predominant option. In a clinical trial of GD2 CAR-T for the treatment of patients
with DIPG, ICV administration is associated with less systemic toxicity, reinforced secretion
of pro-inflammatory cytokines, and minimal immunosuppressive cell populations that
were detected in CSF, compared with intravenous infusion [93]. Moreover, clinical trials
of intraventricular infusions of NK cells in pediatric patients with posterior fossa malig-
nancies are underway, indicating excellent safety profile [217]. Chastkofsky et al. designed
an oncolytic virus with an efficient delivery system via intra-tumoral injection of mes-
enchymal stem cells (MSCs) encapsulating the oncolytic adenovirus (CRAd.S.pK7) [218].
Several techniques are currently attempting to overcome the impediment of the blood-brain
barrier, including the application of focus ultrasound [219], nanotechnology [220], and
convection-enhanced delivery (CED) [221,222].

Currently, methods for assessing the efficacy of immunotherapy in vitro are aimed at
directly measuring markers of tumor cell injury and death. Molecules that are released by
dead cells, such as ATP, proteases, or lactate dehydrogenase (LDHA) are the mainstream
indicators for evaluating curative effects in vitro [28,223,224]. Stallard et al. proposed
that CSF circulating tumor DNA (ctDNA) can be used to quantify tumor growth and
predict the treatment response [225]. Interestingly, CSF ctDNA was elevated during the
treatment of patients with DIPG using GD2 CAR-T-cells [93]. In another clinical trial assess-
ing H3.3K27M-specific vaccine, CSF ctDNA showed no apparent prognostic ability [135].
Surprisingly, lower levels of circulating MDSC (CD33 + CD11b + CD14+ HLA-DRlow) are
a prognostic indicator of DIPG and are associated with higher CD8+ T-cell response, pro-
longed survival, and higher vaccine efficacy, whereas Tregs did not show similar prognostic
value [135].

7.2. Immunotherapeutic Modalities for Inducing ICD in DIPG

Based on the foregoing discussion, intratumoral delivery of vaccines, oncolytic viruses,
CAR-cells, or chemotherapeutic drugs can induce the release of DAMPs in a potential ther-
apeutic strategy, and the evaluation of ICD-related molecules in serum and cerebrospinal
fluid may have potential diagnostic significance. Treatment combining ICD induction
and immunotherapy is more efficient than immunotherapy alone in improving clinical
outcomes and extending the overall survival. Adjuvant treatments that are mediated by
ICD include radiation, vaccination with cancer cells experiencing ICD, oncolytic virus, and
chemotherapy (Figure 3B) [226–230].

7.2.1. Induction of ICD in Adult GBM

In adult GBM, immunocompetent mice that were vaccinated with early ferroptotic
cancer cells that were induced by GPX4 inhibition exhibited more efficient phagocytosis
and maturation of bone-marrow-derived dendritic cells (BMDCs), via the increased release
of HMGB1 and ATP [231]. Further, the vaccination-like effect was defective in Rag-2−/−

mice, suggesting that the enhanced anti-tumor adaptive immune response was caused
by early ferroptotic cancer cells. In a preclinical study of mice carrying a murine glioma
cell line GL261-luc, Lim reported that the combination therapy of anti-TIM-3 antibody
and stereotactic radiosurgery was more effective than anti-TIM-3 antibody alone in the
regression of murine gliomas, accompanied with an elevated immune response [232].
However, they may have overlooked the possibility that luciferase-modified cells may
themselves be immunogenic. The co-administration of anti-PD-1 antibody therapy with
Zika virus (ZIKV) prolonged the overall survival of mice bearing primary tumors, owing
to the oncolytic effect that was mediated by increased recruitment of CD8+ T and myeloid
cells to brain tumor microenvironment [233]. Oncolytic adenovirus that was loaded with
IL-7 combined with B7H3-targeted CAR-T therapy enhanced T-cell proliferation, increased
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tumor-infiltrating B7H3-CAR-T-cells, and extended the survival of mice bearing GL161
tumours, despite failing to reverse the exhaustion of B7H3-CAR-T-cells [234]. Kramer-
Marek conducted photoimmunotherapy by conjugating an EGFR-specific affibody molecule
to IR700, which generated ROS; induced ICD with the release of HMGB1, CRT, ATP,
and HSP70/90; and promoted an anti-tumor immune response in a murine model [235].
Chemotherapeutic drugs, such as cyclophosphamide and bortezomib, combined with
immunotherapy improved the overall survival by stimulating the immunogenic response
of the brain tumor and anti-tumor immune response in animal models [229,236].

Further, novel biomaterials such as nanoparticles and hydrogels represent emerging
and promising methods to facilitate immunotherapy by precisely targeting tumors and
inducing ICD. An injectable hydrogel system was developed to induce ICD and suppress
chemotactic CXC chemokine ligand 10 and indoleamine 2,3-dioxygenase-1, which signif-
icantly activated tumoricidal immunity after GBM surgical resection and attenuated the
risk of relapse [237]. Nanoscale immunoconjugates with covalently attached antibodies to
CTLA-4 or PD-1 successfully penetrate the BBB and stimulate tumoricidal immunity. Mice
with intracranial GL261 GBM carried an increased number of CD8+ T-cells, NK cells, and
macrophages as well as a decreased number of Tregs in the local tumor area after nanoscale
immunoconjugate treatment [238]. Zhong et al. reported ApoE-mediated nano-delivery of
granzyme B and CpG to induce ICD and enhance the anti-tumor immune response [239].

7.2.2. Induction of ICD in DIPG

A retrospective cohort study reported that patients with recurrent and diffuse intrinsic
pontine glioma that were exposed to repeated irradiation showed extended overall survival
compared with those that were not exposed to repeated irradiation [240]. The benefit of
re-irradiation may be partially explained by its role as an important ICD inducer in cancer
cells. Besides, the efficacy and safety of autologous DC vaccines containing allogeneic
tumor cell-line lysate was confirmed in patients with newly diagnosed DIPG. It evoked a
specific anti-tumor immune response and ICD in T lymphocytes that were obtained from
the cerebrospinal fluid (CSF) and peripheral blood mononuclear cells in the peripheral
blood of patients [136].

An oncolytic adenovirus, termed Delta-24-ACT, was designed by Alonso et al. to ex-
press the costimulatory ligand 4-1BBL, which elevates the number and function of immune
cells in the local tumor area. The administration of Delta-24-ACT in mice bearing DIPG
orthotopic tumors remarkably improved the overall survival and boosted the long-term
immunological memory against these tumors [241]. The treatment of adenoviruses express-
ing thymidine kinase (TK) and fms-like tyrosine kinase 3 ligand (Flt3L) in a mouse model
of mACVR1 brainstem glioma increased the median survival by promoting recruitment of
tumor antigen-specific T-cells [17]. (Table 3).

Table 3. Preclinical studies of induction of ICD to enhance the immunotherapy of glioma.

Treatment Category Delivery Method Model Efficacy Ref.

ICIs: antibody-PD-L1

Focused ultrasound
combined with

microbubble-mediated
BBB opening (FUS-BBBO)

Mice/no glioma cells NA [242]

Early ferroptotic cancer
cells

In vivo prophylactic tumor
vaccination

(Injected subcutaneously)

Mice/murine
fibrosarcoma MCA205
or glioma GL261 cells

Attenuated the
appearance of tumors
at the challenge site

[231]

Anti-TIM-3 antibody +
stereotactic radiosurgery

(SRS)

Injected intraperitoneally
/Stereotactic radiation

Mice/murine glioma
cell line GL261-luc2 Long-term survival [232]

Zika virus (ZIKV) Stereotactic injection Mice/GL261 or CT2A
cells

Long-term
survival [233]
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Table 3. Cont.

Treatment Category Delivery Method Model Efficacy Ref.

An interleukin-7-loaded
oncolytic adenovirus

(oAD-IL7) and a
B7H3-targeted CAR-T

Stereotactic injection Mice/GBM-Luc cells Prolonged survival and
reduced tumor burden. [234]

EGFR-mediated
photoimmunotherapy Light exposure Mice/GBM cells Extensive tumor

necrosis [235]

Bortezomib and an
oncolytic herpes simplex

virus-1 (oHSV)

Intraperitoneally
injected/intratumorally

administrated
Mice/CAL27 cells

Prolonging survival
enhance NK cell
immunotherapy

[236]

An injectable hydrogel
system

Intraperitoneally
injected/intratumorally

administrated
Mice/GL261

Suppressed tumor
recurrence and

prolonged the survival
[237]

Nanoscale
immunoconjugates
covalently attached

antibodies to CTLA-4 or
PD-1

Tail vein injection Mice/GL261 Longer survival [238]

ApoE
peptide-functionalized

polymersomes
encapsulating granzyme B

(ApoE-PS-GrB)

Tail vein injection Mice/LCPN cells

Delayed tumor
progression and

prolonged survival
time

[239]

Oncolytic adenovirus:
Delta-24-ACT Intra-tumoral injection

BALB/c mice/murine
NP53 and XFM cell

lines

Long-term survivors
that developed
immunological

memory against DIPG

[241]

Adenoviruses expressing
thymidine kinase (TK) and
fms-like tyrosine kinase 3

ligand (Flt3L)

Intra-tumoral injection
Mice/ brainstem
glioma harboring

mACVR1

Recruitment of
antitumor-specific T
cells, and increased

median survival

[17]

8. Conclusions

DIPG is the most lethal tumor involving the pediatric central nervous system. Im-
munotherapies such as ICIs, CAR-T-cells, vaccines, and oncolytic viruses present exciting
opportunities to cure DIPG with unique and heterogeneous features. Nevertheless, the
inadequate exploration of the DIPG immune microenvironment is currently a challenge
that is hindering the application of immunotherapeutic modalities. DIPG is characterized
by reduced infiltration of immune cells, decreased secretion of inflammatory factors, rare
APCs, isolated and defective immune killing mechanisms, and a nearly deserted immune
microenvironment. The non-inflammatory DIPG microenvironment greatly limits the de-
velopment of immunotherapy for DIPG. Encouragingly, the induction of ICD, accompanied
by the release of DAMPs demonstrates satisfactory efficacy of immune stimulation and
antitumor response. Additional safety and efficacy studies using immunotherapies with
ICD adjuvants are needed to treat DIPG.
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